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1,000 structures and more from the MCSG
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Abstract

Background: The Midwest Center for Structural Genomics (MCSG) is one of the large-scale centres of the Protein
Structure Initiative (PSI). During the first two phases of the PSI the MCSG has solved over a thousand protein
structures. A criticism of structural genomics is that target selection strategies mean that some structures are
solved without having a known function and thus are of little biomedical significance. Structures of unknown
function have stimulated the development of methods for function prediction from structure.

Results: We show that the MCSG has met the stated goals of the PSI and use online resources and readily
available function prediction methods to provide functional annotations for more than 90% of the MCSG
structures. The structure-to-function prediction method ProFunc provides likely functions for many of the MCSG
structures that cannot be annotated by sequence-based methods.

Conclusions: Although the focus of the PSI was structural coverage, many of the structures solved by the MCSG
can also be associated with functional classes and biological roles of possible biomedical value.

Background
Sequencing of complete genomes has become common-
place in the last decade but traditional methods of pro-
tein structure determination cannot keep pace.
Structural Genomics (SG) has emerged with the goal of
providing a structure for every protein encoded by a
genome using a high-throughput combination of experi-
mental structure determination and homology modelling
approaches. The Protein Structure Initiative (PSI) is a
USA federal government, university, and industry effort
that has now completed two phases [1]. The first phase
of the PSI (PSI-1), from 2000 to 2005, was dedicated to
demonstrating the feasibility of high-throughput struc-
ture determination, solving unique protein structures,
and developing the methodology and technology for a
subsequent production phase. The second phase, PSI-2,
focused on implementing the high-throughput structure
determination methods developed in PSI-1, as well as
homology modelling and addressing bottlenecks like
modelling membrane proteins.
There are four large-scale PSI-2 centres and a number

of smaller specialist centres. The four large-scale centres
are the Joint Center for Structural Genomics (JCSG),

the Midwest Center for Structural Genomics (MCSG),
the Northeast Structural Genomics (NESG) Consortium,
and the New York SGX Research Center (NYSGXRC)
for Structural Genomics.
When PSI-1 began at the end of the 20th century

there was much optimism that SG could provide struc-
tures to cover the whole of protein sequence space and
together with improvements in homology modelling
technology, it was only a matter of time before a reason-
ably accurate structure could be predicted for any pro-
tein in nature as soon as its sequence was known. It has
since become apparent that protein sequence space is
much larger than was imagined at the time. Advance-
ments in homology modelling have also not been as
great as was hoped. As a consequence SG has failed to
deliver the hoped for level of coverage of sequence
space and has been left with a collection of structures
that much of the time were not targeted on the basis of
their biological function. This has led to a criticism
of the PSI that many of its structures are of proteins of
unknown function and many do not have corresponding
publications and therefore give little biological insight.
Indeed, the third phase of the PSI is called PSI:Biology,
which is intended to reflect a new emphasis on the bio-
logical relevance of the work. As PSI-2 draws to a close,
we attempt to partially address this problem by exploit-
ing a wide range of bioinformatics tools to provide
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functional annotations for as many as possible of the
protein structures experimentally determined so far by
the MCSG.
An early analysis of structures solved worldwide by SG

consortia assessed the new coverage of sequence and
fold space using the CATH [2] and SCOP [3] domain
structure classifications [4]. While SG was judged to be
succeeding in structurally characterising new superfami-
lies, an early observation was that many of the
sequences selected as likely to represent new folds were
actually found to have existing folds. In 2005 Xie and
Bourne adopted a different approach to measuring the
impact of SG [5]. They assessed functional coverage of
the human genome by existing structures, structural
genomics targets, and homology models. Using func-
tional categories in the Enzyme Commission (EC) [6]
and Gene Ontology (GO) [7] classifications they showed
that, at the time, SG structures provided at least one
domain that covered about a third of all the functional
classes in the genome, and whole structure coverage for
about a quarter of the genome. Even if all the registered
SG targets were solved, which was a substantial number
of targets even in 2005, then only about two thirds of
the functional classes would be covered and there would
be whole structure coverage for less than half of the
genome. They therefore argued in favour of target selec-
tion aimed at functional coverage, especially with a view
to understanding human genetic disease.
Also in 2005 Chandonia and Brenner suggested the

“Pfam5000” strategy for target selection [8] which
involved selecting the 5000 most important Pfam
families [9]. This comprehensive collection of protein
families is used extensively throughout the biological
sciences, often for functional annotation of complete
genomes, and it was felt that this strategy would be
medically and biologically relevant, of good value, and
tractable. Pfam5000 was felt to be better value than the
complete solution of several small to moderately sized
bacterial proteomes or partial coverage of the human
proteome since these would have limited impact on
structural knowledge of other proteomes. The JCSG, on
the other hand, focused on selecting targets from
Thermotoga maritima leading to the generation of a
three-dimensional reconstruction of the central meta-
bolic network of this bacterium [10]. The JCSG also
championed the selection of sequences that were over-
represented in the human gut metagenome [11] and this
strategy became part of the overall PSI effort.
Chandonia and Brenner went on to analyze the

novelty, cost, and impact of SG structures compared to
non-SG structural biology (SB) structures [12]. Determi-
nation of the first structure in a Pfam family was estab-
lished as a measure of success. It should be noted,
however, that a Pfam family often contains proteins

with a range of related functions and finer grained target
selection would be necessary to truly achieve complete
functional coverage. In 2004 about half of all first struc-
tures for Pfam families were from SG rather than SB.
Marsden et al. [13] analyzed 203 complete genomes in

the Gene3D resource [14] to provide new insights into
protein family space. The number of protein families
was found to be continually expanding with time but a
significant proportion of the proteomes could be
assigned to relatively few large, well-characterized
domain families while the vast majority of domain
families were relatively rare and often species specific. It
was suggested that SG could provide structures for
fewer than a thousand Pfam families to achieve reason-
able structural coverage of genomes. Within these large
families it was suggested that multiple structures could
be determined to reveal more about the evolution of the
family and enable greater understanding of how function
evolves. Similarly, the selection of targets from within
large and diverse CATH superfamilies was proposed to
maximize modelling leverage [15]. Since many of the
targets previously selected as likely to have a novel fold
proved to have a known fold this could be seen as a
more rational use of resources.
There was a coordinated strategy of target selection by

the four large-scale centres during PSI-2, described by
Dessailly et al. [15], involving four main approaches: tar-
geting representatives from large, structurally uncharac-
terized protein domain superfamilies; targeting
structurally uncharacterized subfamilies in very large
and diverse superfamilies with incomplete structural
coverage; community nominated targets; and biomedi-
cally important targets. The first two approaches were
primarily aimed at increasing the structural coverage of
protein sequence space and many targets were selected
regardless of their function. Metrics have been calcu-
lated in this and several other publications [16-18] to
show that this strategy has had the result that PSI’s per
structure contribution to novel structural leverage has
been much higher than that for SB, as would be
expected since SB is not aiming to increase sequence
coverage but rather provide biological insights.
The Structural Biology Knowledgebase [19,20] offers

an easy way of keeping abreast of developments by the
PSI and by SG and SB in general. It is a continually
updated portal to research data and other resources
from the PSI. Metrics are regularly updated giving a
summary of the total number of structures, the number
of distinct and novel structures determined by the PSI,
and the modelling leverage that PSI structures provide.
Models are made available through the Protein Model
Portal [21,22]. The JCSG has made a notable effort
towards the annotation of PSI structures with The Open
Protein Structure Annotation Network (TOPSAN), a
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wiki-based portal for the dissemination of information
for the broad biomedical community [23].
The increased appearance of structures of proteins of

unknown function in the PDB due to SG has stimulated
the development of computational methods of function
prediction from structure. ProFunc, developed for the
MCSG, combines a number of sequence-based and
structure-based methods to gain clues about the func-
tion of a protein [24]. The MCSG PSI-1 structures were
used to test and develop ProFunc [25]. When a
sequence match is weak and/or multiple functions are
suggested, the structure-based methods within ProFunc
can help select from the options that are presented and
increase confidence in a particular putative function.
Another recent and notable method that has been used
for function prediction from PSI structures is FLORA
[26]. This uses structural motifs associated with different
functional sub-groups within functionally diverse CATH
domain superfamilies.
The MCSG selected targets from a broad range of

pathogenic bacteria according to selection criteria that
have evolved throughout the first two stages of the PSI.
Here we attempt to extend the functional annotations
associated with MCSG structures by employing a diverse
set of bioinformatics tools and resources. We also ana-
lyse the structural novelty of protein structures solved
by the MCSG. We use sequence-based methods to
assess the proportion of MCSG proteins that have a
known function, a putative function, a possible function,
and no known function. This is followed up with Pro-
Func analysis to support some of the possible functional
annotations and in some cases to suggest possible func-
tions for the unknowns.

Methods
A list of all protein structures released by the PDB [27],
their release date, and the source SG centre where
applicable was downloaded from the PDB on the 3rd

March 2010. In all subsequent analyses only data that
were available on this date are used. At the time 1,165
MCSG protein structures for 1,118 targets had been
released by the PDB.

Annotations
The source of most of the annotations used in this work
is Gene3D 9.1.0 [14]. This database contains nearly 10
million protein sequences including all UniProt
sequences [28] and most complete genomes. Annota-
tions are imported from multiple sources including EC
numbers [6] from UniProt, GO terms [7], KEGG genes
[29] and protein family assignments from Pfam [9],
TIGRFAMs [30], SMART [31], and PANTHER [32].
KEGG currently has 357 reference pathway maps. These
are represented in a general way to be applicable to all

organisms and thus are useful in the analysis of SG
structural coverage. Each node in a reference pathway is
represented by one or more manually curated KEGG
orthologs. Where there are multiple orthologs these
may represent different subunits or different versions of
the same enzyme. Also a node may belong to more than
one pathway when different pathways interact. KEGG
genes and orthologs are mapped to genomes in Gene3D
and PDB chains are mapped to UniProt entries using
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
data/pdb_chain_sp_ec the data for which comes from
the PDBe database [33]. In addition to collecting these
annotations from Gene3D for MCSG structures, annota-
tions are considered for inheritance by sequence-
sequence comparison, sequence-profile comparison, and
profile-profile comparison, such that increasingly remote
sequence similarities are considered.
Not all assignments to a protein family lead to a func-

tional annotation. Some assignments are filtered out as
being uninformative e.g. assignments to a Pfam family
described as a DUF (domain of unknown function). The
sequence of each MCSG structure is compared to
all sequences in Gene3D using BLAST (sequence-
sequence comparison) and five iterations of PSI-BLAST
(sequence-profile comparison), both with an E-value
cut-off of 0.01 [34]. EC numbers and molecular function
GO terms associated with matching sequences are con-
sidered for inheritance. Both of these types of annota-
tion are hierarchic. EC numbers all have four levels, the
first level refers to the enzyme class (’1,’ for example,
refers to oxidoreductases), the second level refers to the
type of bond or group that is acted on (’4,’ for example,
denotes a peptide bond), and the next two levels give
progressively more specific details of the catalyzed reac-
tion and its substrates. GO molecular function terms
are organized as a directed acyclic graph where there
may be many nested levels with each child having an ‘is
a’ relationship to its parent. Annotations associated with
a sequence or sequence match are divided into deep
annotations comprising level 3 or 4 EC numbers and
GO terms at level 6 or above, and the remainder which
are generally less specific annotations. Hidden Markov
models (HMMs) are built using the sequence of each
MCSG structure as a seed for SAM-T [35] and then
each of these HMMs is compared to all Pfam 24.0
HMMs (profile-profile comparison) using PRC [36].
Database annotations, inherited annotations, and

annotations from the headers of the PDB files are pre-
sented together in a table at http://www.biochem.ucl.ac.
uk/cgi-bin/dlee/MCSG_annotations used by the authors
to manually assign an annotation status to each MCSG
structure. Annotations are organized from left to right
to reflect decreasing levels of both depth and reliability.
Four levels of status are assigned; known, putative,
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possible, and unknown. GO provides evidence codes for
functional annotations where the most reliable codes
are the experimental evidence and author statement
codes. 62% of MCSG solved targets have a molecular
function GO term associated with them but only 2%
have such a high quality functional annotation, the
remainder have annotations that are electronically
inferred. There are currently very few other annotation
resources where evidence codes are available and
sequence coverage is low. We consider possession of
one of the most reliable GO evidence codes as too strict
a criterion to define the ‘known’ status. Rather, posses-
sion of a deep database annotation and preferably agree-
ment with at least one set of protein families is
generally taken as evidence that the function is regarded
as being known. Note that a GO term level of 6 or
higher is only a rough guide to the depth of an annota-
tion and the association of a term such as GO:0005506
for iron ion binding (level 7) is not considered to be
sufficient in itself for a ‘known’ status. This is one rea-
son why manual assessment of status is so important.
The ‘putative’ status is generally assigned where there is
no deep database annotation but there is a protein
family assignment and the family description includes
specific molecular functions. The ‘possible’ status is gen-
erally assigned where only inherited annotations are
available but without the added confidence provided by
assignment to a family in a curated resource. There
may be a choice between a variety of deep annotations
or perhaps only a very general, non-specific annotation
is available presenting a broad range of possible deep
annotations. The ‘unknown’ status is applied where
sequence methods are unable to provide any clue to the
function of the protein. ProFunc analysis (see below) is
linked to the online table for structures assigned a ‘pos-
sible’ or ‘unknown’ status.
GO slims are cut-down versions of the GO ontologies

containing a subset of the terms in the whole GO. The
GO provides a generic GO slim that gives a broad over-
view of all function categories without the detail of the
specific fine grained terms. This is useful for visualiza-
tion of the broad functional coverage of MCSG struc-
tures and for comparison to the functional coverage of
the PDB as a whole. A sequence unique subset that
approximately represents all PDB protein entries of
known function is generated by selecting representatives
annotated in Gene3D with a molecular function GO
term at level six or higher. GO terms associated with
these representatives are then mapped to the generic
GO slim using the GO Slimmer tool at http://amigo.
geneontology.org/cgi-bin/amigo/slimmer. Similarly the
UniProt entries for all MCSG solved targets with known
function manually assigned as above are mapped to the
generic GO slim.

ProFunc analysis
The ProFunc web server at http://www.ebi.ac.uk/profunc
[24] employs a number of complementary function-
prediction methods, focusing, in particular, on methods
based on 3D structural information. This accepts a PDB
file and runs a number of sequence- and structure-
based analyses on it, listing any hits it finds to existing
sequences and structures in descending order of signifi-
cance. These can help researchers identify any strong
similarities which may be indicative of the protein’s
function.
Of ProFunc’s structure-based methods, the two that

have been shown most accurately to suggest function
[25] are the SSM (Secondary Structure Matching) fold-
matching algorithm [37] and the “reverse template”
search [38]. Both these methods have a similar success
rate and are able to find distant homologues when sim-
ple sequence-based searches fail. The majority of their
hits overlap, but occasionally one method picks up a
match that the other fails to identify. The advantage of
the reverse template method over the fold-match is that
its matches are local and the top-scoring hits tend to
pick up sites of functional relevance.
To demonstrate the added value of 3D structure for

proteins of uncertain or unknown function, we run Pro-
Func on the full data set of 1,165 MCSG structures.
ProFunc results for targets assigned a ‘possible’ or
‘unknown’ status following sequence analysis are linked
to the online table. ProFunc results for targets of
‘unknown’ status are manually assessed to determine the
improvement in functional coverage afforded by Pro-
Func for MCSG solved targets.
To further illustrate the value of ProFunc analysis we

then focus on MCSG structures where no significant
match to a known 3D structure in the PDB can be
found from a search based on sequence alone, but is
detectable using the structure-based reverse template
method. We investigate which parts of the matched
structures the method identifies as the most significantly
similar.

Reverse templates
The reverse template method takes the query protein
structure and breaks it up into a large set (typically sev-
eral hundred) of 3-residue templates. Each template
consists of three neighbouring residues chosen such that
the closest atom-atom distance between any two of the
residues is no larger than 5.0Å. Templates containing
more than one hydrophobic residue are rejected in
order to bias the templates towards surface residues.
A scan of each template against a representative set of
the structures in the PDB is then made using the Jess
algorithm [39] to identify structures containing similar
constellations of the three residues. The representative
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set is a non-redundant list of protein chains in the PDB
downloaded weekly from the Pisces ftp server [40]. Hits
are scored and assigned E-values as described in Las-
kowski et al. [38], the scoring being based on the local
similarity of the equivalent regions when the structures
are superposed on the matched residues.
The aim of the method is to pick up local structural

similarity between two proteins and, in particular, to
identify regions that have been conserved by evolution
and hence are more likely to be functionally important.
Thus, even though the sequences of two homologous
proteins might have diverged considerably over evolu-
tionary time, it is possible that, to maintain their func-
tion, the proteins’ active sites have undergone less
change. The detection of such local conservation can
provide strong support for the proteins having retained
the same, or a similar, function. 3 residues and a 5.0Å
cut-off were found through empirical testing to give a
good balance between the duration and success of a
search (unpublished data).

Identification of functionally important regions
To demonstrate this tendency to pick up functionally
important regions, we select a subset of the MCSG
data where a simple FASTA [41] search against the
sequences in the PDB fails to return a significant result.
We use an E-value cut-off of 0.01, which gives us 336
structures whose best match is at or below this
threshold.
We then consider the top four hits returned by the

reverse template search for each of these 336 structures
to see if the template residues have any association with
the protein’s function. We use the functional annota-
tions given in PDBsum [42], namely: residues belonging
to a PROSITE [43] pattern; catalytic residues, as deter-
mined from the Catalytic Site Atlas (CSA) [44]; residues
defined in the SITE records of the original PDB file; or
residues in contact with a ligand, metal or DNA/RNA in
the structure.
However, as the search data set used by the reverse

template method is a representative one, it is possible
that the PDB entry matched by the search has no func-
tional annotation, yet a closely related PDB entry,
excluded from the data set, does have some annotation.
There were nearly 28,000 protein chains in the repre-
sentative data set, compared with over 64,000 structures
in the PDB. Thus, to pick up such ‘lost’ annotations, we
use the Sequence Annotated by Structure (SAS) server
[45] to find additional functional annotations for each of
the matched structures. SAS identifies closely related
sequences from the PDB using FASTA. Functional
annotations are then imported from the resultant align-
ment(s) where the sequence identity is at least 30%, the

alignment overlap at least 80 residues, and the FASTA
E-value < 0.001.

Functional novelty
The release dates of all PDB entries that are associated
with a GO term [7], are assigned to a Pfam family [9],
or map to KEGG orthologs [29] are compared to find
the earliest example released by the PDB for each anno-
tation. Each structure that represents a first example is
then categorized as being solved by a PSI centre or as
‘non-PSI’ in order to rate the performance of PSI com-
pared to the combined effort of all other laboratories,
and to compare the performance of individual PSI cen-
tres. The dates that the first structures were solved are
also divided into the two PSI periods PSI-1 (before 1st

July 2005) and PSI-2. A measure of novelty per PDB
release is calculated and for comparison the novelty per
non-redundant structure at 95% sequence identity fol-
lowing clustering using cd-hit is also given[46].

Structural novelty
The release dates of all PDB entries containing
a domain assigned to a superfamily in CATH v3.3 are
compared to find the earliest entry in that superfamily
(CATH number) and fold (CAT number). Structural
novelty within a superfamily is determined by calculat-
ing a normalized RMSD (normRMSD). A domain with
a normRMSD of 5Å or more from all CATH domains
in structures previously released by the PDB is defined
as structurally novel and belongs to a new structural
sub-group (SSG). Both MCSG domains assigned to
CATH and unassigned MCSG PDB chains are com-
pared to a representative library of CATH domains (S35
reps) using CATHEDRAL [47] as a fast filter for signifi-
cant structural similarity. The best matches by CATHE-
DRAL are then structurally aligned and superposed
using the more computationally expensive and accurate
method SSAP [48] and the RMSD is calculated. The
normRMSD is then calculated as follows:

normRMSD
RMSD L L

Nmat

=
× ( )max ,1 2

where RMSD is the root mean square deviation of the
superposition, max (L1, L2) is the length in residues of the
longest domain in the superposition, and Nmat is the num-
ber of aligned residue pairs (Kolodny et al. 2005) [49].

Novel modelling leverage
Novel modelling leverage is calculated according to the
method of Nair et al. [18]. The sequences of all PDB
protein chains, non-redundant at 100% sequence iden-
tity, are compared to UniRef100 sequences downloaded
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on the 3rd of March 2010 using PSI-BLAST with three
iterations and an E-value cut-off of 1e-10. Novel model-
ling leverage in residues is determined for each PDB
entry (including redundant entries) on the date of its
release by the PDB. The novel modelling leverage of
the four large-scale PSI centres is compared to each
other and to the leverage of the combined non-PSI
laboratories.

Human non-synonymous single nucleotide
polymorphisms
The MCSG focused on solving structures of proteins
from pathogenic bacteria and has only solved structures
for two human proteins. However, a number of MCSG
structures may be used as templates for comparative
modelling of human proteins. All such structures identi-
fied in the modelling leverage analysis described above
are used to analyze human non-synonymous nucleotide
polymorphisms (nsSNPs). MCSG structures are included
regardless of whether a closer template is available from
another laboratory.
For each human modelling target identified above,

variants are retrieved from UniProt, Ensembl and
OMIM and filtered for uniqueness. UniProt variants and
Ensembl gene IDs are listed for each protein in the Uni-
Prot text file available from UniProt. The Ensembl API
is used to query their MySQL database and retrieve all
Ensembl variants. OMIM variants are linked to UniProt
IDs through the OMIM Missense server at http://www.
bioinf.org.uk/omim/. Each variant is inspected to see if
it falls within a region having a template match and is
thus modellable.

Results and Discussion
Annotations
The functional annotation status of the MCSG solved
targets is as follows: 31% known; 48% putative; 14% pos-
sible; and 7% unknown (See Figure 1 a). ProFunc analy-
sis of the unknowns is summarised in Figure 1 b. The
majority of structures are therefore of direct relevance
to biological investigations of protein function as well as
fulfilling some of the goals of SG in expanding struc-
tural coverage of fold and function space as shown
below.
Figure 2 suggests that the MCSG has solved propor-

tionately more enzyme structures compared to the aver-
age contributor to the PDB. A higher proportion of
those enzymes are transferases, lyases, isomerases and
ligases at the expense of oxidoreductases and hydrolases.
The molecular function ontology terms of the generic
GO slim in Figure 3 give a broad overview of all protein
functional classes including the non-enzyme functional
classes that, by definition, are not covered by the EC
classification. MCSG structures show broad functional

diversity by covering more than half of the generic GO
slim terms and nearly a half of its leaf node terms, these
being the more functionally specific levels. Use of the
generic GO slim is also a test for bias in the functional
classes covered by the MCSG structures. Compared to
the PDB as a whole, a higher proportion of MCSG
structures are associated with the catalytic activity cate-
gory which is in agreement with the EC analysis. This is
at the expense of a generally lower level of association
with the other major functional classes, especially bind-
ing, structural molecule activity, enzyme regulator activ-
ity, and electron carrier activity.
The apparent discrepancy between the results

obtained by looking at EC numbers in Figure 2 and GO
terms in Figure 3 needs explaining. EC numbers are
very high quality annotations but coverage of the PDB is
less than that of GO and some catalytic activity is not
represented by EC numbers. Within the GO catalytic
activity category an over-representation of transferase
activity and an under-representation of hydrolase activ-
ity is seen which does broadly agree with the EC analy-
sis. Within the GO binding category MCSG structures
also show particularly significant under-representation
of protein binding and calcium binding while nucleotide
binding is actually a little over-represented.

ProFunc analysis
ProFunc’s template searches are rated as certain, prob-
able, possible, or long shots to indicate the likelihood
that a prediction is correct. ProFunc analysis is linked to
all structures assigned a “possible” or “unknown” status
in the online table at http://www.biochem.ucl.ac.uk/cgi-
bin/dlee/MCSG_annotations ProFunc suggests functions
for all of the 78 MCSG targets that are of unknown
function following sequence analysis. The overall likeli-
hood of the best scoring ProFunc prediction being cor-
rect is shown in Figure 1 b. One target has a prediction
rated as being certain while another 17/78 (22%) targets
have predictions rated as being probable. These predic-
tions are all made by the reverse templates method
while two of the probable predictions are also made by
ligand-binding templates. ProFunc makes a valuable
contribution to functional annotation coverage of
MCSG structures.
Figure 4 demonstrates that the reverse template

matches tend to hit functionally important residues and
so predict the likely location of the protein’s functional
site as well as its overall function. Using a subset of 336
MCSG structures where a FASTA search against the
PDB fails to return a significant match, the matches
returned by the reverse templates were analysed. The
residues matched by the top 4 template hits were
checked for functional annotation. Figure 4 show that at
very low E-values the annotated residues that are hit
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(coloured bars) tend to outnumber the residues with no
annotation (black bars). As the E-value increases so the
proportion of hits to non-functional matches rises.
A fraction of the cases (17%) hit protein structures hav-
ing no annotation at all, so these are shown separately
(white bars). Thus the better the reverse template
match, the more likely it is to hit a functionally impor-
tant part of the protein. This is what one would expect
if the functional parts of distantly related proteins
change less than the rest of the protein due to evolu-
tionary pressure to preserve the same, or similar,
function.

ProFunc example
An example of a reverse template match is PDB entry
2aua which is the structure of BC2332, a protein from
Bacillus cereus that is classified as ‘unknown’ by the
sequence analysis described above. The reverse template
search finds one ‘certain’ match, one ‘probable’ match
and seven ‘possible’ matches. Figure 5 shows the tem-
plate residues and surroundings for three of these
matches, all being to the catalytic domains of bacterial
toxins. The first is diphtheria toxin (a ‘certain’ match),
PDB code 1f0l [50], and the other two are ‘possible’
matches: one to exotoxin A from Pseudomonas

a) 
 

Known 31%

Putative 48%

Possible 
14%

Unknown 7%

b) 
 

Certain 1%

Probable 
22%

Possible 
36%

Long shot 
41%

Figure 1 Functional annotation coverage of MCSG structures. a) Pie chart showing the proportion of MCSG targets manually assigned as
having a known, putative, possible, or an unknown function. b) Pie chart showing the likelihood of the best scoring ProFunc template-search
prediction being correct for the targets that are of unknown function following annotation by sequence methods.
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EC 1.-.-.- 
(Oxidoreductases)

EC 2.-.-.- 
(Transferases)
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(Hydrolases)

EC 4.-.-.- (Lyases)EC 5.-.-.- 
(Isomerases)

EC 6.-.-.- (Ligases)

Non-enzyme

b) 

EC 1.-.-.- 
(Oxidoreductases)
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(Transferases)

EC 3.-.-.- 
(Hydrolases)

EC 4.-.-.- (Lyases)

EC 5.-.-.- 
(Isomerases)

EC 6.-.-.- (Ligases)

Non-enzyme

Figure 2 EC classes of MCSG structures compared to the PDB as a whole. a) Pie chart showing the distribution of EC classes for the MCSG
structures that have a known function. b) Pie chart showing the distribution of EC classes for all PDB entries taken from the Enzyme Structures
Database at the EBI http://www.ebi.ac.uk/thornton-srv/databases/enzymes/.
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Figure 3 Distribution of molecular function GO terms associated with MCSG structures. The molecular function ontology terms of the
generic GO slim give a broad overview of all protein molecular function categories. Arrows indicate ‘is a’ relationships. MCSG structures with a
known function cover terms in boxes with a green border while terms in boxes with a red border are not covered by MCSG structures.
Numbers in parentheses outside of each box show the proportion (%) of MCSG targets with a solved structure and known function that are
associated with each term compared to the proportion of all sequence unique PDB structures of known function (MCSG%/PDB%). Note that a
structure may be associated with multiple GO terms and many sub-categories of GO terms are not represented in the generic GO slim so the
illustrated percentages do not necessarily add up to the totals for their illustrated parent categories.
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Template matches by E-value
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Figure 4 Identification of functionally annotated residues as a function of the reverse template E-value. Histogram showing the
relationship between the E-value of the reverse template hit and how often it matches a functionally annotated residue in the matched
structure. The bars show: the number of times one of the matched residues was functionally annotated (coloured), the number of times none
were annotated (black), and the number of time the matched structure had no annotation whatsoever (white). The colours correspond to the
‘confidence class’ of the reverse template hit, which is determined by its E-value: red = certain match (E < 10-6); pink = probable match (10-6 < E
< 10-2); orange = possible match (10-2 < E < 10-1); and blue = long shot (10-1 < E < 10).

Figure 5 Prediction of function from structure using ProFunc. Three reverse template matches for PDB entry 2aua, a protein of unknown
function from Bacillus cereus. The matches are to the catalytic domains of three toxins: a) diphtheria toxin from Corynebacterium diphtheriae
(PDB code 1f0l), b) exotoxin A from Pseudomonas aeruginosa (PDB code 1 × k9) and c) cholix toxin from Vibrio cholera (PDB entry 3ess). In each
case, the template residues from the 2aua query structure are shown in thick, red sticks while the corresponding residues in the target structure
are shown as thick, blue sticks. Neighbouring identical residues, in equivalent 3D positions, are shown in purple for 2aua and green for the
target, while similar residues are shown in orange for 2aua and yellow for the target. The inhibitor molecules bound in the target structures are
shown in ball-and-stick representation and are: a) adenylyl-3’-5’-phospho-uridine-3’-monophosphate, b) N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-
N,N-dimethylacetamide and c) 1,8-naphthalimide. Catalytic residues are labelled using the residue numbering of the corresponding PDB entries.
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aeruginosa, PDB code 1 × k9 [51] and the second to
cholix toxin from Vibrio cholera, PDB entry 3ess [52].
Each of the templates includes one or more of the
known catalytic residues, and the local region returned
by the template match corresponds to the matched pro-
tein’s known substrate binding site. The catalytic
domains correspond to EC 2.4.2.36, which contains the
NAD+-diphthamide ADP-ribosyltransferases. All have
the same alpha-beta fold, CATH 3.90.175.10, corre-
sponding to domain 1 of diphtheria toxin. These
matches strongly suggest that the BC2332 protein has a
very similar function to these toxins. Bacillus cereus
produces a number of known enterotoxins that are
responsible for food poisoning [53]. Possibly, this repre-
sents another.
A second ProFunc example is presented [Additional

file 1] to show how ProFunc analysis can add weight
and specific detail to a possible annotation suggested by
sequence analysis.

Functional novelty
So far 5,699 out of 11,912 Pfams, 2,938 out of 9,929 GO
molecular function terms and 2,049 out of 7,080 terms
at level 6 or higher have at least one representative with
a solved structure. Note, however, that because it is gen-
erally only small Pfam families that lack a structural
representative, 88% of unique Pfam assignments in com-
plete genomes in Gene3D belong to a Pfam family with
a structural representative. Table 1 gives an indication
of the value of PDB releases in terms of functional
novelty. From an SG point of view the number of novel
structures is given as a percentage of the total number
of structures. SB laboratories often solve multiple struc-
tures of the same protein with different ligands bound,
at a different pH, or with single amino acid substitutions
etc. These investigations have different goals from those
of SG but here the intention is to assess the perfor-
mance of PSI centres in terms of SG goals. For an SB
point of view the number of novel structures is given
for comparison as a percentage of the number of non-
redundant structures at 95% sequence identity. Although
PSI centres did not specifically target structurally
uncharacterized GO terms their overall performance is
at least as good as that of all non-PSI laboratories com-
bined in terms of SG goals.
Pfam families, on the other hand, were targeted by PSI

centres and the proportion of first structures solved out
of all structures solved is significantly higher for PSI
than for non-PSI laboratories as would be expected. As
would also be expected, the proportion of first struc-
tures for Pfams are considerably higher than those for

Table 1 Functional novelty of structures

Annotations and
period

Source First
structures

Structures % first

total nr total nr

GO terms during
PSI

MCSG 45 1165 1110 3.86 4.05

JCSG 33 987 938 3.34 3.52

NESG 23 808 720 2.85 3.19

NYSGXRC 35 883 789 3.96 4.44

PSI 153 4101 3711 3.73 4.12

Non-PSI 1677 49373 22192 3.40 7.56

GO terms during
PSI-1

MCSG 25 274 265 9.12 9.43

JCSG 18 181 169 9.94 10.65

NESG 15 178 170 8.43 8.82

NYSGXRC 19 187 169 10.16 11.24

PSI 82 872 811 9.40 10.11

Non-PSI 1189 20803 10319 5.72 11.52

GO terms during
PSI-2

MCSG 20 891 852 2.24 2.35

JCSG 15 806 772 1.86 1.94

NESG 8 630 558 1.27 1.43

NYSGXRC 16 696 624 2.30 2.56

PSI 71 3229 2964 2.20 2.40

Non-PSI 488 28570 14975 1.57 3.26

Pfam families
during PSI

MCSG 241 1165 1110 20.69 21.71

JCSG 133 987 938 13.48 14.18

NESG 197 808 720 24.38 27.36

NYSGXRC 131 883 789 14.84 16.60

PSI 726 4101 3711 17.70 19.56

Non-PSI 3028 49373 22192 6.13 13.64

Pfam families
during PSI-1

MCSG 108 274 265 39.42 40.75

JCSG 36 181 169 19.89 21.30

NESG 69 178 170 38.76 40.59

NYSGXRC 35 187 169 18.72 20.71

PSI 260 872 811 29.82 32.06

Non-PSI 2069 20803 10319 9.95 20.05

Pfam families
during PSI-2

MCSG 133 891 852 14.93 15.61

JCSG 97 806 772 12.03 12.56

NESG 128 630 558 20.32 22.94

NYSGXRC 96 696 624 13.79 15.38

PSI 466 3229 2964 14.43 15.72

Non-PSI 959 28570 14975 3.36 6.40

Numbers of first structures and their percentage of total structures and non-
redundant (nr) structures at 95% sequence identity for molecular function GO
terms and Pfam families during PSI, PSI-1, and PSI-2.
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GO terms since GO terms are a much more general
functional category compared to the evolutionarily
related members of Pfams. The further back in time
that we go the fewer is the number of GO terms and
Pfams that were structurally characterized and thus
there was a higher probability of solving the first struc-
ture for a term or family. As structural coverage
becomes more complete the probability of solving the
first structure for a term or family diminishes. This is
one likely reason that the rate of solving first structures
during PSI-1 is higher than that during PSI-2 for both
PSI and non-PSI laboratories. Another possible explana-
tion is that the easier functions have been solved and
the remaining functions are more difficult to obtain a
structure for. Perhaps we are seeing a combination of
both factors. By virtue of solving more structures than
any other individual PSI centre the MCSG also solved
the highest number of first structures for both GO
terms and Pfams. In both cases the proportion of first
structures is close to the average for all PSI centres
although they excelled at solving the first structures for
Pfams during PSI-1.
39/45 of the MCSG first structures for GO molecular

function terms correspond to a level 4 EC number and
3 of the remaining 6 also have catalytic activity e.g.
GO:0015424 amino acid-transporting ATPase activity,
again showing a bias towards enzymes. The EC and GO
annotation systems have different coverage from each
other. Analysis of EC numbers in Gene3D shows that
the MCSG solved the first structure for 32 rather than
39 level 4 EC numbers. 5 of these EC numbers were not
revealed by the GO analysis so in total the MCSG
solved the first structure for 44 level 4 EC numbers.
The novelty of these structures may also be considered
in terms of providing structural coverage for metabolic
pathways.

Pathways
There are currently 357 KEGG reference pathways.
These pathways have nodes, most but not all of which
correspond to EC numbers. KEGG orthologs represent-
ing evolutionarily related groups of proteins map to
many but not all of these nodes and many nodes have
multiple orthologs. Currently, 7,035 orthologs are
assigned to the reference pathways and more are likely
to be added in the future. 1,849 out of a total of 4,977
currently possible level 4 EC numbers map through
KEGG orthologs to KEGG reference pathway nodes.
1,147/1,849 (62%) have at least one structural represen-
tative compared to 1,670/4,977 (34%) for the EC classifi-
cation as a whole. 9/357 (3%) pathways have complete
structural coverage of their orthologs but these are
all small pathways, the largest having only 8
orthologs belonging to 6 nodes, ko00072 synthesis and

degradation of ketone bodies. This pathway is also the
largest pathway composed entirely of nodes correspond-
ing to level 4 EC numbers with complete structural
coverage.
The 44 nodes with EC numbers that the MCSG solved

the first structure for belong to 44 KEGG reference
pathways but this number is a coincidence, with some
of the nodes appearing in multiple pathways while mul-
tiple nodes also appear in single pathways. The largest
number of nodes within a single KEGG reference path-
way to gain a first structure from the MCSG is 6 for
pathway ko00330, arginine and proline metabolism, but
this is a large pathway with more than 100 nodes. PSI
centres did not select targets with the aim of achieving
complete coverage of metabolic pathways but this is a
potential goal for the future.
Overall the MCSG solved the first structure for 73

orthologs in 59 pathways. 43 of these orthologs belong
to multiple pathways and thus join pathways together.
Membership of multiple pathways is, however, not rare
with about a half of all KEGG orthologs (3,514/7,053)
belonging to more than one reference pathway.

Structural novelty
Of the 1,165 MCSG PDB entries analyzed in this work
only 513 are so far classified in CATH v3.3 and so the
analysis of structural novelty is currently incomplete.
Also, since a special effort was made by the curators of
CATH to update the classification of MCSG structures
as a priority over other structures, MCSG structural
novelty cannot be compared to that of other PSI centres
or SB in general. MCSG structural novelty is shown in
Table 2.
By definition all new folds are also new superfamilies

and all new superfamilies are also new structural sub-
groups (SSGs). However, in this analysis not all new
SSGs are classified in CATH or necessarily belong to
existing superfamilies or folds. Of the 52 domains that
belong to new SSGs but are not classified in CATH as
new folds or superfamilies, 17 are found to be classified
into pre-existing CATH superfamilies while 35 are not

Table 2 Structural novelty of MCSG structures

Level of structural novelty Number of domains (cumulative total)

Fold 54

Superfamily 66 (120)

Structural sub-group (SSG) 52 (172)

Number of novel CATH structural domains solved by the MCSG. Three levels
of novelty are defined: a domain with a novel fold is the first example
released by the PDB of a fold in CATH (a new CAT number); a domain
belonging to a novel superfamily is the first example released by the PDB of a
superfamily in CATH (a new CATH number); a domain belonging to a novel
structural sub-group (SSG) has a normalized RMSD of at least 5Å from all
previously existing domains in CATH.
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classified in CATH v3.3. 11 of the 35 not classified
achieve a score >70 from the structural comparison pro-
gram SSAP following the CATHEDRAL scan suggesting
that they probably do belong to pre-existing superfami-
lies. The remaining 24 domains could potentially repre-
sent new superfamilies or folds.

Novel modelling leverage
The average novel modelling leverage in residues per
structure is considerably higher during PSI-1 compared
to PSI-2 for both PSI and non-PSI (See Table 3). This is
despite total modelling leverage per structure actually
being higher for both PSI and non-PSI during PSI-2
compared to during PSI-1 (results not shown). The rea-
son is that as the cumulative total and diversity of
solved structures increases and targets with good model-
ling leverage are preferentially selected in the early
stages of PSI, any new structures that are solved have
less chance of providing novel modelling leverage for a
fixed set of protein sequences. During both PSI-1 and
PSI-2, PSI substantially outperformed non-PSI in terms
of novel modelling leverage per structure as would be
expected since non-PSI often target multiple forms of a
given target protein to better characterise the biology.
With the increased output of PSI during PSI-2, the con-
tribution of PSI to total worldwide novel modelling
leverage more than doubled from 7.6% during PSI-1 to

16.3% during PSI-2. During both PSI-1 and PSI-2, the
MCSG substantially outperformed the other three large-
scale centres in terms of both total novel modelling
leverage and average novel modelling leverage per struc-
ture (see Table 3).

Human non-synonymous single nucleotide
polymorphisms
In the modelling leverage analysis 152 MCSG structures
are identified as templates for 867 human proteins in
UniProt. In this analysis of modellable nsSNPs all mod-
elling leverage of MCSG structures is considered, not
just novel leverage, and the MCSG structure is not
necessarily the closest available template. Within these
human protein sequences 8,982 unique Ensembl
nsSNPs, 1,580 unique UniProt nsSNPs, and 191 unique
OMIM nsSNPs are identified. 2,252 of these nsSNPs are
within a modellable region when using an MCSG struc-
ture as a template.
A good example of an MCSG structure helping to

explain human disease is illustrated by PDB entry 2hma.
Human mitochondrial tRNA-specific 2-thiouridylase 1
(UniProt ID O75648) matches 2hma with 42% sequence
identity in a BLAST alignment. The enzyme has been
implicated in aggravating mitochondrial 12S ribosomal
RNA aminoglycoside-induced and non-syndromic deaf-
ness. It catalyzes the 2-thiolation of uridine at the wob-
ble position (U34) of mitochondrial tRNA(Lys), tRNA
(Glu) and tRNA(Gln). A few natural variants have been
identified and one (Ala10Ser) has been linked to a
decrease in enzymatic activity.
To attempt to explain this, a homology model is built

using 2hma as a template which includes the substrate,
S-adenosyl methionine (SAM). When inspecting the
model, it is clear that Ala 10 is part of the SAM binding
pocket of the enzyme (See Figure 6). In 2hma the ade-
nosine group fits neatly into this pocket where Ala 10 is
located. In the Ala10Ser mutation, an additional hydro-
gen bond between the protein and SAM is probably
introduced. This increases the binding affinity between
SAM and the protein and thus slows down the release
of SAM once the sulphur has been transferred. This
agrees with observations made by Guan et al. [54] that
the Ala10Ser mutation reduces activity.

Conclusions
The MCSG has performed well during the first two
phases of the PSI in terms of the goals that were estab-
lished during this period. Whilst there has been concern
that the PSI produced too many structures of unknown
function our analysis reveals that by using a range of
bioinformatics tools and resources we are able to pro-
vide functional annotations for more than 90% of the
structures solved by the MCSG. Structures of unknown

Table 3 Novel modelling leverage

Period Source Novel
modelling
leverage
(residues)

Total
structures

Average novel
modelling leverage
per structure
(residues)

PSI MCSG 59597162 1165 51156

JCSG 33162765 987 33600

NESG 26001821 808 32180

NYSGXRC 31228566 883 35366

PSI 155344631 4101 37880

Non-PSI 1314954328 49373 26633

PSI-1 MCSG 30379825 274 110875

JCSG 14292241 181 78963

NESG 11647910 178 65438

NYSGXRC 16657925 187 89080

PSI 74059521 872 84931

Non-PSI 897493690 20803 43143

PSI-2 MCSG 29217337 891 32792

JCSG 18870524 806 23413

NESG 14353911 630 22784

NYSGXRC 14570641 696 20935

PSI 81285110 3229 25173

Non-PSI 417460638 28570 14612

Novel modelling leverage for residues in UniRef100 during PSI, PSI-1, and PSI-2.
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function have helped stimulate the development of
methods such as ProFunc that can predict function
from structure. ProFunc analysis complements sequence
analysis by both adding weight and specific detail to
predicted function and by suggesting function where
sequence methods have failed to do so.

Additional material

Additional file 1: Additional ProFunc example. Results and Discussion,
Figure, and Reference showing how ProFunc can be used to refine, add
detail to, and support a protein function prediction.
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