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Abstract

Background: MHC class II proteins bind oligopeptide fragments derived from proteolysis of pathogen antigens,
presenting them at the cell surface for recognition by CD4+ T cells. Human MHC class II alleles are grouped into
three loci: HLA-DP, HLA-DQ and HLA-DR. In contrast to HLA-DR and HLA-DQ, HLA-DP proteins have not been
studied extensively, as they have been viewed as less important in immune responses than DRs and DQs.
However, it is now known that HLA-DP alleles are associated with many autoimmune diseases. Quite recently, the
X-ray structure of the HLA-DP2 molecule (DPA*0103, DPB1*0201) in complex with a self-peptide derived from the
HLA-DR a-chain has been determined. In the present study, we applied a validated molecular docking protocol to
a library of 247 modelled peptide-DP2 complexes, seeking to assess the contribution made by each of the 20
naturally occurred amino acids at each of the nine binding core peptide positions and the four flanking residues
(two on both sides).

Results: The free binding energies (FBEs) derived from the docking experiments were normalized on a position-
dependent (npp) and on an overall basis (nap), and two docking score-based quantitative matrices (DS-QMs) were
derived: QMnpp and QMnap. They reveal the amino acid preferences at each of the 13 positions considered in the
study. Apart from the leading role of anchor positions p1 and p6, the binding to HLA-DP2 depends on the
preferences at p2. No effect of the flanking residues was found on the peptide binding predictions to DP2,
although all four of them show strong preferences for particular amino acids. The predictive ability of the DS-QMs
was tested using a set of 457 known binders to HLA-DP2, originating from 24 proteins. The sensitivities of the
predictions at five different thresholds (5%, 10%, 15%, 20% and 25%) were calculated and compared to the
predictions made by the NetMHCII and IEDB servers. Analysis of the DS-QMs indicated an improvement in
performance. Additionally, DS-QMs identified the binding cores of several known DP2 binders.

Conclusions: The molecular docking protocol, as applied to a combinatorial library of peptides, models the
peptide-HLA-DP2 protein interaction effectively, generating reliable predictions in a quantitative assessment. The
method is structure-based and does not require extensive experimental sequence-based data. Thus, it is universal
and can be applied to model any peptide - protein interaction.

Background
Major histocompatibility complexes (MHCs) class II
molecules are glycoproteins involved in the exogenous
antigen processing pathway, responsible for presenting
self and non-self peptides to inspection by T-cells. Class
II MHCs are expressed on specialised cell types,

including professional Antigen Presenting Cells (APCs),
such as B cells, macrophages and dendritic cells. MHC
class II proteins bind oligopeptide fragments derived
through the proteolysis of pathogen antigens, and pre-
sent them at the cell surface for recognition by CD4+ T
cells. If sufficient quantities of the epitope are presented,
the T cell may trigger an adaptive immune response
specific for the pathogen. The peptides binding to MHC
class II proteins vary considerably in length from 12-25
amino acids. They are bound by the protrusion of
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peptide side chains into cavities within the groove and
through a series of hydrogen bonds formed between the
main chain peptide atoms and the side chains atoms of
the MHC molecule. The peptide is able to extend from
either of the two open ends of the binding groove. It
takes an extended polyproline-like conformation [1].
MHCs are the most polymorphic protein in higher

vertebrates, with more than 6000 class I and class II
MHC molecules listed in IMGT/HLA in February 2011
[2]. Determining the peptide binding specificities exhib-
ited by this vast collection of alleles is beyond the pre-
sent capacity of experimental techniques, necessitating
the development of bioinformatic prediction methodolo-
gies. The most successful prediction methods for T-cell
epitopes developed to date have been data-driven. T-cell
epitope prediction typically involves defining the peptide
binding specificity of specific class I or class II MHC
alleles and then predicting epitopes in silico.
Using peptide sequence data, experimentally-deter-

mined affinity data has been used in the construction of
many MHC-peptide binding prediction algorithms. Such
methods include motif-based systems, Support Vector
Machines (SVMs) [3,4], Hidden Markov Models
(HMMs) [5-7], QSAR analysis [8,9], and structure-based
approaches [10-12]. MHC binding motifs are an easily
understood epitope identification method, although such
motifs invariably generate numerous false positives and
numerous false negatives.
At least for well-studied class I MHC alleles, immu-

noinformatic prediction methods work well [13,14].
However, for prediction of all immune epitope data
other than class I MHC peptide binding, results have
rarely proved satisfactory. Over the last few years, sev-
eral comparative studies have shown that the prediction
of class II T-cell epitopes is usually poor [15-17].
Human MHC class II alleles are grouped into three

loci: HLA-DP, HLA-DQ and HLA-DR. Class II MHCs
have been associated with many chronic inflammatory
diseases [18], including rheumatoid arthritis and type 1
diabetes. Many crystal structures are now available for
HLA-DQ and HLA-DR proteins [19], which show that
the peptide binding site is composed of two separate
chains: a and b. The walls of the binding site are
formed by two anti-parallel helices and the floor is
formed by an eight-stranded b-sheet [20]. Much of the
extraordinary sequence polymorphism apparent in
human MHCs is concentrated in residues forming the
binding site. The site is open at both ends and peptides
of different length could bind, even though only 9
amino acids occupy the site itself.
In contrast to HLA-DR and HLA-DQ, HLA-DP pro-

teins have not been studied extensively, as they have
been viewed as less important in immune responses
than DRs and DQs. However, it is now known that

HLA-DP proteins contribute to the risk of graft-versus-
host (GVH) disease [21], sarcoidosis [22], juvenile
chronic arthritis [23], Graves’ disease [24], hard metal
lung disease [25] and especially, chronic beryllium dis-
ease [26]. Quite recently, the X-ray structure of the
HLA-DP2 (DPA*0103, DPB1*0201) in complex with a
self-peptide derived from the HLA-DR a-chain has been
determined [27]. Although the overall structure of DP2
is similar to that of other MHC class II proteins, it con-
tains a unique solvent-exposed acidic pocket containing
three glutamic acids (Glu26b, Glu68b and Glu69b). This
pocket may be able to bind Be and present it to T cells,
thus explaining the mechanism of chronic Beryllium dis-
ease [27,28]. The X-ray data also revealed that the DP2
binding site consists of four binding pockets: deep and
hydrophobic p1 and p6 pockets; large, shallow and
negatively charged p4; and deep, narrow and polar p9.
Given the ready availability of the structural data to

which we have briefly alluded above, the molecular
docking has now become an appropriate tool, capable of
application to the problem of binding prediction for
class II MHCs. Structure-based docking is the repeated
static docking - and subsequent empirical scoring - of
sets of molecular structures to a biomacromolecular tar-
get, such as class II MHC complexes. The molecular
docking has a burgeoning track-record of success, at
least in area of identifying small molecule ligands of
macromolecular targets, and can help identify MHC
binders. Speaking generally, the molecular docking can
be separated into five phases, beginning with the X-ray
structure of a target MHC. This is combined with
potential peptide binders. The resulting set of ligands is
then docked into a binding site model and scored for
some appropriate correlate of binding. Handful of the
top ranked hits is selected, and assayed experimentally
[29].
Specifically, in the present study, we applied a molecu-

lar docking protocol to a library of 247 modelled pep-
tide-DP2 complexes to assess the contribution of each
of the 20 naturally occurred amino acids at each of the
nine binding core positions and the four flanking resi-
dues (two on both sides). The normalized binding scores
formed a quantitative matrix (QM). The predictive abil-
ity of the QM was assessed by external test set of 457
known binders to DP2. A comparison with results gen-
erated by existing servers for DP2 binding prediction
indicated an improvement in performance offered by
our docking score-based QM (DS-QM).

Methods
Input data
The X-ray structure of the HLA-DP2 (DPA*0103,
DPB1*0201) in complex with a self-peptide derived from
the HLA-DR a-chain (pdb code: 3lqz) was used as a
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starting structure [27]. The covalently bound peptide
was separated and defined as chain C. It consists of nine
binding core positions (FHYLPFLPS) and six flanking
residues (RK at the N terminus and TGGS at the C ter-
minus). The conformation of the peptide was used as a
template for the modelling process. Thirteen positions
were examined: nine binding core positions and four
flanking residues (two on both sides). A library of 248
peptides (19 amino acids × 13 positions + 1 original
ligand) was built using PyMOL [30]. We used the SAAS
(single amino acid substitution) approach to model the
conformations of each altered side chains: after substitu-
tion, the side chain conformation was minimised while
keeping the rest of the peptide structure and the whole
MHC protein rigid. The protonation state of ionisable
protein side chains was assigned to a standard ionisable
state: neutral for His; positively charged for Arg and
Lys; and negatively charged for Asp and Glu [31].

AutoDock protocol
AutoDock 4.2 [32], employing an implementation of the
Lamarckian genetic algorithm (GA), was used to model
the peptide binding to HLA-DP2. In order to limit the
computational burden of calculating peptide-MHC
interactions at positions not involved in the static dock-
ing, we kept all coordinates fixed apart from the peptide
residues of interest. These were left flexible. All GA set-
tings were kept to their default values, apart from the
number of energy evaluations and the number of gen-
erations which were set to 250 000 and 27 000, respec-
tively. The docking grid was defined as a cuboid with
sizes 32 Å × 36 Å × 38 Å, which encompassed the
entire peptide binding site on DP2. The output from ten
independent GA runs for each ligand was processed and
the pose (binding conformation) with the lowest Free
Binding Energy (FBE) was considered. FBE values repre-
sent the direct output from the AutoDock 4.2 scoring
function which takes into consideration weighted terms
for van der Waals dispersion/repulsion, hydrogen bond-
ing, electrostatics, and desolvation interactions as well as
the change in torsional free energy when the ligand goes
from an unbound to bound state. Data was mined by
python scripts using the MGL Tools 1.5.4 package [33].
All retained poses considered in the study had an
RMSD below 1.5 Å.

Docking score-based quantitative matrices (DS-QMs)
The FBEs derived from the docking experiments had
negative and positive values. Negative FBEs correspond
to binding peptides, while positive FBEs correspond to
non-binding peptides. Only negative FBEs were consid-
ered; non-binding amino acids were assigned the penalty
score of -10.000. The FBEs were normalized in two
ways: correcting using an average calculated on a

position-dependent basis (epithet: position-per-position;
acronym: npp) or correcting using an average calculated
over all positions (acronym: nap). Normalised FBEs were
thus calculated using the following formula:

FBEi,norm =
FBEi - FBE

FBEmax - FBEmin
,

where FBEi is the binding energy of the i-th peptide,
FBE is the average for a given position (npp) or over all
positions (nap), FBEmax and FBEmin - the maximum and
minimum FBEs, respectively, for a given position (npp)
or for all positions (nap). Normalized FBEs were multi-
plied by (-1) before being entered into the quantitative
matrices (QMs) for ease of presentation. Thus, the posi-
tive FBEs correspond to preferred amino acids, and
negative FBEs to non-preferred residues. Three QMs
were derived: one QMnpp and two QMnap (one for 9
mers and one for 13 mers).

Test set
A test set of 457 peptides known to bind HLA-DP2 was
collected from the Immune Epitope Database [34]
(November 2010 release). The peptides were of different
length and originated from 24 proteins. Each protein
was represented as a set of overlapping nonamers and
the binding score of each nonamer was calculated as a
sum of the weights of all nine positions. Peptides origi-
nating from one protein were arranged in descending
order according to their binding score; the top 5%, 10%,
15%, 20% and 25% were selected and compared to the
known binders. If the nonamer sequence is included in
the known binder sequence, the predicted peptide was
considered as a true predicted binder. The ratio of all
true predicted binders to all binders in the test set
defined the sensitivity of prediction at the given cut-off.
In the case of flanking residues, the procedure was the
same but the parent proteins were represented as a set
of overlapping 13 mers. The test set used in the present
study is given as Additional file 1.

Results
Docking score-based quantitative matrices (DS-QMs) for
nonamers
A library of 172 peptides (19 amino acids × 9 positions
+ 1 original ligand) was built and each docked separately
into the HLA-DP2 rigid binding site. Two QMs
(QMnpp and QMnap) were derived based on normal-
ized FBE, according to the method described in Meth-
ods. The two QMs are given in Table 1 (DS-QMnpp)
and Table 2 (DS-QMnap), respectively. A good correla-
tion exists between the two QMs (r = 0.997).
According to QMnpp, the preferred amino acids at

position 1 (p1) are Phe, Trp and Tyr, followed by His,
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Leu and Ile. QMnap selects only Phe, Trp and Tyr as
preferred amino acids for p1. The X-ray structure
shows that the p1 pocket is deep and hydrophobic
[27]. It can accommodate all hydrophobic residues,
including large aromatic amino acids, such as Phe, Trp
and Tyr.

Peptide positions 2 and 3 (p2 and p3) project out
from the binding site. Both QMs select Trp, His and
Phe as preferred and Pro as non-preferred amino acid
for p2. A great variety of other residues are well toler-
ated at p3, such as Pro, Tyr, Trp, Phe and Val; while
Glu and Asp are disfavoured.

Table 1 DS-QMnpp for HLA-DP2 binding prediction

p1 p2 p3 p4 p5 p6 p7 p8 p9

Ala -0.101 0.068 0.040 0.000 0.049 -0.079 -0.089 0.189 0.102

Arg 0.036 -0.017 0.030 0.411 0.445 0.073 0.379 -0.031 -0.753

Asn -0.046 0.011 -0.122 0.009 -0.116 0.090 -0.037 -0.007 0.148

Asp -0.263 -0.071 -0.493 -0.237 -0.403 -0.458 -0.408 -0.287 -0.167

Cys -0.065 0.002 -0.173 -0.076 -0.146 -0.076 -0.081 -0.027 0.169

Gln 0.027 -0.003 -0.163 0.053 -0.048 0.086 0.006 -0.139 0.146

Glu -0.208 -0.045 -0.559 -0.169 -0.417 -0.383 -0.380 -0.379 -0.124

Gly -0.202 0.004 -0.143 -0.035 0.016 -0.187 -0.150 0.149 0.007

His 0.150 0.179 0.015 0.002 -0.018 0.235 -0.055 -0.027 -0.132

Ile 0.105 0.085 -0.036 -0.006 -0.025 0.097 0.071 0.033 -0.050

Leu 0.130 0.056 0.111 0.113 -0.021 0.107 0.167 0.081 -0.044

Lys -0.009 -0.071 -0.031 0.428 0.597 0.083 0.592 -0.139 0.247

Met 0.064 0.037 -0.102 0.002 -0.123 0.083 -0.007 -0.091 0.187

Phe 0.469 0.101 0.269 0.070 0.043 0.542 0.050 0.177 -10.000

Pro -0.531 -0.762 0.441 -0.572 0.394 -10.000 -10.000 0.621 -10.000

Ser -0.202 -0.019 -0.143 -0.090 -0.157 -0.194 -0.206 -0.071 0.074

Thr -0.105 0.054 0.071 -0.077 -0.126 -0.153 -0.107 -0.043 0.144

Trp 0.375 0.238 0.375 0.084 0.093 -0.302 0.238 0.041 -10.000

Tyr 0.324 0.054 0.395 0.093 -0.038 0.411 0.056 -0.187 -10.000

Val 0.052 0.099 0.218 -0.003 0.002 0.026 -0.039 0.137 0.047

Binding scores are normalized position per position. Non-binding amino acids were assigned penalty score -10.000. Values above 0.100 are emboldened.

Table 2 DS-QMnap for HLA-DP2 binding prediction

p1 p2 p3 p4 p5 p6 p7 p8 p9

Ala -0.248 0.092 0.059 0.054 0.015 -0.099 -0.007 0.007 0.176

Arg -0.151 0.041 0.057 0.430 0.178 -0.037 0.293 -0.070 -0.425

Asn -0.209 0.058 0.015 0.062 -0.053 -0.030 0.026 -0.062 0.208

Asp -0.364 0.009 -0.087 -0.163 -0.172 -0.255 -0.212 -0.159 -0.013

Cys -0.223 0.053 0.001 -0.016 -0.066 -0.098 -0.002 -0.069 0.224

Gln -0.158 0.050 0.004 0.103 -0.025 -0.031 0.054 -0.108 0.207

Glu -0.325 0.025 -0.105 -0.101 -0.177 -0.225 -0.194 -0.191 0.018

Gly -0.321 0.054 0.009 0.022 0.001 -0.144 -0.046 -0.007 0.110

His -0.070 0.157 0.053 0.055 -0.013 0.030 0.015 -0.069 0.012

Ile -0.102 0.101 0.039 0.048 -0.016 -0.027 0.096 -0.048 0.069

Leu -0.084 0.085 0.079 0.157 -0.014 -0.023 0.157 -0.031 0.073

Lys -0.183 0.009 0.040 0.445 0.241 -0.032 0.430 -0.108 0.278

Met -0.131 0.073 0.020 0.055 -0.056 -0.032 0.046 -0.091 0.236

Phe 0.157 0.111 0.122 0.118 0.012 0.157 0.082 0.002 -10.000

Pro -0.555 -0.397 0.169 -0.470 0.157 -10.000 -10.000 0.157 -10.000

Ser -0.321 0.040 0.009 -0.028 -0.070 -0.147 -0.083 -0.084 0.157

Thr -0.251 0.083 0.068 -0.017 -0.058 -0.130 -0.019 -0.074 0.206

Trp 0.090 0.192 0.151 0.130 0.033 -0.191 0.203 -0.045 -10.000

Tyr 0.054 0.083 0.157 0.139 -0.021 0.103 0.086 -0.124 -10.000

Val -0.140 0.110 0.108 0.051 -0.005 -0.056 0.025 -0.012 0.137

Binding scores are normalized over all positions. Non-binding amino acids were assigned penalty score -10.000. Values above 0.100 are emboldened.
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The binding pocket p4 is large, shallow and negatively
charged due to Glu26b, Glu68b and Glu69b [27]. It
strongly attracts positively charged amino acids as Arg
and Lys, and distracts Asp and Glu. Leu, Tyr, Trp and
Phe also are well accepted here, while Pro is not
preferred.
Position 5 (p5) protrudes from the binding cleft but it

is still in close proximity to the negatively charged resi-
dues Glu26b, Glu68b and Glu69b. That explains the pre-
ferences for the positively charged Arg and Lys and the
avoidance of Asp and Glu.
The binding pocket p6 is deep and hydrophobic like

pocket p1 [27]. Phe, Tyr and His are well accepted here;
Pro does not bind at all; while Asp, Glu and Trp are
deleterious.
Position 7 (p7) lies tangentially to the binding site and

is considered as a secondary anchor position for some
MHC class II proteins [20,35]. It is also in the vicinity
of Glu26b, Glu68b and Glu69b and prefers Lys and Arg
but avoids Asp and Glu. Trp also binds well here, while
Pro does not bind at all.
Position 8 (p8) is solvent-exposed, yet shows a strong

preference for Pro. Although it is far from Glu26b,
Glu68b and Glu69b, their influence on binding prefer-
ences is clear. Glu and Asp are deleterious at p8.
The binding pocket 9 (p9) accepts large aliphatic,

polar, or even charged residues [27]. Accordingly, there
is a wide variety of preferred amino acids at this posi-
tion: Lys, Met, Cys, Gln, Asn, and Thr. In contrast, Pro
and large aromatic amino acids, such as Phe, Trp and
Tyr, do not bind at all; nor is Arg tolerated here.

External validation
A test set of 457 peptides known to bind HLA-DP2 ori-
ginating from 24 proteins was used for external valida-
tion of the derived DS-QMs. Initially, the predictive
ability of every position was assessed. Subsequently, dif-
ferent combinations of positions were evaluated. The
sensitivities of the predictions were calculated at five dif-
ferent thresholds (5%, 10%, 15%, 20% and 25%) for each
position are given at Figures 1 and 2. It is evident that
QMnap and QMnpp predict equally well. QMnap was
used next in the study. The highest predictive ability
belongs to p6, followed by p1 and p2. The best two-
position and three-position combinations slightly
improve the predictions (Figure 3, models “p1p6” and
“p1p2p6”). Addition of a cross term between p1 and p6
has no impact on the predictions (Figure 3, model
“p1p6crossp1p6”). Combinations between anchor posi-
tions were also tested (Figure 3, models “p1p4p6p9” and
“p1p4p6p7p9”). No improvement was seen. The combi-
nation of all positions also shows a lower predictive abil-
ity than the “p1p6” model, thus considering for the non-
additivity of binding (Figure 3, model “all positions”). If

the contribution made by each pocket to the overall
binding energy was formally additive, then the model
containing all pocket residues would have had the high-
est sensitivity. This was not the case.

Comparison to existing servers for HLA-DP2 binding
prediction
To the best of our knowledge, only three other servers
exist for peptide HLA-DP2 binding prediction: NetMH-
CII [36], IEDB [37] and MultiRTA [38]. All three are
sequence-based methods. NetMHCII and IEDB use arti-
ficial neural networks, while MultiRTA applies the Reg-
ularized Thermodynamic Average (RTA) prediction
method [39]. However, MultiRTA selects only one bin-
der from a protein, and it is not suitable for use with
our test set, which consists of many binders originating
from a limited number of proteins. Thus, the compara-
tive study only includes NetMHCII, IEDB, and the DS-

Figure 1 Sensitivities of the predictions calculated at five
different thresholds (5%, 10%, 15%, 20% and 25%) for each
peptide binding core position by DS-QMnpp.

Figure 2 Sensitivities of the predictions calculated at five
different thresholds (5%, 10%, 15%, 20% and 25%) for each
peptide binding core position by DS-QMnap.
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QMnap model. The 24 proteins from the test set were
cleaved into successive overlapping nonamers. Sensitiv-
ities at different cutoffs were recorded (Figure 4). It is
evident that DS-QMnap performed best when compared
to the existing servers for DP2 binding prediction. It
predicts 38% of the true binders at the top 5% threshold,
61% at top 10%, 75% at top 15%, 85% at top 20%, and
92% at top 25%.

Effect of the flanking residues on the peptide binding
affinities
In the present study, we also examined the influence of
flanking residues on peptide binding affinities. Four
flanking residues were considered: two at each end.
Seventy six additional peptides (19 amino acids × 4
positions) were modelled and docked into HLA-DP2
and the FBEs derived from the docking experiments
were normalized using either a position-dependent aver-
age (npp) or an overall average taken over all positions
(nap). Similarly to the evaluation of nonamers, two QMs

were derived: QMnpp and QMnap. They are given in
Additional file 2. The two are highly correlated (r =
0.995), thus only QMnap was chosen to test predictivity.
The preferred amino acids at p-1 (the first before p1)

were Lys, Arg and Pro, while non-preferred residues
were Asp and Glu. This preference could be explained
by the presence of Glu55a in close proximity to p-1.
Positon p-2 (the second before p1) can accommodate a
great variety of amino acids, including Pro, Trp, Ala,
Arg, Gly, Lys and Phe. No disfavoured amino acids were
seen for this position. Thr, Phe, Cys, Ile and Val are
well accepted at p+1 (the first after p9), Pro is deleter-
ious. Finally, Gly, Pro and Trp are accommodated well
at position p+2 (the second flanking position after p9),
while Thr is not favoured here.
The proteins from the test set were also converted to

sets of overlapping 13 mers. The binding score of each
13 mer was calculated using the 13 mer-specific
QMnap. Note that using overlapping 13 mers signifi-
cantly decreases the sensitivity, since the number of dis-
tinct registers originating from one binder decreases.
Several combinations of flanking residues were com-
pared. The first bars in Figure 5 give the sensitivities
calculated when only the binding core of nine amino
acids was considered (the centre of each 13 mer); subse-
quent bars show the sensitivities for different combina-
tions of binding core and flanking residues. It is evident
that the addition of flanking residues does not improve
the predictions.

Identification of the peptide binding core
The binding peptide RKFHYLPFLPSTGGS from the X-
ray structure of the peptide - HLA-DP2 protein complex
was used to test if the molecular docking procedure
could identify the peptide binding core. The binding 15
mer was presented as a set of overlapping peptides, with
a moving binding core shown in bold in Table 3. The
FBEs of the peptides and their binding scores calculated
by the best DS-QMnap model “p1p6”, are given in

Figure 5 Sensitivities of the predictions calculated at five
different thresholds (5%, 10%, 15%, 20% and 25%) for
different combinations of peptide binding core positions and
flanking residues by DS-QMnap.

Figure 3 Sensitivities of the predictions calculated at five
different thresholds (5%, 10%, 15%, 20% and 25%) for
different combinations of peptide binding core positions by
DS-QMnap.

Figure 4 Sensitivities of the predictions calculated at five
different thresholds (5%, 10%, 15%, 20% and 25%) by
different servers for DP2 binding prediction.
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Table 3 Identification of peptide binding core by molecular docking and DS-QM

Peptide bound
to HLA-DP2

Binding mode
Binding core is given in bold

AutoDock
FBE (kcal/mol)

DS-QMnap p1p6
binding score

pdb code: 3lqz RKFHYLPFLPSTGGS 9.43 -0.174

RKFHYLPFLPSTGGS 8.53 -10.183

Binding core RKFHYLPFLPSTGGS -5.36 0.314

RKFHYLPFLPSTGGS 6.36 -0.093

RKFHYLPFLPSTGGS 6.69 -9.043

RKFHYLPFLPSTGGS 3.06 -0.231

RKFHYLPFLPSTGGS 3.72 -0.685

Apolipoprotein A-II 12-27 LQSLVSQYFQTVADYA 0.26 -0.231

LQSLVSQYFQTVADYA -0.5 -0.189

LQSLVSQYFQTVADYA -0.36 -0.218

Binding core LQSLVSQYFQTVADYA 4.54 0.073

LQSLVSQYFQTVADYA -1.75 -0.171

LQSLVSQYFQTVADYA 2.48 -0.451

Cathepsin S 182-197 GGFMTTAFQYIIDNKG -0.09 -0.451

GGFMTTAFQYIIDNKG 0.26 -0.42

Binding core GGFMTTAFQYIIDNKG -5.99 0.314

GGFMTTAFQYIIDNKG -2.91 -0.162

GGFMTTAFQYIIDNKG 3.79 -0.148

GGFMTTAFQYIIDNKG 3.04 -0.278

GGFMTTAFQYIIDNKG 1.03 -0.275

GGFMTTAFQYIIDNKG -4.91 -0.098

Igl 188-204 QSNNKYAASSYLSLTPE 1.42 -0.055

QSNNKYAASSYLSLTPE -1.86 -0.42

QSNNKYAASSYLSLTPE 0.4 -0.308

QSNNKYAASSYLSLTPE -0.15 -0.356

QSNNKYAASSYLSLTPE -0.87 -0.33

Binding core QSNNKYAASSYLSLTPE -5.06 0.157

QSNNKYAASSYLSLTPE -0.3 -0.271

QSNNKYAASSYLSLTPE -2.81 -0.395

QSNNKYAASSYLSLTPE 0.09 -0.344

Interferon-induced protein 1-8D 53-65 VPDHVVWSLFNTL -4.92 -0.196

VPDHVVWSLFNTL -1.81 -0.746

VPDHVVWSLFNTL -3.19 -0.511

VPDHVVWSLFNTL -3.28 -0.093

Binding core VPDHVVWSLFNTL -6.19 0.017

LR11 mosaic ptorein VYGIFYATSFLDLYRNP -2.48 -0.037

VYGIFYATSFLDLYRNP -1.49 -0.045

VYGIFYATSFLDLYRNP -3.97 -0.451

VYGIFYATSFLDLYRNP -1.38 -0.249

Binding core VYGIFYATSFLDLYRNP -5.98 0.314

VYGIFYATSFLDLYRNP 2.11 0.031

VYGIFYATSFLDLYRNP 7.07 -0.503

VYGIFYATSFLDLYRNP 2.12 -0.274

VYGIFYATSFLDLYRNP -3.66 -0.218

The FBE values and the binding scores of the identified binding cores are given in bold.
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Table 3. It is evident that both methods clearly discrimi-
nated the binding core, since derived scores were signifi-
cantly higher than the scores derived from the rest of
the overlapping peptides.
The same procedure was applied to five additional

known DP2 binders [40] (Table 3). The FBE values
identified four of the five binding cores, while the DS-
QMnap model found all the five cores.

Discussion
Molecular docking is a key structure-based method of
immunoinformatics. In contrast to sequence-based
methods, docking experiments do not require extensive
pre-existing experimental data. The only information
necessary is an X-ray structure of the peptide - MHC
protein complex. Recently, the docking methodology
was extensively tested on both peptide - MHC class I
and peptide - MHC class II complexes: it proved to be a
rapid and accurate method for evaluating peptide bind-
ing to MHCs [41].
Although the structures of a number of HLA-DR and

HLA-DQ alleles have long been available [20,35], the
structure of a HLA-DP protein was only solved recently
[27]. This has now enabled us to apply structure-based
molecular docking to the analysis of the interaction
interface of the HLA-DP2 peptide complex. The X-ray
structure of the binding peptide was used as a starting
template to create a combinatorial library of 247 pep-
tides built using the SAAS principle. Using this, we
were able to explore the structure-activity relationships
of the nine binding core positions and the four flanking
positions, two on each end. Peptides were docked into
the DP2 binding site using AutoDock. The lowest
resulting FBEs were recorded, normalized, and used to
create DS-QMs. The predictive ability of these QMs was
tested using an external test set and compared to exist-
ing servers for DP2 binding prediction. A similar dock-
ing-based procedure was applied recently to 12 HLA-
DR1 proteins indicating that DS-QMs have good predic-
tive ability [42].
Analysis of DS-QMs coupled to the external predictiv-

ity tests lead to several clear conclusions. The anchor
positions p1 and p6 take a leading role in the binding
predictions. Hydrophobic aromatic amino acids, like
Phe, Tyr and Trp, are preferred at these two positions.
Thus, our results confirm the unique binding motif for
DP2 [43] and other DP alleles [44]. The prediction tests
show that p1+p6 with or without a cross term p1p6 are
self-sufficient to identify 38% of the true binders among
the top 5% of the best predicted peptides, 61% among
the top 10%, and 75% among the top 15% (Figure 3).
The anchors p4 and p9 have a low impact on the pep-

tide binding prediction when used either as single pre-
dictors or in combination (Figures 1, 2 and 3). Instead,

p2 is found to be the third most important position
after p6 and p1 (Figures 1 and 2). It works equally well
as a single predictor and in combination with p1 and p6
(Figure 3). Aromatic amino acids are preferred here,
such as Trp, His and Phe. These preferences could be
explained by the presence of residue His79b, situated
close to the side chain of p2, thus enabling the stacking
of aromatic rings [45].
The most striking feature of the peptide - HLA-DP2

complex is the unique solvent exposed acidic pocket
formed between the bound peptide backbone and the
protein a-helix. It contains three glutamic acids: Glu26b,
Glu68b and Glu69b. Additionally, close to this acidic triad
there is another glutamic acid: Glu67b. The strong nega-
tive electrostatic potential created by the four nominally
negatively-charged residues, determines the amino acid
preferences within the main part of the binding core.
All six positions between positions p3 and p8 disfavour
Glu and Asp. Positions p4, p5 and p7 prefer Lys and
Arg. It has been hypothesized that this acidic pocket is
able to bind divalent inorganic cations (e.g., Ca2+, Mg2+,
Co2+, Be2+, etc.); this forms an explanation for the asso-
ciation that DP2 has with hard metal lung disease [27].
Analysis of amino acid preferences for all nine binding

core positions reveals the ambiguous role of Pro. Pro is a
preferred amino acid at peptide positions p3, p5 and p8
yet is not-preferred at p1, p2 and p4. When Pro is present
at positions p6, p7 and p9, peptides do not bind at all. As
Pro does not possess an interactive side chain, its role in
the peptide binding is connected mainly with restrictions
to the backbone conformation. This highlights the com-
plex and conflicting influences at play here. Certain deep,
hydrophobic inward-facing pockets seem highly selective,
while the more exposed pockets tolerate more and more
variable residue types. This is to be expected. No binding
data exists for the TCR recognition of the HLA-DP2
pMHC complex, which would indicate the steric and phy-
sic-chemical constraints exerted on immunologically-
active epitopes as opposed to binding peptides.
No effect of the flanking residues was found on the

peptide binding predictions to DP2, although all four of
them show strong preferences for particular amino
acids. Pro also plays an ambiguous role here, being pre-
ferred at positions p-2, p-1 and p+2 and non-preferred
at position p+1.
Additionally, the DS-QMs were used to identify the

binding core of six known DP2 binding peptides, one of
them taken from the X-ray structure. All six binding
cores were identified with scores significantly higher
than the scores derived for the rest of the overlapping
peptides.
The DS-QMs derived in the present study were com-

pared to experimental studies based on SAAS peptides
binding to HLA-DP2. Berretta et al. [46] performed
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competition tests with the Ii-derived peptide CLIP and
its SAAS peptides in p4 and p6 binding to DP2. Pocket
4 showed high affinity for positively charged, aromatic,
and polar residues, whereas aliphatic residues were dis-
favoured. Pocket 6 showed high affinity for aromatic
residues. Both experimentally-determined pocket prefer-
ences agree in full with our DS-QMs. Sidney et al. [44]
also performed a SAAS analysis of the binding specifici-
ties of HLA-DPB1*0201. They defined a binding motif
for DP2 including preferred amino acids at peptide posi-
tions p-2 (Ala, Phe, Lys, Ser, Thr, Val, Trp, Tyr), p1
(Phe, Ile, Leu, Met, Val, Trp, Tyr) and p6 (Phe, Ile,Leu,
Met, Trp, Tyr). The DS-QMs are in partial agreement
with these preferences. According to the DS-QMs, Ser,
Thr and Tyr are not among the preferred amino acids
at p-2, and Trp is not accepted at p6. Most recently,
Greenbaum et al. [47] found a high degree of overlap-
ping repertoire amongst all HLA class II molecules due
to binding of multiple registers and dominant backbone
interactions than peptide anchor preferences.
We can say with some confidence that both molecular

docking procedure and the DS-QM based peptide bind-
ing prediction identify the binding core of the bound
peptide from the X-ray structure in a straightforward
manner [27]. Moreover, the comparison to other servers
suggests that the method described in the present study
should provide a reliable tool for DP2 binding
prediction.

Conclusion
Amongst immunoinformatics problems, the prediction of
class II peptide-MHC binding has recently been the sub-
ject of much critical comment [15-17]. We must set this
against the background of prediction in general, which is
still treated with considerable scepticism by many. In
many ways, accurate quantitative and qualitative predic-
tion is the ultimate goal of scientific endeavour, since it
affords us both true certainty in our understanding and
also greatly augmented abilities to manipulate and design.
The present study has continued our exploration of
docking as an approach to the difficult and challenging
problem of class II MHC-peptide binding prediction. In
future work, we will explore more complete docking pro-
tocols that allow energetic relaxation of both the peptide
and the protein, and also make use of a wider range of
different scoring functions; as well as extending our ana-
lysis to include a wider range of class II alleles and under-
taking prospective as well as retrospective analysis.

Additional material

Additional file 1: Test set of known HLA-DP2 binders. The file
contains a test set of 457 known peptide binders to HLA-DP2, parent
protein NCBI GI numbers and IC50 values.

Additional file 2: DS-QMnpp for HLA-DP2 binding prediction of 13
mer peptides. The file contains the DS-QMnpp for HLA-DP2 binding
prediction of 13 mer peptides. Binding scores are normalized position
per position. Non-binding amino acids were assigned a binding score of
-10.000.
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QM: quantitative matrix; DS-QM: docking score-based quantitative matrix;
SAAS: single amino acid substitution; FBE: free binding energy.
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