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Abstract

Background: Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods,
have been proven as powerful tools to perform biological network analysis. However, the majority of the
developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels
into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to
characterize biological networks more meaningfully instead of only considering pure topological information.

Results: In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-
chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-
labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures
combined with other well-known descriptors to supervised machine learning methods for predicting Ames
mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled
vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem.

Conclusions: Our study demonstrates that the application of entropic measures to molecules representing graphs
is useful to characterize such structures meaningfully. For instance, we have found that if one extends the
measures for determining the structural information content of unlabeled graphs to labeled graphs, the
uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are
clearly underrepresented so far, the further development of such methods might be valuable and fruitful for
solving problems within biological network analysis.

Background
Major reasons for the emergence of biological network
analysis [1-4] are the extensive use of computer systems
during the last decade and the availability of highly
demanding and complex biological data sets. For
instance, important types of such biological networks
are protein-protein interaction networks [5-7], transcrip-
tional regulatory networks [8,9], and metabolic networks
[7,10,11]. Note that vertices in such biological networks
can represent, e.g., proteins, transcription factors or
metabolites which are connected by edges representing
interactions, concentrations or reactions, respectively
[3,12]. Thus, vertex-and edge-labeled graphs is an
important graph class [13,14] and useful for modeling
biological networks [3]. To name only some well-known
examples or methods which have often been applied

within biological network analysis, we briefly mention
graph classes like scale-free and small-world networks
[15,16], network centralities [12,17], module and motif
detection [18-20], and complexity measures for explor-
ing biological networks structurally [21,22].
Taking into account that a large number of graph-the-

oretical methods have been developed so far, approaches
to process and meaningfully analyze labeled graphs are
clearly underrepresented in the scientific literature. In
particular, this holds for chemical graph analysis where
various graph-theoretical methods and topological
indices have been intensely used, see, e.g., [23-34]. Yet,
we state a few examples where such graphs appear in
the context of biological network analysis: Structure
descriptors to determine the complexity of pathways
representing labeled graphs have been used to examine
the relationship between metabolic and phylogenetic
information, see [22]. Another challenging task relates
to determine the similarity between graphs or subgraphs
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[35-38]. For instance, YANG et al. [38] recently devel-
oped path-and graph matching methods involving ver-
tex-and edge-labeled graphs which turned out to be
useful for biological network comparison [38]. Finally, to
utilize graph-theoretical concepts for investigating
graphs and labeled graphs within molecular biology,
HUBER et al. [39] reviewed several existing software
packages and outlined concrete applications [39].
In this paper, we restrict our analysis to a set of bio-

chemical graphs which have already been used for pre-
dicting Ames mutagenicity, see [40]. To perform this
study, we develop and investigate entropic descriptors
for vertex- and edge-labeled graphs. Before sketching
the main contributions of our paper, we state some facts
about topological descriptors which have been used in
mathematical chemistry, drug design, and QSPR/QSAR.
As already mentioned, topological indices have been

proven to be powerful tools in drug design, chemo-
metrics, bioinformatics, and mathematical and medicinal
chemistry [23,24,26,28,29,34,41-43]. Certainly, one rea-
son for their success can be understood by the fact that
there is a strong need to apply empirical models to
solve QSPR (Quantitative structure-property relation-
ship)/QSAR (Quantitative structure-activity relationship)
problems [24,28,29,44] and related tasks in the just
mentioned areas. In this paper, we put the emphasis on
developing novel molecular descriptors for tackling a
problem in QSAR: We will use structural property
descriptors of molecules based on SHANNON’s entropy
for predicting Ames mutagenicity, see [40,45-47]. Gener-
ally, we note that the problem of detecting mutagenicity
in vitro is based on the bacterial reverse mutation assay
(Ames test) and often serves as a crucial tool in drug
design and discovery [40,45-47].
Further, topological descriptors have often been com-

bined with other techniques from statistical data analy-
sis, e.g., clustering methods [26,48] to infer correlations
between the used indices. Besides using topological
descriptors for characterizing chemical graphs
[27,32,49], they have also been applied to quantify the
structural similarity of chemicals representing networks
[50,51]. Among the large number of existing topological
indices, an important class of such measures relies on
SHANNON’s entropy to characterize graphs by deter-
mining their structural information content [27,52-54].
Until now, especially these measures have been intensely
applied within biology, ecology, and mathematical chem-
istry [27,52,54-60], in particular, to measure the com-
plexity of biological and chemical systems [27,52,61].
Recently, we already developed a novel procedure to
infer such information-theoretic measures for graphs
that results in so-called partition-independent measures
[57,62]. More precisely, we mean that we do not induce
partitions using the procedure manifested by Equation

(2), (3) in [57]. In this work, partitions using graph
invariants and equivalence criteria have been explicitly
induced, see, e.g., [27,52,53]. Note that we already
placed a comment on this problem in the first para-
graph of the section ‘Partition-Independent Information
Measures for Graphs’. In contrast to partition-indepen-
dent measures, classical partition-based information
measures often rely on the problem to group elements
manifested by an arbitrary graph invariant according to
an equivalence criterion [27,53,54,63].
The contribution of our paper is twofold: First, we

develop some novel information-theoretic descriptors
having the ability to incorporate vertex- and edge-labels
when measuring the information content of a chemical
structure. Because we already mentioned that there is a
lack of graph measures which can process vertex-and
edge-labeled graphs meaningfully, such descriptors need
to be further developed. In terms of analyzing chemical
structures, that means they can only be adequately repre-
sented by graphs if different types of atoms (vertices) and
different types of bonds (edges) are considered. Hence,
there is a strong need to exploring such labeled networks.
Besides developing the novel information-theoretic mea-
sures for vertex- and edge-labeled graphs, we will investi-
gate some of their properties thereof (see section
‘Properties of the Novel Information-Theoretic Descrip-
tors’) [40,47]. Second, the paper also deals with evaluat-
ing the ability of the mentioned descriptors to predict
Ames mutagenicity when applying well-known machine
learning methods like random forests [64,65] (RF) and
support vector machines [64,66] (SVM). Starting from
chemical structures represented as vectors composed of
topological descriptors, we will analyze the prediction
performance by focussing on the underlying supervised
graph classification problem. We want to emphasize that
beside our novel descriptors, we also combine them with
other well known information-theoretic and non-infor-
mation-theoretic measures which turned out to be useful
in QSPR/QSAR, see, e.g., [29]. Further, we examine the
influence on the prediction performance when taking
semantical (labels) and structural information of the
graphs into account. Finally, we want to point out that
considerable related work has been done so far that deals
with investigating multifaceted problems when applying
molecular descriptors to machine learning algorithms
[67-69]. For example, DESHPANDE et al. [67] developed
an approach to find discriminating substructures of che-
mical graphs. Then, by using a vector representation
model for these graphs, they applied several machine
learning methods to chemical databases for classifying
these structures meaningfully. Another interesting study
was done by XUE et al. [68] that deals with applying a
variety of molecular descriptors to characterize structural
and physicochemical properties of molecules [68].
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Particularly, they used a feature selection method for
automatically selecting molecular descriptors for SVM-
prediction of P-glycoprotein substrates and others. As an
important result, XUE et al. [68] determined the reduc-
tion of noise and its influence on the prediction accuracy
of a statistical learning system [70]. The last contribution
we want to sketch in brief is due to MAHÉ et al. [69]. In
this work, a graph kernel approach [64,69] was validated
for structure-activity-relationship analysis where special
kernels based on random walks were used and optimized.
Note that more related work can be found in [40,71-74].

Methods
Graph-Theoretical Preliminaries
To present the novel information-theoretic measures for
labeled (weighted) graphs, we express some graph-theo-
retical preliminaries [14,57,75-77].
Definition 1 G V E E

v
V= ⊆

⎛

⎝
⎜

⎞

⎠
⎟ < ∞( , ), , | |

2
is a finite, undir-

ected graph. In this paper, we always assume that the
considered graphs are connected and do not have loops.
Definition 2 Let G be a finite and undirected graph.

δ(v) is called the degree of a vertex v � V and equals the
number of edges e � E which are incident with v.
Definition 30 d(u, v) stands for the distance between

u � V and v � V expressed as the minimum length of a
path between u,v. Further, the quantity s(v) = maxuÎV d
(u, v) is called the eccentricity of v � V. r(G) = maxvÎV s
(v) is called the diameter of G.
Definition 4 We call

S G V d j jj i i( , ) : | ( , ) , ,   = ∈ = ≥{ }1 (1)

the j-sphere of a vertex vi regarding G.
Definition 5 Let

A l l lV
G AV

G

: { , , , },| |=   
1 2  (2)

and

A l l lG
E

e e e
AE

G

: { , , , },| |= 1 2  (3)

be unique (finite) vertex and edge alphabets, respec-
tively. l V AV V

G: → and l E AE E
G: → are the correspond-

ing edge and vertex labeling functions. G := (V,E,lV,lE) is
called a finite, labeled graph.
Definition 6 Let

S G V d j j

l l A

j
l

i i

V V
G



   

 


( , ) : { | ( , ) , ,

( ) , , , ,| |}.

= ∈ = ≥

= =

1

1 2
(4)

Clearly, | ( , ) |S Gj
l

i


 denotes the cardinality of the set

of vertices whose distances, starting from vi, are equal to
j and possess the vertex label l

 .

To finalize this section, we repeat the definition [76]
of a so-called local information graph of an undirected
graph G. In the following, we will use this definition to
derive an advanced information functional for incorpor-
ating edge- and vertex-labels when measuring the struc-
tural information content of a labeled network.
Definition 7 Let G = (V, E) be an undirected graph.

For a vertex vi Î V, we calculate
S Gj i u w xj j j
( , ) { , , , }   =  and the induced shortest

paths,

P j
i i u u u j1 1 2

( ) : ( , , , , ),    =  (5)

P j
i i w w w j2 1 2

( ) : ( , , , , ),    = 


(6)

Pkj
j

i i x x x j
( ) : ( , , , , ).    =

1 2
 (7)

kj stands for the number of shortest paths of length j.
Their edge sets are defined by

E i u u u u uj j1 1 1 2 1
: {{ , },{ , }, ,{ , }},=

−
      (8)

E i w w w w wj j2 1 1 2 1
: {{ , },{ , }, ,{ , }},=

−
     

 
(9)

Ek i x x x x xj j j
: {{ , },{ , }, ,{ , }}.=

−
     

1 1 2 1
 (10)

Further, let

V
G j j

j

j
i u u i w w

i x x

 : { , , , } { , , , }

{ , , , },

= ∪ ∪

∪

     

  
1 1

1

 

 
(11)

and

E E E E
G j

j
k = ∪ ∪ ∪1 2  . (12)

The local information graph LG(vi, j) of G regarding vi
is finally defined by

  G i
j jj V E
G G

( , ) ( , ). = (13)

Fig. 1 shows a chemical structure as a labeled graph
whereas Fig. 2 illustrates Definition (7).

Partition-Independent Information Measures for Graphs
As already outlined, the majority of classical information
measures for graphs are based on determining partitions
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by using an arbitrary graph invariant and an equivalence
criterion, see, e.g., [27,48,53,54]. However, DEHMER et
al. [57,62] recently proposed another method for quanti-
fying the structural information content of a graph. The
key principle of this approach is to assign a probability
value to every vertex in a graph using different informa-
tion functionals [57,62]. This results in partition-inde-
pendent information measures to determine the entropy
of the underlying graph topology. We already explained
why we call our measures partition-independent (see
also the section ‘Background’). In a narrow sense, one

might argue that to calculate the information functionals
f iVi , ,= 1 2 and f E (see next section), we also deal with
certain graph partitions for quantifying the information
content of a vertex- and edge-labeled graph because we
have to compute all local information graphs (local sub-
graphs). But nonetheless, the construction of our infor-
mation measures basically differs from the ones
mentioned in [57] (see Equation (2), (3)). In fact, we end
up with probability values for every vertex of a given
graph. Now, in order to start developing the new mea-
sures, we briefly recall the most important definitions. A
recent review on information-theoretic descriptors to
quantify structural information of unlabeled graphs can
be found in [57].
Definition 8 Let G = (V, E) be an arbitrary finite

graph. The vertex probabilities for each v i Î V are
defined by the quantities

p
f i

f jj
Vi( ) :
( )

( )| |
. 


=

=∑ 1
(14)

Figure 1 A chemical structure and its corresponding labeled
graph version.

Figure 2 A labeled chemical graph and its local information graphs regarding the vertex v3. To understand the procedure for computing
the structural information content of such a graph, the determined local information graphs are depicted as vertex-labeled (to incorporate
vertex labels) as well as edge-labeled (to incorporate edge labels) graphs.

Dehmer et al. BMC Structural Biology 2010, 10:18
http://www.biomedcentral.com/1472-6807/10/18

Page 4 of 17



f represents an arbitrary information functional.
Definition 9 Let G = (V, E) be an arbitrary finite

graph. Then, the entropy of G is defined by

I G p pf i i

i

V

( ) : ( ) log( ( )).
| |

= −
=
∑  

1

(15)

Now, we repeat the definition of an information func-
tional for quantifying the structural complexity of unla-
beled and unweighted chemical graphs [57]. Generally,
this relates to measure the structural information con-
tent of a graph that is interpreted as the entropy of the
underlying graph topology.
Definition 10 Let G = (V, E) be an undirected finite

graph. For a vertex v i Î V, the information functional f
V is defined as

f c S G

c S G

c k G

V
i i

G G i

k

( ) : ( , )

( , ),

, ( ).
( ) ( )

 



 

= +
+

> ≤ ≤

1 1

0 1

| |

| | (16)

Remark 1 We want to point out that further informa-
tion functionals have been developed so far [76]. The
appropriateness of such a functional that captures struc-
tural information of a graph strongly depends on the
graph class and on the specific problem under
consideration.
Another measure to determine the structural informa-

tion content is the following one. Until now, it has been
used [57] to perform a statistical analysis when deter-
mining structural complexity of real chemical structures
and investigating correlations with other molecular
descriptors [57]. Mathematical properties thereof were
also described in [57].
Definition 11 Let G = (V, E) be an undirected finite

graph. We define the family of information measures

I G V I G
f fV V
 ( ) : (log(| |) ( )),= − (17)

where

I G p p
f

V
i

i

V
V

iV ( ) : ( ) log( ( )).
| |

= −
=
∑  

1

(18)

l > 0 is a scaling constant.

Novel Information-Theoretic Descriptors for Labeled
Graphs
In this section, we present novel information measures
to quantify structural information of labeled (weighted)
chemical structures by adapting the just shown

approach. Because the majority of the developed topolo-
gical indices is only defined for the underlying skeleton
of a chemical structure, the further development of
descriptors for processing chemical graphs containing
heteroatoms and multiple bonds is generally of great
importance. Before we start expressing the new defini-
tions, we first point out some related work in this area.
Note that earlier contributions to infer measures for

labeled graphs are often based on special distance
matrices and polynomial methods [78-80]. Another
attempt in this direction was done by IVANCIUC et al.
[81] where this approach is based on defining weighted
matrices incorporating special weighting schemes [81].
For example, a definition of a connectivity, adjacency,
distance, and reciprocal distance matrix by applying sev-
eral weighting schemes incorporating chemical informa-
tion like the atomic bond number, electronegativity, and
the covalent radius have been investigated [81]. Then,
such matrices have been used to define molecular
descriptors for quantifying information of weighted che-
mical graphs, e.g., organic compounds. To name some
concrete examples, we first mention the WIENER index
[82] for vertex-and edge-labeled graphs when applying
the known formula for calculating this index with a spe-
cial weighting scheme as mentioned above [81]. Further,
starting from the mentioned weighted matrices, the well-
known information indices U, V, X, Y [83] have been
extended to determine the structural information content
of labeled (weighted) graphs [84]. As a result, IVANCIUC
et al. [81,84] obtained information-theoretic topological
descriptors for vertex- and edge-labeled graphs where the
underlying (weighted) matrix may contain negative ele-
ments and those between zero and one.
We now start by stating the novel partition-indepen-

dent information-based descriptors to determine the
information content of vertex- and edge-labeled graphs.
The first definition represents an information functional
to account for vertex labels of a chemical structure. For
this, we adapt the idea [57,62] of determining the topo-
logical neighborhoods (using j-spheres) for all involved
atoms (vertices) of the molecule. By now considering
labeled graphs, our first attempt results in an informa-
tion functional with the property that every vertex in
each j-sphere possessing a certain vertex label (atom
type) will be weighted differently.
Definition 12 Let G = (V, E, lV) be an undirected

finite vertex-labeled graph, AV
G ≠ ∅ . We define

f c S G

c

V
i k

l
k
l

i

A

k

G

k
l

V
G

1

11

0

( ) : | ( , ) |,

.

| |( )

 












=

>

==
∑∑ (19)
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Example 2 To demonstrate the calculation of
f V i

1( ) exemplarily, we consider Fig. 1 and set
A O C N A s dV

G
E
G: { , , }, : { , }= = . O, C and N denote the

atom types of the molecule. The edge type s represents a
single bond whereas d represents a double bond within
the chemical structure. For example, if we now calculate
f V i

1( ) for G shown in Fig. 1, we yield

f c c c c cV C C N C O1
1 1 2 2 3 42 2( ) : , = + + + + (20)

f c c c c cV C O N C O1
2 1 2 2 3 42 2( ) : , = + + + + (21)

f c c c c cV O C N C O1
3 1 1 1 2 32 2( ) : , = + + + + (22)

f c c cV C O C1
4 1 2 23 3( ) : , = + + (23)

f c c c c cV N O C O C1
5 1 1 2 3 32 2( ) : , = + + + + (24)

f c c c c cV O N C O C1
6 1 1 2 3 32 2( ) : , = + + + + (25)

f c c c c cV C N C O C1
7 1 2 3 4 42 2( ) : , = + + + + (26)

f c c c c cV C N C O C1
8 1 2 3 4 42 2( ) : . = + + + + (27)

Because it is not always clear how to choose the
involved parameter in practice, we further derive an
information functional to overcome this problem.
Definition 13 Let G = (V, E, lV) be an undirected

finite vertex-labeled graph, AV
G ≠ ∅ . If we determine all

local information graphs LG(vi, j) of G for the vertices vi
Î V, we then define the quantities

| ( ( , )) |: |{ | ( ) ,

, , ,| |, , ,

V j V l l

A j

l G i G
j

V

V
G


   




 = ∈ =

= =1 2 1 2  ,, ( )}|, G
(28)

This quantity denotes the number of vertices of LG(vi, j)
possessing vertex label l

 .
Definition 14 Let G = (V, E, lV) be an undirected

finite vertex-labeled graph, AV
G ≠ ∅ . We define the

information functional

f c V

V G

c

V
i l l G i

l G i

l
AV

2
1 1

1

1( ) : ( ( , ))

( ( , ( )))

 

 

 





= ⋅ ( +

+ ) +

+





 GG AV
G

AV
G

V

V G

l
G i

l
G i

⋅ +
⎛

⎝
⎜
⎜

+
⎞

⎠
⎟
⎟







 

( ( , ))

( ( , ( ))) ,





1



(29)

where c
l
 > 0 .

Remark 3 We note that

| ( ( , )) | ( ),V j iff j
l G i i

     = >0 (30)

| ( ( , )) | .( , )V j iff l A
l G i V

G ji


  

   = ∉0 (31)

The expression

| ( ( , )) | | ( ( , ( ))) |V V G
l G i l G i




     1 + + (32)

quantifies the number of occurrences of vertex label
l
 in

{ ( , ), ( , ), , ( , ( ))}.  G i G i G i G   1 2  (33)

Example 4 Fig. 2shows the calculated local informa-
tion graphs of G regarding v3. For example, this leads to

f c

c

c

V
C

O

N

2
3 2 3 3

1 0 2

1 1 1

( ) ( )

( )

( ).

 = ⋅ + +
+ ⋅ + +
+ ⋅ + +

(34)

By determining all local information graphs for the
remaining vertices of G, the just shown calculation can
be performed analogously.
Next, we are able to derive an information functional

that takes the edge labels of a graph G into account. The
main idea is to use weighted paths which can be directly
determined by calculating the local information graphs.
Definition 15 Let G = (V, E, lE) be an undirected

finite edge-labeled graph, AE
G ≠ ∅ , and assume that

there exists a correspondence between the edge labels
and numerical values. We define
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f c P

c P

c P

E
i G i

G i

G G

( ) : ( ( ( , ))

( ( ( , ))

( ( (( )

  
 
 

= ⋅
+ ⋅ +
+ ⋅

1

2

1

2







ii

k

G

c k G

, ( ))),

, ( )



> ≤ ≤0 1

(35)

where

   


( ( , )) : ( ( )),G i
j

i

k

j P
j

=
=

∑
1

(36)

and

  




 ( ) : ( ) ( ),

:

P e e

E

j
j= + +

→ ⋅

1 

IR+

(37)

Now, we present an example how to apply this defini-
tion to the local information graphs shown in Fig. 2.
Example 5 We exemplarily apply the information func-

tional f E to G and v3 as the starting vertex and recall
that s = 1, d = 2. The edge labeled local information
graphs for this vertex are depicted in Fig. 2. We yield,

f c P

c P

c P

E
G

G

G

( ) ( ( ( , ))

( ( ( , ))

( ( ( , )),

  
 
 

3 1 3

2 3

3 3

1

2

3

= ⋅
+ ⋅
+ ⋅





(38)

and

   


( ( ( , )) ( ( ))

,

P PG 3
1

3

1

3

1

1 1 2 4

=

= + + =
=

∑ (39)

   


( ( ( , )) ( ( ))

( ) ( ) ,

P PG 3
2

3

1

2

2

1 1 1 1 4

=

= + + + =
=

∑ (40)

   


( ( ( , )) ( ( ))

( ) ( ) .

P PG 3
3

3

1

2

3

1 1 1 1 1 1 6

=

= + + + + + =
=

∑ (41)

Thus,

f c c cE( ) .3 1 2 34 4 6= + + (42)

In order to incorporate both edge and vertex labels
when determining the topological entropy of a labeled
graph, we also derive

Definition 16

f f fV E
i

V
i

E
i

1 1, ( ) : ( ) ( ),  = + (43)

f f fV E
i

V
i

E
i

2 2, ( ) : ( ) ( ).  = + (44)

Finally, we obtain the following entropy measures for
measuring the structural information content of labeled
graphs.
Definition 17 Let G = (V, E, lV, lE) be an undirected

finite labeled graph, A AV
G

E
G, ≠ ∅ . We now straightfor-

wardly define the information-theoretic descriptors
(graph entropy measures) as follows:

I G

f

f

f

f

f

V
i

V
j

j

V
i

V V
i

V
j

j

V1

1

1

1

1

1
1

1

( ) :

( )

( )
log

( )

( )
| |

| |

=

−

=
=

=∑∑ 






|| | ,V∑

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

(45)

I G

f

f

f

f

f

V
i

V
j

j

V

V
i

V
j

j

V

V2

2

2

2

2

1 1

( ) :

( )

( )
log

( )

( )
| | | |

=

−

⎛

⎝

⎜

= =∑ ∑







⎜⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟=

∑
i

V

1

| |

,
(46)

I G

f

f

f

f

f

E
i

E
j

j

V

E
i

E
j

j
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Remark 6 We emphasize that according to the above
stated definition and the definitions of the underlying
information functionals, the resulting information mea-
sures are obviously parametric. This property generalizes
classical information measures which have often been
used in mathematical chemistry, see, e.g., [27,29,53,83].
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As already pointed out in [57], such measures establish a
link to machine learning because the parameters could
be learned using appropriate datasets. However, we
won’t study this problem in the present paper.

Results and Discussion
This section aims to evaluate the just presented (see
previous section) information measures for labeled
graphs numerically. Also, we will calculate some known
information indices to tackle the second part of our
study when applying these measures to machine learn-
ing algorithms. Our study will be twofold: First, we
examine some properties of the measures for labeled
graphs when applying them to a large set of real chemi-
cal structures. Second, we analyze a QSAR problem by
applying supervised machine learning methods [64,85]
using our novel molecular descriptors.

Data
We created the database AG 3982 from the benchmark
database called Ames mutagenicity [40,47] originally
used for the evaluation and prediction of the mutageni-
city of chemical compounds [40]. The Ames database
was created from six different public sources [40,47]
and each chemical structure possesses a class label (0
and 1) that results from the Ames test indicating the
genetoxicity of a substance. By starting from the original
database Ames mutagenicity [40,47] containing 6512
chemical compounds, we created AG 3982 by filtering
out isomorphic graphs based on the software SubMat
[86]. Finally, this procedure resulted in 3982 structurally
different skeletons, that is, all atoms and all bonds are
considered as equal. Among these 3982 graphs, 1794
possess class label 0 and 2188 possess 1. It holds 2 ≤
|V| ≤ 109; 1 ≤ r(G) ≤ 47 ∀ G Î AG 3982. To evaluate
the novel descriptors for labeled graphs, we then consid-
ered these structures as vertex- and edge-labeled graphs.
Evidently, for calculating the descriptors of the unla-
beled graph versions (skeletons), the corresponding
descriptors were used which take only topological infor-
mation into account.

Technical Processing of the Structures and Software
To generate and process the underlying graph struc-
tures, we used the known Molfile format [71]. The
graphs from AG 3982 were originally available in Smiles
format that we converted to Molfile format (SDF) using
a Python procedure. The implementation of all topologi-
cal descriptors based on the Molfile format was per-
formed by Python using freely available libraries like
Networkx, Openbabel and Pybel packages [87]. To per-
form the graph classification using random forests (RF)
[64,66] and support vector machines (SVM) [64,66], we
used the implementations provided by the Python

package Orange [88]. The feature selection was done by
Weka [89].

Properties of the Novel Information-Theoretic Descriptors
Before starting to evaluate our novel molecular descrip-
tors, we define some concrete information measures by
choosing special weighting schemes for the coefficients.
Definition 18 We define a special weighting scheme

for the coefficients ck
l

to determine I

f v1 as follows: Start-
ing from

c c m i Gi
a

i a: / , ( ),= − ≤ ≤238 1  (50)

where ma denotes the atomic mass of the atom a (in
the i-th sphere), we also define

c c

c c
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The scheme starts with the lightest element Hydrogen
(H) and ends with the heaviest one, namely Uranium
(U). If the underlying ci will be chosen by

c G c G

c G

1 2 1

1

: ( ), : ( ) ,

, : ,( )

= = −
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 (52)

and by using Definition (11) and Definition (17), the
concrete information-theoretic descriptors are called
I
flin
V1
 and I

flin
V1
 . If the underlying ci will be chosen by
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(53)

the measures I
f Vexp1 and I

f Vexp1
 follow correspondingly.

Further, if the underlying ci will be chosen linearly or
exponentially decreasing (in both functionals f V1 and f E);
see also that the measures I I

f f
lin
V E

lin
V E1 1, ,,  and I I

f fV E V E
exp exp
1 1, ,,  follow

correspondingly (Equation (50), (35), (52), (53)).
Definition 19 Let G = (V, E, lV, lE) be an undirected

finite labeled graph, A AV
G

E
G, ≠ ∅ . If we choose the coef-

ficients of information functional f v2 (see Equation (29))
linearly or exponentially decreasing, we call the resulting
information measures I I I

f f flin
V

lin
V E

lin
V E2 2 2, ,, ,
 and I I I

f f fV V E V E
exp exp exp
2 2 2, ,, ,

 .
Note, that we set l = 1000 to perform the entire

numerical calculations in this paper. In order to inter-
pret some of these measures, we consider Fig. 3. As
example graphs, we chose vertex-labeled cyclic graphs
(all edge labels (weights) that correspond to bond types
are equal to one). We note that independent from the
chosen parameters, we have already shown [57] that for
some vertex-transitive graphs like several k-regular
graphs, the measure Ifv always leads to maximum
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entropy. By definition, it then follows that I
f V
 = 0 .

Taking this into account, it is evident that for G0, G3

and G6, all three measures vanish. Because the graphs
G1, G2 and G4, G5 have different label configurations -
based on the different weighting schemes - and, there-
fore, the line between these points is not exactly hori-
zontal as shown by the zoomed region depicted in
Fig. 3. Interestingly, the fact that the curves for I

f Vexp1


and I
f Vexp2
 are equal is no coincidence and can be easily

understood by observing that the underlying graphs
only possess one sphere for every vertex. This implies
that there is no difference when calculating the resulting
the information measures. In summary, we see that the
descriptors possess maximal values if all vertices have
different atom types. Hence, we conclude that the more
disordered the label configuration of the graph is, the
lower is the value of Ifv and the higher the value of I

f V
 .

These observations are likewisely applicable to interpret
Fig 4. This figure shows the structural information con-
tents if we incorporate both different vertex- and edge
labels. Similarly, the application of the selected indices
to G0, G3 and G6 leads to descriptor values equal to
zero. Again, we obtain maximal values for the calculated
indices when applying them to G7 because the edge and
vertex configurations are most disordered.
Another problem we want to investigate relates to

determine the information loss when computing the
structural information content by truncating the

cardinalities of the j-spheres. To determine the corre-
sponding descriptor values, we first considered the
graphs of AG 3982 as only vertex-labeled graphs (see
Fig. 5). The notation I

f Vexp1
 1 means we set ck

l


= 0 for k

> 1; I
f Vexp1
 2 implies that we set ck

l


= 0 for k > 2 etc.

Thus, the measure I
f Vexp1
 i can be interpreted as an

approximation that only takes the first i-th sphere car-
dinalities (for all atoms of the molecule) into account. If
we use the information functional f V1 to compute the
information content of the vertex-labeled graphs, Fig. 5
shows that by incorporating the first five j-sphere car-
dinalities (for all atoms of the molecule), the resulting
measure captures nearly the same structural information
than I

f Vexp1
 . This can be understood by observing that the

corresponding cumulative entropy distributions are
almost equal. Clearly, I

f Vexp1
 takes all spheres of the

graphs into account. Fig. 6 shows a similar result when
using fV, that is, we only considered the skeleton ver-
sions. The plot shows that in this case, I

f Vexp

 4 approxi-
mates I

fexp
V quite well because their cumulative entropy

distributions look again very similar. Finally, this study
might be useful to save computational time when apply-
ing the measures to large networks. Further, it might
give valuable insights when designing novel information-
theoretic measures based on calculating spherical
neighborhoods.
In order to evaluate the uniqueness (also called degen-

eracy [24,55,59]) of some information-theoretic indices,

Figure 3 Entropies vs. graph numbers for vertex-labeled graphs.
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Figure 4 Entropies vs. graph numbers for vertex- and edge-labeled graphs.

Figure 5 Cumulative entropy distributions of the sphere-approximated measures using f V1 and exponentially decreasing
coefficients. The graphs of AG 3982 were treated as only vertex-labeled graphs. The x-axis is formed by calculating the values of the
descriptors where the y-axis denotes the percentage rate of all graphs.
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we applied them to AG 3982. Recently, DEHMER et al.
[57] utilized the sensitivity index developed by KON-
STANTINOVA et al. [59],

S I i( )
| | | |
| |

,= − 


(54)

to evaluate the discrimination power of an index I. In
general, | | is the cardinality of  and | |i denotes
the set of graphs  i ∈ which can not be distinguished
by an index I. In Table 1, Iorb denotes the well-known
topological information content developed by
RASHEVSKY[54] that is based on determining topologi-
cally equivalent vertices (which form the vertex orbits)
to infer a probability value for each obtained partition
[27,53]. W is the WIENER index [82] and [55,83]
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Here, we assume that the distance of a value i in the
distance matrix appears 2ki times [27]. μ denotes the
cyclomatic number [83]. To evaluate the discrimination
power of the novel descriptors for vertex- and edge-
labeled graphs, we look at Table 1. When applying the
partition-independent measures I f

 only to skeletons of
AG 3982, we see that the sensitivity values are very
high, i.e., the corresponding measures possess a high
uniqueness. Further, by incorporating edge- and vertex

Figure 6 Cumulative entropy distributions of the sphere-approximated measures using fV and exponentially decreasing coefficients.
The graphs of AG 3982 were treated as unlabeled graphs. As in the previous figure, the x-axis is formed by calculating the values of the
descriptors where the y-axis denotes the percentage rate of all graphs.
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labels, the underlying measures are able to discriminate
all graphs uniquely and, hence, S I S I

f fV E V( ) ( )
exp exp
1 1 1 = = .

This corresponds to our anticipation that if we incorpo-
rate semantical information like edge- and vertex labels,
this leads to an increase of the sensitivity measure
expressing the uniqueness of the molecular descriptor.
We remark that the partition-based measure IW also dis-
criminates the graphs of AG 3982 quite well. In con-
trast, the discrimination power of W and Iorb is
comparably very low.

Evaluation of the Descriptors Using Supervised Machine
Learning Methods
In the following, we evaluate our novel and other
descriptors by applying them to supervised machine
learning methods [64,66]. First, our aim is to determine
the classification performance of the underlying graph
classification problem, i.e., to predict mutagenicity when
applying topological descriptors for unlabeled and
labeled graphs using SVM and random forests. Second,
we examine the influence on the prediction performance
when taking semantical (labels) and structural informa-
tion of the graphs into account. As expressed in a pre-
vious section, AG 3982 can be divided into two classes
because every graph possesses a unique label (zero or
one). Thus, we here deal with a two-class classification
problem. Note that by starting from the same underly-
ing benchmark dataset Ames mutagenicity [40,47], a
related study has already been recently performed [40].
However, HANSEN et al. [40] used the full database
(Ames mutagenicity) containing 6512 compounds, mole-
cular descriptors (Dragon [90]) based on the 3D struc-
ture, and supervised machine learning methods
(Gaussian processes, RF, SVM, KKN) to predict muta-
genicity. In fact, the main goal of this study was to

evaluate the prediction performance based on different
implementations of the mentioned machine learning
algorithms.
Now, before discussing the classification results, we

first state some definitions.
Definition 20 Let I1,..., Im be topological indices. The

superindex of these measures is defined as [91]

SI I Im: { , , }.= 1  (61)

Definition 21 Let G = (V, E, lV, lE) be an undirected
finite labeled graph, A AV

G
E
G, ≠ ∅ . Then, each graph will

be represented by

SI G I G I Gm
m( ) : { ( ), , ( )} .= ⊆1  IR (62)

To perform the graph classification, we chose SI such
that it consists of the twelve indices from Table 1
together with I I I IU loc loc loc, , ,1 2 3 . Thus, m = 16. The mea-
sure IU is defined as [83]
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and by Equation (58). Further, we state the definitions
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and

g d i Vj
i i j1 1( ) : ( , ), | |,  = ≤ ≤ (67)

g c d i V cj
i j i j i2 1 0( ) : ( , ), | |, .  = ≤ ≤ > (68)

Now, based on the SI-representation (see Equation
(62)) of a chemical graph, we tackle the mentioned
graph classification problem using RF and SVM. The

Table 1 Sensitivity for AG 3982

Topological Index I S(I)

I
flin
V
 0.995981

I
f Vexp


0.996986

I
f Vexp1


1.0

I
f Eexp


0.996986

I
f V E
exp
1


1.0

I
f Vexp2


0.995982

I
f V E
exp
2


0.995982

Iorb 0.074334

ID 0.938724

ID
W 0.947513

W 0.037920

IW 0.990959

The table shows the sensitivity index S(I) of the main topological indexes for
AG 3982.
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main steps were as follows:

• We performed 10-fold crossvalidation for both
classification methods.
• When doing cross validation, we did a parameter
optimization on the corresponding training sets. By
using different kernels like linear polynomials, poly-
nomials of higher degree etc., we found that the RBF
kernel give the best results.
• The random forest was composed by fifty different
trees.
• We performed the classification both with all fea-
tures (information measures) and with only seven
features ( , , , , , , ),I I I I I I I

f orb D U W f fexp
V

exp
V

exp
V E

  
2 2 deter-

mined by running a feature selection algorithm
based on greedy stepwise regression [93].

The classification results are shown in Table 2 where
we calculated the statistical quantities [64] Accuracy
(Acc.), Sensitivity (Sens.), Specificity (Spec.), Precision
(Prec.), and F-Measure to evaluate the performance of
the classifiers. The F-Measure is generally defined by

F
Precision Sensitivity
Precision+Sensitivity

= ⋅ ⋅ ∈2 0 1[ , ]. (69)

Taking into account that we classified only with (i)
sixteen and (ii) seven information measures, we consider
the classification results as feasible. One clearly sees that
for both classifiers, the Precision and Sensitivity values -
which are important quantities to evaluate the perfor-
mance of the classification - are relatively high. Precision
is the probability that the cases classified as positives are
correctly identified where Sensitivity is the probability of
positive examples which were correctly identified as
such. The F-Measure defined as the harmonic mean of
Precision and Sensitivity represents a single measure to
evaluate the performance of the classifiers. By definition,
the F-Measure varies between zero and one whereas one
would represent the perfect and zero the worst classifi-
cation result. We clearly see that by using SVM’s, we

reached values of F-Measure of over seventy percent
which are the highest among all calculated ones. In
order to examine the influence of incorporating vertex-
and edge-labeled graphs on the prediction performance,
we first present the following procedure and, then, the
obtained results, see Table 3:

• Note that in our previously presented classification,
we used eleven indices for unlabeled graphs and five
for vertex- and edge-labeled graphs. From this fea-
ture set, we generated ten subsets composed of
seven randomly selected measures for unlabeled
graphs (among the eleven), and ten subsets com-
posed of five randomly selected measures for unla-
beled graphs and two measures for vertex- and
edge-labeled graphs (among five available).
• Based on these sets, we again performed 10-fold
cross validation with RF and SVM and averaged the
classification results.

As a result, Table 3 reflects that if we apply the infor-
mation-theoretic descriptors for vertex- and edge-
labeled graphs, this leads to very similar results (e.g., by
considering F-Measure) as in case of only measuring
skeletal (structural) information. The calculated standard
deviations support this hypothesis. Based on our intui-
tion, we would normally expect that by additionally
incorporating semantical information (labels), the graphs
can be distinguished more meaningfully. Therefore, the
results from Table 3 are astonishing because incorporat-
ing the information-theoretic descriptors for vertex- and
edge-labeled graphs did not lead to a significant
improvement of the prediction performance.
To finalize our numerical section, we also present

results when choosing a different representation model
of the graphs. In the following, we do not characterize a
graph by its structural information content and by its

Table 2 The results of classification using RF and SVM.

Classifier Attributes Acc. Sens. Spec. Prec. F-Measure

Random Forest 16 67.2 69.1 65.0 69.1 69.1

Random Forest Best 7 65.5 68.3 62.0 68.7 68.5

SVM 16 68.2 80.1 53.7 67.9 73.5

SVM Best 7 65.2 78.7 48.7 65.2 71.3

The results of the graph classification using RF and SVM are presented in this
table. In particular every tested classifier is applied by using both all the
descriptors and only the best seven. The main statistical quantities are
calculated for the evaluation: Accuracy (Acc.), Sensitivity (Sens.), Specificity
(Spec.), Precision (Prec.), and F-Measure

Table 3 Comparison of the graph classification using
unlabeled and labeled graphs

Classifier Attributes Acc. Sens. Spec. Prec. F-Measure

Random Forest 7U 63.2 65.2 60.9 67.0 66.1

s 0.77 1.02 0.83 0.67 0.79

Random Forest 5U + 2L 64.0 66.5 60.9 67.5 67.0

s 0.88 1.46 1.87 0.97 1.15

SVM 7U 63.0 83.3 38.2 62.2 71.2

s 1.23 2.66 4.92 1.32 1.67

SVM 5U + 2L 65.0 79.3 47.7 64.9 71.4

s 0.88 1.07 2.37 0.90 0.97

The table contains the results of the graph classification applying the
information-theoretic descriptors for vertexand edge-labeled graphs. Here,
U indicates the usage of a measure only defined for unlabeled graphs and
L indicates the usage of a measure for vertex- and edge-labeled graphs,
respectively. s denotes the standart deviation of the corresponding means.
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superindex. In contrast, we now represent every graph
by a vector that indicates if the given graphs contains
certain substructures. To achieve this, we used a data-
base [94] of 1365 substructures and the software Sub-
Mat [86] for determining the substructures which are
contained in a graph in question. Then, every graph is
characterized by a binary vector possessing 1365 entries
that indicate the appearance or non-appearance of a
substructure. For evaluating the quality of the used
machine learning models (RF and SVM), we first per-
formed a feature selection algorithm by again using
greedy stepwise regression [93]. As a result, we ended
up with twenty features to run the classification. Based
on a 10-fold crossvalidation procedure, the classification
results are depicted in Table 4.
By looking at the performance evaluation in Table 4,

we see again that the representation model based on the
superindex led to prediction results which are similar to
the ones by applying the model using the appearance or
non-appearance of a substructure (see Table 2). From
Table 2 and Table 4, we see that if we apply RF and
SVM to perform the graph classification, it seems that
the used information indices to create the underlying
superindex captures structural information of the graphs
(contained in AG 3982) similarly than the model that is
based on the substructures. But to give a reason why
most of the performance measures (mainly F-Measure)
in Table 2 are slightly higher than in Table 4, it is plau-
sible to conjecture that the used topological descriptors
might measure more complex structural features like
branching and other types of structural complexity than
only counting the contained substructures.

Conclusions
This paper dealt with investigating several aspects of
information-theoretic measures for vertex- and edge-
labeled chemical structures. We now summarize the
main results of the paper as follows:

• We already mentioned that the majority of the
topological indices which have been developed so far
are only suitable to characterize unlabeled graphs.
By adapting the approach of deriving partition-inde-
pendent information measures, we developed
families of information-theoretic descriptors to
incorporate vertex- and edge labels when measuring

the structural information content of graphs. First,
we did this by calculating spherical neighborhoods
and distinguishing atom types for every sphere. For
the resulting measures, we presented a weighting
scheme for the vertices which takes chemical infor-
mation of the graphs into account. Second, to
reduce the number of parameters, we developed a
simplified version based on the so-called local infor-
mation graphs. Generally, these graphs are induced
by shortest paths and provide information about the
local information spread in a network. We here
assume that information spreads out via shortest
paths in the network [95]. By using this principle,
we defined an information functional (see Equation
(29)) that relies on calculating the occurrences of
existing and unique vertex labels within the local
information graphs and on determining weighted
paths. In this paper, we did not give a formal analy-
sis of the computational complexity of the underly-
ing algorithm to compute the corresponding
information measures. However, we point out that it
is easy to prove that their computation requires
polynomial time.
• Using the benchmark database AG 3982, we evalu-
ated the novel information-theoretic descriptors to
see how they capture structural information of the
chemical graphs. Based on some characteristic prop-
erties [57] of the measures, we found that the higher
the value of the final measure is, the more disor-
dered is the label configuration of a graph in ques-
tion. Another aspect we have studied relates to
determine their high uniqueness, that is, their ability
to discriminate graphs as unique as possible. As a
result, we derived that the measures for calculating
the information content of vertex- and edge-labeled
graphs possess a very high discrimination power. In
particular, the computation of two of those led to
sensitivity values equal to one, i.e., the measures dis-
tinguished all the graphs uniquely.
• Another aim was to predict Ames mutagenicity
when using supervised machine learning methods
(RF and SVM) and representing the graphs by a vec-
tor consisting of topological descriptors (superindex).
First, we performed the graph classification based on
10-fold crossvalidation and evaluated the quality of
the learned models. Taking into account that we
only used (i) 16 and (ii) 7 information measures for
classifying the graphs, we obtained feasible results
(by using SVM, we reached F-Measures of over
seventy percent). However, another goal was to
examine the influence of incorporating vertex- and
edge-labels when measuring the prediction perfor-
mance of the underlying graph classification pro-
blem. Here, we obtained the result that the

Table 4 Classification using the substructure method

Classifier Attributes Acc. Sens. Spec. Prec. F-Measure

Random Forest Best 20 64.2 63.3 65.3 69.0 66.0

SVM Best 20 64.3 70.7 56.6 66.5 68.5

Here the results of the graph classification using RF and SVM are shown. To
represent the underlying graphs, we chose the explained substructure
method.
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prediction performance (by calculating the statistical
performance measures) was very similar to the one
we obtained by only measuring skeletal (structural)
information. From this, interesting future work arises
as follows: Because of the obtained results, it would
be important to explore the developed measures for
determining the structural information content
(structural complexity) of the underlying vertex- and
edge-labeled graphs in depth. This aims to investi-
gate the measures such that the prediction perfor-
mance could be significantly improved when
applying them to the machine learning methods we
have used in this paper. Another reason for the
results shown in Table 3 could be certain character-
istics of the underlying graphs which need to be ana-
lyzed more deeply. As further future work, we will
use different datasets to determine the prediction
performance of the novel measures. Moreover, we
want to perform similar analyses by applying our
novel descriptors combined with a large number of
other well-known molecular descriptors to the same
benchmark database. But this goes beyond the scope
of this paper.
• As already mentioned (see section ‘Introduction’),
labeled graphs play an important role when analyz-
ing biological networks. But because the theory of
labeled graphs is not well developed so far (com-
pared to the contributions which have been done
towards unlabeled graphs), see, e.g., [29], a thorough
investigation of methods for analyzing these graphs
is therefore crucial. On the other hand, to gain infor-
mation about the basic biological understanding
when investigating biological networks, the problem
of exploring their topology is essential [5-7]. Hence,
there is a strong need to further investigate methods
to analyze labeled graphs for solving problems in
bioinformatics and systems biology [22,38,39].

Inspired from this study, we think that especially the
development of further measures for labeled graphs can
be an interesting and valuable attempt not merely to
analyze QSPR/QSAR problems. Besides applying these
measures to machine learning methods, we believe that
the measures itself might be valuable for those who will
investigate biological networks, see, e.g., [22]. In fact, if
we incorporate also semantical information of the
graphs (instead of only considering structural informa-
tion), this may lead to more meaningful results when
developing methods for characterizing graphs or predic-
tive models to tackle problems in bioinformatics, sys-
tems biology, and drug design.

• As a conclusive remark, we argue from a mathe-
matical point of view that a further development of

the theory of labeled graphs will surely help to
develop more sophisticated methods for analyzing
biological networks, see, e.g., [2,22,38,39]. The next
important step is to prove mathematical properties
of such measures and to investigate their relatedness.
In addition, there is a need to examine correlations
to other existing topological indices numerically.
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