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Functional region prediction with a set of
appropriate homologous sequences-an index for
sequence selection by integrating structure and
sequence information with spatial statistics
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Abstract

Background: The detection of conserved residue clusters on a protein structure is one of the effective strategies
for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed
based on this strategy. In such approaches, the conserved residues are identified through comparisons of
homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is
empirically known that a certain degree of sequence divergence in the set of homologous sequences is required
for the identification of conserved residues. However, the development of a method to select homologous
sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective
and general method to select appropriate homologous sequences is desired for the efficient prediction of
functional regions.

Results: We have developed a novel index to select the sequences appropriate for the identification of conserved
residues, and implemented the index within our method to predict the functional regions of a protein. The
implementation of the index improved the performance of the functional region prediction. The index represents
the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure
and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics
is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are
considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of
homologous sequences with the highest index score, under the assumption that the best prediction accuracy is
obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher
functional region prediction performance than the sets of sequences selected by other sequence-based methods.

Conclusions: Appropriate homologous sequences are selected automatically and objectively by the index. Such
sequence selection improved the performance of functional region prediction. As far as we know, this is the first
approach in which spatial statistics have been applied to protein analyses. Such integration of structure and
sequence information would be useful for other bioinformatics problems.
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Background
Many methods have been developed to predict the func-
tional regions of a protein [1]. One of the most effective
strategies is the detection of conserved residue clusters
on the tertiary structure of the protein [2-9]. Various
methods, such as Evolutionary Trace [2], PatchFinder
[10,11] and ConSurf [5], have been developed based on
this strategy. In such methods, at first, the homologous
amino acid sequences of a prediction target are col-
lected, and a multiple sequence alignment (MSA) of the
sequences is constructed. Then, the conserved residues
are identified among all sites in the MSA, which are
assigned to the corresponding residues on the tertiary
structure of the protein. Finally, the clusters of con-
served residues on the structure are predicted as the
functional regions. In such approaches, a problem has
remained; that is, how to select the appropriate homolo-
gous sequences for the identification of conserved resi-
dues. It is empirically known that a certain degree of
sequence divergence in an MSA is essential for the iden-
tification. However, there is no concrete criterion for the
sequence divergence that is generally applicable to all
cases [12]. The selection of the sequences for the MSA
to identify conserved residues is thus unavoidably sub-
jective. In addition, the prediction performance strongly
depends on the sequence divergence [12]. Therefore, an
objective criterion for the divergence is required to
achieve high functional region prediction performance.
Homologous sequences with exactly the same function

are considered to be appropriate for functional region
prediction. The difficulty in the selection of such
sequences resides in the fact that homologous proteins
do not always share the same function, although they
are derived from a common ancestral protein. For exam-
ple, gene duplication is considered to be an evolutionary
mechanism for a protein to acquire a new function. An
additional copy generated by gene duplication allows
one of the genes to accept mutations, which cannot be
tolerated by a single copy gene. Such drastic mutations
often lead to the functional divergence of the duplicated
genes. We can see such an example in the relationship
between C-type lysozyme and α-lactalbumin, which both
belong to the C-type lysozyme family [13]. C-type lyso-
zyme attacks peptidoglycans and hydrolyzes the glyco-
sidic bond that connects N-acetylmuramic acid with the
fourth carbon atom of N-acetylglucosamine [14]. α-lac-
talbumin is a non-enzymatic homologue of C-type ly-
sozyme, and acts as the regulatory component of the
lactose synthase enzyme system [13]. The catalytic sites
and substrate binding sites for the lysozymes are subs-
tituted with different amino acids in α-lactalbumins,
although the two proteins share about 40% sequence
identity. Consider the situation in which we want to pre-
dict the functional regions of lysozyme. Then, the MSA
of the lysozyme sequences is required. However, if the
MSA includes the α-lactalbumins in addition to the lyso-
zymes, then the accurate prediction of the catalytic resi-
dues of the lysozymes is difficult, based on the residue
conservation. In such a case, we should exclude the
sequences of α-lactalbumin, and use only those of the C-
type lysozyme for the identification of conserved resi-
dues. This example highlights the difficulty in selecting
the appropriate sequences with the same functions and
using them for functional region prediction.
Roughly speaking, there are two ways to select homo-

logous sequences with the same function for functional
region prediction. One simple way to select homologous
sequences is the selection based on their sequence iden-
tities to the prediction target [1]. However, there is a
problem with this method. Todd et al. investigated the
conservation of molecular functions by examining the
EC numbers of the homologous enzymes. In most cases,
the first three digits of the EC numbers are the same
when the sequence identity between any two proteins is
greater than 40% [15]. Even if the sequence identity is
around 30%, 95–90% of homologous enzymes share the
first three digits of the EC numbers. If the sequence
identity is less than 30%, then the conservation in the
EC number is degraded [15]. The observations suggest
that more than 30% or 40% sequence identity may be
used as an empirical criterion to construct the appropri-
ate set of homologous sequences for functional region
prediction. In contrast, Rost et al. [16] reported that less
than 30% of homologous enzyme pairs share the same
EC number, even when the sequence identity is greater
than 50%. Thus, the relationship between the conserva-
tion in the EC number and the sequence identity is still
debatable. Sequence identity-based selection is not al-
ways appropriate for the selection of sequences with the
same function. Another way is to select the closely
related sequences with the annotations, such as a protein
name and its biochemical functions. However, this selec-
tion method also has some limitations. Firstly, some
hypothetical proteins are annotated based only on the
sequence identity or similarity with the closely related
homologous proteins. Secondly, many sequences are
simply described as ‘hypothetical protein’ or ‘function
unknown’, even when the retrieved sequences from the
databases display significant sequence similarity to the
protein under consideration [1]. Therefore, the sequence
selection methods that rely on the percent sequence
identity to the query are insufficient for functional re-
gion predictions. To address this problem, two methods
have been developed.
One of the methods was reported by Aloy et al. [8].

They developed an automatic method to predict the
functional regions of a protein by using sequence and
structure information. In their method, the clustering of
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the conserved residues on the tertiary structure is evalu-
ated. If no cluster is identified, then the MSA is recon-
structed by removing the distant homologues to the
target protein, according to the evolutionary relation-
ships suggested by a phylogenetic tree. The process is
iterated until the cluster of conserved residues is
identified.
Recently, another approach employing structure and

sequence information was proposed by Mihalek et al.
[12,17]. They used a “residue clustering measure” to in-
dicate the appropriateness of a set of sequences for func-
tional region predictions [12,17]. The measure quantifies
the degree of clustering of the evolutionarily important
residues in the tertiary structure of a protein. In
addition, the measure attaches greater importance to the
clustering of the residues that are far from each other on
the primary structure. The set of sequences selected by
the measure led to better performance of their func-
tional region prediction by the real valued Evolutionary
Trace (rvET)-based method [18].
We addressed a similar problem to that studied in

Mihalek’s work by a different approach. We developed
an index to quantify the appropriateness of a set of hom-
ologous sequences, which is implemented in the method
to predict the functional regions of a protein. Structure
and sequence information were integrated by spatial sta-
tistics into the index, which represents the degree of
clustering of the conserved residues on the tertiary
structure of the protein. Spatial statistics is a large
branch of statistics that considers both the spatial posi-
tions and attributes of the data, and analyzes the spatial
relationships among the data [19]. The performance of
functional region prediction, using the set of sequences
selected by the index, was better than that using the set
selected by percent sequence identity. The advantage of
our method is the automatic and objective construction
of an appropriate sequence set for functional region pre-
diction. The virtues and pitfalls of our method will be
discussed.
Methods
At first, we will describe the datasets used for the per-
formance evaluation of our method. We will then ex-
plain the prediction procedure of our method, and
describe the evaluation methods.
Datasets
In this work, we predicted the functional regions of
monomeric enzymes with structures available in the
Protein Data Bank (PDB), and evaluated the prediction
accuracy. Structure, sequence and catalytic site data
were required for the prediction and evaluation. Data
sources and manipulation methods are described below.
Structure data
We used monomeric enzymes for the performance
evaluation of our method. At first, we selected the
enzymes with catalytic sites listed in the Catalytic Site
Atlas [20]. Second, we adopted monomeric enzymes, if
the complex state of the protein is registered as mono-
meric in three databases, ProtBuD [21], 3DComplex.org
[20], and PQS [20]. The non-redundant target protein
set was constructed by adopting only a representative
protein from the clusters defined in 3DComplex.org,
where the structures are hierarchically classified by
similarities in the quaternary complex state, the tertiary
structure and the primary sequence. We used the file
corresponding to “QS30 level” for the hierarchical clas-
sification, where two protein complexes are clustered if
the complex topologies are identical, the structures are
similar (based on SCOP), and the percent sequence
identity between the two protein sequences is larger
than 30%. In addition, if the sequence of a structure
has at least 10 homologous sequences with more than
60% sequence identity, then the structure is used as a
target protein for the performance evaluation of our
method. Otherwise, the protein was not used as a tar-
get. Considering the report by Rost et al. [16], the pro-
teins with about 50% identity to the target may not
share the same function. Therefore, we used a slightly
more rigorous criterion, 60%, for the selection of test
sets. The number of analyzed PDB chains was 54. All
PDB IDs and Chains are listed in the Supporting
Information.
Sequence data
The sequence corresponding to the target structure and
its homologous sequences were collected from the
RefSeq database [22] by BLAST [23].
Catalytic site information
Catalytic site information was obtained from the Cata-
lytic Site Atlas [24], which contains two information
sources. One is the literature, where catalytic sites are
confirmed experimentally. The other is the detection of
catalytic sites based on a BLAST sequence search [23].
We utilized both sources.
Prediction procedure
The key idea of our method is the integration of struc-
ture and sequence information within the prediction
procedure, by the application of spatial statistics. At first,
we will describe the underpinning of our method, and
then we will provide a detailed explanation of the pre-
diction procedure.
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Underpinning of our method
Data representation of a protein structure as a
residue-residue interaction network
A protein structure is represented as an undirected
graph G (N, E). N indicates a set of nodes. Each node
corresponds to a constituent residue of the protein
structure. E indicates a set of edges, each connecting a
pair of contact residues. In order to construct a graph
representation, at first, the Voronoi areas are automatic-
ally generated on the molecular surface of the protein by
PROVAT [25], which is software that enables the com-
putation and visualization of Voronoi tessellations of
proteins and protein complexes. In the tessellation
process, we defined Cβ as the representative atom for all
types of amino acids, except for Gly, for which Cα is the
representative atom. Second, two contacting residues are
defined as the residues with corresponding Voronoi
areas adjacent to each other, and the undirected graph is
generated.

Assumption of functional region prediction
Two assumptions for functional regions of proteins were
adopted in this study. Firstly, we assumed that most of
the functional regions of proteins are exposed or at least
semi-buried on the molecular surface. Bartlett et al. [26]
reported that most of the catalytic residues have low
relative solvent accessibility. Among them, however, the
ratio of catalytic residues with 0% accessibility is only
5%. That is, most of the catalytic residues are located at
positions that are somewhat solvent accessible. Actually,
several prediction and theoretical studies have found
that the functional regions tend to be located on the mo-
lecular surfaces of protein structures [2,4,5,27-29].
Therefore, we focused only on the surface residues of
each monomer in this study. Secondly, we assumed that
the amino acid residues conserved among homologues
are abundant at the functional regions, due to functional
constraints. Based on the two assumptions, we have
developed a method to predict the functional regions of
a protein, by examining the clustering of conserved resi-
dues on the protein surface with spatial statistics
techniques.

Basis of the application of spatial statistics to
protein analysis
The basis of our strategy is the theory of spatial statis-
tics, in which not only the attributes but also their
spatial coordinates are utilized. This enables us to evalu-
ate the spatial relationship of the attributes. This data
structure is used in epidemiology, geostatistics and geo-
metric information system research [19]. Many statistical
techniques for spatial data analysis have been developed
in these fields [19]. Among them, some techniques
developed by Moran and his colleagues are often used to
investigate the global distribution of the attributes, and
to detect local clusters [30-32]. Spatial autocorrelation is
a measure to deal simultaneously with similarities in the
locations of spatial objects and their attributes [19]. If
the spatial objects with similar locations also share simi-
lar attributes, then the distribution pattern of the attri-
butes in space as a whole is said to exhibit positive
spatial autocorrelation. Conversely, negative spatial auto-
correlation exists when the nodes that are close together
in space tend to have more dissimilar attributes than
those that are farther apart. Zero spatial autocorrelation
occurs when the attributes are independent of the loca-
tion. There are two approaches to analyze the spatial
autocorrelation of spatial data, which differ from each
other in terms of the analytical resolution [19]. In the
first approach, the global features of the spatial distribu-
tion of attributes are explored. The Moran scatterplot is
used for the exploratory analysis to visualize the global
distribution pattern of the attributes. In the Moran scat-
terplot, the average of the attributes of neighboring
nodes is calculated as follows:

Average of attributes of neighboring nodes of nodei

¼

PN
j¼1;j 6¼i

wijAttributej

Pn
j¼1;j6¼i

wij

wij ¼ 0 : dij > D Å
� �

1 : dij ≤D Å
� � ðAÞ

�

and is plotted as a function of the score of node i. Thus,
the slope of the Moran scatterplot indicates the degree
of spatial autocorrelation (DSPAC). The second ap-
proach is the detection of the local spatial factors that
cause the spatial autocorrelation [19]. Local Moran’s I is
a score to detect local clusters of nodes with high or low
attributes. The mathematical details of the score will be
outlined later in the section that describes the flow of
our prediction method.
In our work, we applied Moran scatterplot [33] and

Local Moran’s I [30,31] to predict functional regions by
using the Cβ atom of a surface residue, the conservation
score and the residue contact as the node, the attribute
and the edge, respectively. In a Moran scatterplot for a
protein, the average conservation scores of neighboring
residues are plotted as a function of the conservation
score of a residue. Therefore, we can expect to observe a
positive spatial autocorrelation in the Moran scatterplot
where conserved residues are spatially surrounded by
conserved residues, and where unconserved residues are
surrounded by unconserved residues. The slope of the
Moran scatterplot, in other words, DSPAC, indicates the
strength of the contrast. We adopted DSPAC as an index
of the appropriateness of a set of homologous sequences
for functional region prediction. More precisely, we gen-
erated a set of homologous sequences of a target
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protein, and divided the set into some subsets. Among
the subsets, we chose the subset with the maximum
DSPAC. Further details of the application are described
below.

Spatial autocorrelation for the conservation scores of
protein residues
In this section, we describe the analyses of the spatial
autocorrelation from two different viewpoints.

Spatial autocorrelation for the conservation scores of the
residues on the molecular surface of a protein
We generated a Moran scatterplot for the conservation
scores on the surface of flap endonuclease-1 (1A77
chain A) [34], as an example (Figure 1). The conserva-
tion score was calculated at each alignment site by the
following method [35]:

Cons ið Þ ¼

XN
j

XN
k>j

WjWkMut sj ið Þ; sk ið Þ� �
XN
j

XN
k>j

WjWk

Mut a; bð Þ ¼
m a; bð Þ �min mð Þ
max mð Þ �min mð Þ ;

if a 6¼ gap and
b 6¼ gap
0; otherwise

(

ðBÞ

where m(a, b) is the BLOSUM62 [36] score between
residues a and b. max(m) and min(m) are the maximum
and minimum values among the scores, respectively. Wj

is a weighting factor for sequence j to reduce the taxo-
nomic bias among the set of sequences, which is
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Figure 1 Moran scatterplot of the conservation scores of the
residues on the molecular surface of flap endonuclease-1
(1A77). The averages of the normalized conservation scores of
neighboring residues are plotted as a function of the normalized
conservation score of each surface residue.
calculated using the Henikoff-Henikoff weighting factor
method [37]. Cons (i) ranges from 0.0 to 1.0. Values of
Cons (i) closer to 1.0 reflect more conservation of the
alignment site i. In this analysis, the sequences with X
(%) or greater sequence identities to the sequence of a
target protein were collected, to calculate the conserva-
tion score. The neighboring residues of residue i are
defined as follows. Firstly, as described above, we defined
the surface residues by PROVAT [25]. Second, the sur-
face residues with Cβ within D(Å) from that of surface
residue i were adopted. Hereafter, this D is referred to as
the neighboring residue threshold. Finally, in order to re-
move the residues that are close in direct distance but dis-
tant on the molecular surface, the residues with separation
degrees from residue i that are less than or equal to 3 were
selected. The pair of X and D corresponding to the max-
imum DSPAC was chosen as the thresholds. X was shifted
from 85% to 10%, with intervals of 5%. D was shifted from
5.0Å to 9.0Å, with intervals of 0.5Å. In the analysis of flap
endonuclease-1, the maximum DSPAC was 0.689, with
25% for X and 9.0Å for D.
In the same way, we calculated the DSPACs of 54 pro-

teins in the dataset. The average DSPAC for the dataset
is 0.741 (σ= 0.078). Next, we performed a test of no cor-
relation for each DSPAC. Null hypotheses about all pro-
teins, for which there is no correlation between the
conservation score of residue i and the average of the
conservation scores of the residues neighboring residue
i, were rejected at the significance level of 0.05. Thus, we
observed spatial autocorrelation for the conservation
scores; that is, there is a tendency for conserved residues
to be surrounded by conserved residues on the surface
of the structure, while unconserved residues are sur-
rounded by unconserved residues.
The selection of an appropriate set of homologous
sequences for functional region prediction
We will now explain our strategy to automatically select
an appropriate set of homologous sequences for func-
tional region prediction. As described above, we used
the DSPAC as an index to evaluate the appropriateness
of a set of sequences for functional region prediction.
The DSPAC is estimated by calculating the correlation
coefficient of a Moran scatterplot about the conservation
scores of a protein, which corresponds to the slope of
the regression line in the Moran scatterplot. For this
purpose, we constructed a set of homologous sequences
of a target protein, and divided the set into some sub-
sets. We chose the subset with the maximum DSPAC.
Details are described below with a model case. Hereafter,
suppose that the neighboring residue threshold, D, cor-
responding to the maximum DSPAC is known in ad-
vance for simple explanation.
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Suppose that we have a list of 80 homologous
sequences of an imaginary Protein X, for which the crys-
tal structure is available (Figure 2). All sequences are
retrieved by a sequence search, using Protein X as a
query. The retrieved sequences are arranged in descend-
ing order of the percent sequence identity to Protein X.
Closely-related homologous sequences of Protein X are
near the top of the list. In contrast, distantly-related
Figure 2 Schematic illustration of the DSPAC-based sequence selectio
homologous sequences are near the bottom. Then, eight
distinct datasets (DATAi : i= 1~ 8) are constructed, by
selecting 10 × i sequences from the top of the list. As a
result, the selected sequences are more closely related to
Protein X than the unselected ones. The number of
unselected sequences is 80–10 × i. The sequence set with
the larger index i contains all of the sequences with the
smaller index. The MSAi is the MSA of the DATAi. In
n.
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addition, we assume that the top 70 sequences have the
same structures as that of Protein X, and their functional
residues are located in exactly the same regions as in
Protein X. In contrast to the 70 sequences, the
remaining 10 sequences have the same structures as
that of Protein X, but their functional regions are located
in different regions from those in Protein X. The resi-
dues in the functional regions are shown by the red
spheres on the structures depicted on the left side of
Figure 2.
In MSA1, the alignment sites corresponding to the

functional residues are highly conserved. Additionally, a
certain number of residues in non-functional regions
also have high conservation scores, due to the close evo-
lutionary relationship to Protein X. Consequently, the
unconserved residues in non-functional regions as well
as the conserved residues in functional regions are sur-
rounded by conserved residues. Then, the Moran scat-
terplot is drawn for MSA1, and is referred to as Moran’s
scatterplot I. The regression line in the scatterplot has a
gentle slope.
The slope of the regression line of Moran’s scatterplot

II is expected to be slightly steeper than that of Moran’s
scatterplot I when we consider MSA2, which includes 10
slightly more divergent sequences from Protein X. The
assumption here is that a small number of residues
within non-functional regions have been substituted
with different ones, while almost all of the residues in
the functional regions are still conserved in MSA2.
Therefore, the distribution of the plots in Moran’s scat-
terplot II is expected to change slightly, since clusters of
unconserved residues should be observed in the non-
functional regions. Plots corresponding to residues with
low conservation scores in the non-functional regions
are expected to appear at the bottom-left in Moran’s
scatterplot II. This means that a certain number of
unconserved residues in the non-functional regions are
surrounded by unconserved residues. Therefore, the
DSPAC derived from Moran’s scatterplot II is considered
to become slightly greater than that from Moran’s scat-
terplot I.
Likewise, in the Moran scatterplots III, IV, V, VI and

VII, the slopes would gradually become steeper. When
the MSA consists of the sequences that moderately
diverged from Protein X, the fraction of unconserved
residues in the non-functional regions increases. Simul-
taneously, the fraction of conserved residues in the non-
functional regions decreases. On the other hand, the
fraction of conserved residues in the functional regions
either remains the same or slightly decreases. The differ-
ence in the decreasing rates of conserved residues be-
tween the functional and non-functional regions creates
the contrast in the conservation scores between the
functional and non-functional regions, and would lead
to the intensification of the DSPAC. Therefore, if the
MSAs are arranged in the ascending order of the DSPAC
in the corresponding Moran scatterplots, then the order
would be MSAs 1, 2, 3, 4, 5, 6 and 7.
However, MSA8 would be expected to show a different

trend. As assumed above, MSA8 includes the sequences
of DATA8, which are the most diverged from Protein X,
and their functional residues are located on completely
different regions from those in Protein X. Consequently,
when these sequences are added to the MSA, the con-
servation scores of the sites corresponding to the
functional residues of Protein X decrease. Therefore,
the difference in the conservation scores between the
functional and non-functional regions in MSA8
becomes smaller than that in MSA7. Then, ideally, the
DSPAC of Moran’s scatterplot VIII becomes smaller
than that of Moran’s scatterplot VII. As shown at the
bottom of Figure 2, the plots of the DSPACs as a
function of the order of the datasets are expected to
show a convex shape. In this case, MSA7 provides the
maximum DSPAC. Accordingly, the set of sequences
corresponding to MSA7 is adopted as the most appro-
priate set of sequences for the functional region pre-
diction of Protein X.

Details of the prediction procedure
As shown in Figure 3, our method is roughly divided
into two parts, [A] Appropriate Sequence Selection for
Functional Region Prediction and [B] Cluster Detection
of Conserved Residues.

[A] Appropriate Sequence Selection for Functional
Region Prediction
The sequence selection procedure is divided into two
processes, the Data Preprocessing Process and the
Iteration Process. The Data Preprocessing Process
consists of two steps (Boxes [I] and [II]). The Iteration
Process consists of four steps (Boxes [III], [IV], [V], and
[VI]). The maximum DSPAC, which is expected to
indicate the most appropriate set of sequences, was
found by decreasing the threshold of the percent
sequence identity to Protein X from 85% to 10%, with
intervals of 5%. Hereafter, this threshold is referred to
as the percent sequence identity threshold. The first
and second parts of the prediction procedures (Boxes
[I] and [II]) are preprocessing steps of the sequence
data and the structure data, respectively, for the
selection of an appropriate set of sequences. The third
part of the procedure (Box [III]) is the MSA
construction of the sequences. The information
obtained from Box [II] is integrated with that from Box
[III] in Box [IV], in which the calculated conservation
scores are assigned to the corresponding residues on
the query’s tertiary structure. In Box [IV], the



Figure 3 Flow chart of our prediction method. The method consists of seven steps and is roughly classified into two parts, [A] Appropriate
Sequence Selection for Functional Region Prediction (I-VI) and [B] Cluster Detection of Conserved Residues (VII). [I] Manipulation of sequences, [II]
Manipulation of a structure, [III] MSA construction of the subset of retrieved sequences and calculation of conservation scores at all alignment
sites, [IV] Integration of sequence and structure information, [V] Iteration process to find the maximum DSPAC, [VI] Selection of the appropriate
set of homologous sequences with the maximum DSPAC, [VII] Cluster detection of conserved residues by using LMIC.
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existence of the spatial autocorrelation of the
conservation score was examined on the structure.
After the iteration, we adopted the set of
sequences with the maximum DSPAC.

[I] Manipulation of sequences
The procedure described in this section corresponds to
Box [I] in Figure 3. At first, we collected the
homologous sequences of a target protein by a BLAST
search [23] with an e-value parameter of 1e+ 3. Among
the retrieved sequences, the sequences with lengths
that were shorter than 80% or longer than 150% of the
length of the target sequence were removed.
[II] Manipulation of a structure
The procedure described in this section corresponds to
Box [II] in Figure 3. As described above, the protein
structure is represented as a residue-residue interaction
network. Let’s consider a protein that forms a complex
with another molecule, and define its inner, surface and
interface residues for other molecules. Before executing
PROVAT, all of the HETATM record lines in the PDB
file were removed. During the PROVAT process, at
first, a number of H2O atoms are scattered around,
covering the target protein molecule. We set Cβ as the
representative atom for each residue except for Gly, for
which Cα is the representative atom. Cβ and H2O are
considered to be the nodes to be tessellated. The
Voronoi tessellation is then performed. A node in the
tessellation is called a meta site. Hereafter, we focus on
the meta sites, which correspond to the Cβ atoms. The
meta sites neighboring meta site i are called the slave
sites of meta site i. If at least one H2O is included in
the slave sites around meta site i, then the residue
corresponding to meta site i is considered to be
exposed on the surface. If at least one atom of the
other protein molecule is included in the slave sites
around meta site i, then the residue corresponding to
meta site i is considered to be an interface residue to
the other molecule. Otherwise, the residue
corresponding to meta site i is regarded as an inner
residue.
[III] MSA construction of the subset of retrieved
sequences and calculation of the conservation scores at
all alignment sites
All of the sequences retrieved by the BLAST search
were aligned by using MAFFT (ver 6.239) [38]. The
sequences with an identity to the query that was more
than or equal to X% sequence identity were then
adopted and aligned, again. The conservation score was
calculated at each alignment site by the equation (B).
[IV] Integration of the information from [II] and [III]
The information obtained from the sequence and
structure preprocessing is integrated at this step; that
is, the conservation scores are assigned to the
corresponding residues on the tertiary structure.
During the iteration to evaluate the sequence sets, the
information from step [III] is identical. Then, the
DSPAC for the conservation scores is calculated, as an
index reflecting the appropriateness of the set of
sequences for functional region prediction. As
mentioned above, a Moran scatterplot is often used to
display the existence of spatial autocorrelation. In our
method, the horizontal axis represents the conservation
score of residue i, while the vertical axis is the average
conservation score over the neighboring residues of
residue i. The average conservation score over the
neighboring residues around residue i is defined as
follows:

Ai ¼

PN
j¼1;j 6¼i

wij yj � �y
� �
n

ðCÞ

where yj is the conservation score of residue i. �y is the
average conservation score of all surface residues. wij is
the same as that used in equation (A). A neighboring
residue around residue j is defined as the residue with a
degree of connection on the Voronoi surface less than
or equal to three and that simultaneously exists within
a distance of DÅ from the Cβ of residue i. D is shifted
from 5.0Å to 9.0Å, with intervals of 0.5Å. We used the
slope of the regression line of a Moran scatterplot as
the DSPAC. The correlation coefficient was calculated
in each Moran scatterplot as the slope of the regression
line. n is the number of neighboring residues of
residue i.
[V] Iteration process to find the maximum DSPAC
As shown in Figure 3, procedures [III], [IV] and [V] are
iterated while shifting the percent sequence identity
threshold.
[VI] Selection of the appropriate set of homologous
sequences with the maximum DSPAC
The DSPACs are plotted as a function of the percent
sequence identity threshold to the target protein.
Among the 16 conditions, we adopted the condition
corresponding to the set of sequences with the
maximum DSPAC. The percent sequence identity
corresponding to the maximum DSPAC is
referred to as the “adopted percent sequence
identity”.

[B] Cluster Detection of Conserved Residues
[VII] Cluster detection of conserved residues by using
Local Moran’s I of Conservation scores (LMIC)
We adopted the strategy to detect clusters of conserved
residues on the molecular surface of a protein.
Therefore, we designed a score to evaluate the degree
of clustering of conserved residues around each residue
by modifying Local Moran’s I [30,31], which is referred
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to as the Local Moran’s I by using Conservation score
(LMIC). The LMIC of residue i (LMICi) is defined as
follows:

LMICi ¼
Consi � Cons
� � PN

j¼1;j6¼i
wij Consj � Cons

� �
σ2

ðDÞ
where Consi is the conservation score of surface
residue i. Consj is that of surface residue j. Cons is the
average of the conservation scores of all surface
residues. σ is the standard deviation of the conservation
scores over all surface residues. wij is the same as that
used in the equation (A), which is a weighting factor to
define a neighboring relationship between residues i
and j. Due to wij, the conservation score of a spatially
distant residue j from residue i does not contribute to
LMICi. The nodes that have similar conservation
scores and are adjacent to each other yield a large
LMICi. A Monte Carlo simulation was performed to
test the statistical significance of LMICi in the
following procedure. Firstly, the coordinates and the
conservation score of residue i were fixed. Secondly,
the coordinates of the other surface residues were
randomly exchanged with each other. These steps were
iterated 10,000 times and finally, a total of 10,000
datasets, consisting of attributes and coordinates, were
generated. If the original LMICi is larger than the
lowest score of the top 5% of those of the generated
10,000 datasets, and simultaneously the conservation
score of residue i is larger than the average of the
conservation scores of all surface residues, then the
residues around the conserved residue i are regarded as
predicted functional residues.
Evaluation method
Functional region information
In this work, the prediction targets of our method are
the functional regions. These regions are expected to be
suitable for our method, due to the accumulation of
conserved residues at certain places on the surface. The
catalytic residues listed in the Catalytic Site Atlas [24]
and the residues within 9Å from the geometric center of
the catalytic residues were regarded as constituents of
the functional regions. The distance of 9Å was adopted,
based on the observation by Chelliah et al. [39].
Hereafter, the term ‘functional region’ refers to both

the actual catalytic residues and their surrounding resi-
dues that reside within 9Å from the geometric center
of the catalytic residues, while ‘predicted functional re-
gion’ means the functional region predicted by our
method.
Evaluation scores
The performance of the functional region prediction
for each protein was evaluated with the following
quantities:

F � score ¼ 2� Sensitivity� Specificityð Þ= Sensitivityð
þ SpecificityÞ

Sensitivity ¼ TP= TP þ FNð Þ
Specificity ¼ TP= TP þ FPð Þ
Selectivity ¼ TN= TN þ FPð Þ ðEÞ

Among them, we mainly used the F-score, which is a
measure that combines and harmonizes sensitivity and
specificity, to evaluate the functional region prediction
performance of our method. This is because it is in-
appropriate to determine which method shows the best
performance among various datasets by using either the
sensitivity or specificity. In general, when the sensitivity
increases, the specificity decreases and vice versa. Hence,
the sensitivities, specificities and selectivities are also
shown in Additional file 1: Figure SA, Additional file 2:
Figure SB, Additional file 3: Figure SC, respectively, as
Additional information.

Results
Our functional region prediction method consists of two
steps, the selection of appropriate homologous sequences
and the detection of conserved residue clusters on a
structure. We used DSPAC for the appropriate sequence
selection, and LMIC for the cluster detection. Hence, we
evaluated the performance of the DSPAC-based sequence
selection method (DSPAC-based method) and that of the
cluster detection by LMIC.
Firstly, in order to evaluate the performance of the

DSPAC-based method, we compared the average F-score
of the predictions with the set of sequences collected by
the DSPAC-based method and those of two other se-
quence selection methods without structure information,
Naïve approaches and SDPfox [40]. Then, LMIC was
used for the cluster detection of conserved residues. As
described in the Methods, the set of sequences selected
by the DSPAC-based method was the set with the
maximum DSPAC, among the subsets of homologous
sequences generated by the procedure described in the
Methods. SDPfox was originally developed to divide an
MSA into some functional sub-groups and to identify
the specificity-determining positions in each sub-group
[40]. We used SDPfox because the sequences classified
into the same sub-group as that of the target protein
would be suitable for the functional region prediction of
the query, since the proteins in the sub-group are sup-
posed to share their functional regions. Therefore, the
SDPfox-based sequences are the sequences in one of the
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sub-groups automatically identified by SDPfox, which
contains the target protein. The sets of sequences identi-
fied by Naïve approaches are the 16 different sets of
sequences constructed during the DSPAC-based se-
quence selection. Each set contains the sequences with
percent sequence identities that are more than or equal
to the specified percent sequence identity threshold to
the target protein sequence. The percent sequence iden-
tity threshold was shifted from 85% to 10%, with inter-
vals of 5%. The sequence set with the smaller threshold
contains all of the sequences with larger thresholds.
Secondly, in order to evaluate the performance of

LMIC as a detection method for conserved residue clus-
ters, we compared the performances of the predictions
with LMIC and those with PatchFinder. PatchFinder
finds the patch of residues with the lowest probability of
occurring by chance [10,11]. At first, PatchFinder sets a
minimal average conservation cutoff for a patch, to gen-
erate the biggest patch with an average conservation
score that is higher than or equal to the cutoff. In order
to generate a conserved patch, each of the 10 residues
with the highest conservation score on the protein sur-
face is selected as a starting point. In the extension stage,
the most highly conserved residue among the neighbor-
ing residues is added to the existing patch, and the aver-
age conservation score of the new patch is calculated.
Then, a neighboring residue is defined as the residue
with at least one heavy atom within 4Å from at least one
 0
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Figure 4 The average and median F-scores of the functional region p
selection. The horizontal axis represents the sequence selection methods,
different percent sequence identity thresholds. The red open rectangles wi
LMIC was used to detect the cluster of conserved residues. The negative p
region, is not drawn, since the F-value has a positive value by definition. Th
when LMIC was used to detect the cluster of conserved residues. The blue
predictions when PatchFinder was used to detect the cluster of conserved
when PatchFinder was used to detect the cluster of conserved residues. Th
the best performance among all combinations of the methods. The predic
sequence identity are comparable to those by the LMIC and DSPAC-based
atom of a residue under consideration. If the average
conservation score of the patch is higher than the cutoff,
then the new residue is accepted and the extension stage
is repeated. The search procedure ends when the average
conservation score of the patch drops below the cutoff.
This procedure is repeated while shifting the cutoff, and
the same numbers of patches and cutoffs are generated.
Finally, the patch with the maximum likelihood is
chosen.
In Figure 4, the averaged F-scores of the functional re-

gion predictions over the 54 proteins under consider-
ation are shown. The neighboring residue threshold for
each protein was fixed at the value corresponding to the
maximum DSPAC. The red open rectangles with error
bars indicate the averaged F-scores of the predictions
when LMIC was used to detect the cluster of conserved
residues. The light green open triangles indicate the
medians of the predictions when LMIC was used to de-
tect the cluster of conserved residues. We compared the
performance of the DSPAC-based method with those of
the SDPfox and Naïve approaches. The DSPAC-based
method showed the maximum average F-score among
the three methods. The difference between the average
F-score obtained by the DSPAC-based method and those
by the SDPfox and Naïve approaches with the threshold
of more than 35% sequence identity was statistically sig-
nificant (p < 0.01) by the paired t-test. The differences
between the F-scores by the DSPAC-based method and
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approaches (%)

or sequence selection

redictions generated by 18 different criteria for sequence
DSPAC-based method, SDPfox, and Naïve approaches, with 16
th error bars indicate the averaged F-scores of the predictions when
art of the error bar, which would extend into the negative F-score
e light green open triangles indicate the medians of the predictions
crosses with error bars indicate the averaged F-scores of the
residues. The purple asterisks indicate the medians of the predictions
e combination of DSPAC-based sequence selection and LMIC showed
tion performances by the PatchFinder and Naïve approaches at 30%
approaches.
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those by the Naïve approaches with the threshold of less
than or equal to 35% sequence identity were statistically
significant (p < 0.05) by the paired t-test. These observa-
tions indicate that the DSPAC-based method has
improved the accuracies of functional region predictions.
Roughly speaking, the plots of the average F-scores by
Naïve approaches form a convex shape. The average F-
scores by Naïve approaches with the threshold values
ranging from 85% to 25% monotonously increase. The
maximum average F-score is obtained by the Naïve ap-
proach with the 25% sequence identity threshold. The
average F-score generated by SDPfox is smaller than
those obtained by the other methods, except for the
Naïve approaches with the threshold of more than 55%
sequence identity.
Next, we show the performance of cluster detection

with PatchFinder. The blue crosses indicate the averaged
F-scores of functional region predictions over the 54
proteins under consideration, when PatchFinder was
used for the detection of conserved residue clusters. The
purple asterisks indicate the medians of the predictions
when PatchFinder was used to detect the cluster of con-
served residues. The average F-score obtained by the
DSPAC-based method is smaller than the F-scores gen-
erated by the Naïve and SDPfox approaches, except for
the Naïve approaches with thresholds of more than 60%
sequence identity. Roughly speaking, the plots of the
average F-scores by Naïve approaches form a convex
shape. The average F-scores by Naïve approaches with
the threshold values ranging from 85% to 30% monoton-
ously increase. The maximum average F-score is
obtained by the Naïve approach with the threshold of
30% sequence identity. The differences between the F-
score by Naïve approaches with the threshold of 30% se-
quence identity with PatchFinder (0.531) and that by the
DSPAC-based method with LMIC (0.614) were not sta-
tistically significant by the paired t-test. The average F-
scores generated by Naïve approaches with the threshold
values ranging from 25% to 10% decrease. These obser-
vations indicate that the prediction performances by the
PatchFinder and Naïve approaches at 30% sequence
identity are comparable to those by the LMIC and
DSPAC-based approaches.
We compared the average F-score obtained with

LMIC (red rectangles) to that generated with PatchFin-
der (blue crosses), using the identical sequence set. The
average F-score from the DSPAC-based method with
LMIC (0.614) is larger than that from PatchFinder
(0.402), and is statistically significant by the paired t-test
(p < 0.01). When we used the set of sequences selected
by the Naïve approaches with thresholds ranging from
40% to 10%, the average F-scores with LMIC (0.547,
0.547, 0.533, 0.555, 0.531, 0.524, 0.425) were larger than
those with PatchFinder (0.484, 0.484, 0.492, 0.533, 0.541,
0.463, 0.435), although the average F-score with LMIC
(0.531) is slightly smaller than that with PatchFinder at
the threshold of 30% identity (0.541). In contrast, the
average F-scores with LMIC (0.319, 0.253, 0.191, 0.172,
0.087, 0.083, 0.075, 0.065, 0.041) were smaller than those
with PatchFinder (0.481, 0.469, 0.420, 0.407, 0.394,
0.343, 0.294, 0.254, 0.215), when we used the set of
sequences selected by the Naïve approaches with the
thresholds ranging from 45% to 80%. In the same way,
the average F-scores determined with LMIC (0.225) were
smaller than those obtained with PatchFinder (0.459),
when we used the set of sequences selected by SDPfox.
Two application examples
Here, we show the analyses of two proteins, canine C-
type lysozyme (1el1 chain A) and human angiotensin
converting enzyme 2 (ACE2) (1o8a chain A) in Figures 5
and 6, respectively, as examples of the application of the
combined DSPAC and LMIC approach to the functional
region prediction. These proteins were chosen because
the homologues of the two proteins include representa-
tive cases of functional divergence, as mentioned in the
Discussion.
Example 1: C-type lysozyme
The DSPAC, F-score, sensitivity, specificity and selectiv-
ity for the prediction of C-type lysozyme are plotted as
a function of the percent sequence identity threshold
(Figure 5), by closed squares with a solid line, asterisks
with a dashed line, crosses with a dotted line, open squares
with a dotted-dashed line and closed squares with a
dotted-dashed line, respectively. The plot is drawn when
the neighboring residue threshold is 7.0Å, because the
maximum DSPAC is obtained when the threshold to
define neighboring residues is 7.0Å. Then, the DSPAC
plots form a convex shape. Likewise, the F-score, sensi-
tivity and selectivity show similar patterns. The maxi-
mum DSPAC (0.64) is observed at the 50% sequence
identity threshold, which corresponds to the percent se-
quence identity threshold with the maximum F-score
(0.97) and sensitivity (1.0). In contrast, the specificity is
almost flat, although the lowest score is observed at the
60% sequence identity threshold. The maximum score of
selectivity (1.00) is observed at the 35% sequence iden-
tity threshold, although both the F-score (0.69) and sen-
sitivity (0.53) are low, as compared to the percent se-
quence identity threshold with the maximum DSPAC.
The DSPAC and the scores corresponding to 70, 75, 80,
and 85% are not plotted, because the numbers of se-
quences in the datasets at these thresholds are less
than 10. In this way, the set of sequences with the maxi-
mum DSPAC would provide a high F-score and better
sensitivity.



Figure 5 Variations of the DSPAC and evaluation scores of the analysis of C-type lysozyme. Each score is plotted as a function of the
percent sequence identity threshold. The real functional residues, the functional residues predicted by using the set of sequences with the
maximum DSPAC, and the functional residues predicted by using the set of sequences at the 25% sequence identity threshold are shown by
blue, red and purple spheres on the C-type lysozyme structures, respectively.
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On the right side of the plot, there are three small
windows in tandem, where C-type lysozyme structures
are shown. In the top window, 19 real functional resi-
dues are represented by blue spheres. In the middle win-
dow, 24 functional residues, predicted by using the set
of sequences with the maximum DSPAC, are repre-
sented by red spheres. Among them, 19 residues corre-
sponded to the real functional residues, while five
predicted residues did not. In the bottom window, 18
residues, predicted by using the set of sequences at a
25% sequence identity threshold, are represented by pur-
ple spheres. The 25% sequence identity threshold was
selected for comparison because the average F-score for
the 54 proteins is the maximum among the Naïve
approaches. All of the residues corresponded to the real
functional residues. These observations also showed the
high performance of the DSPAC-based sequence selec-
tion. However, the coverage of the predicted residues
against the real functional residues was lower than that
in the case of the maximum DSPAC.

Example 2: Angiotensin converting enzyme 2 (ACE2)
Next, we describe the analysis of ACE2. In the same way
as the prediction for lysozyme, the DSPAC, F-score, sen-
sitivity, specificity and selectivity for the prediction of
ACE2 are plotted as a function of the percent sequence
identity threshold (Figure 6), by closed squares with a
solid line, asterisks with a dashed line, crosses with a
dotted line, open squares with a dotted-dashed line and
closed squares with a dotted-dashed line, respectively.
The plot is drawn when the neighboring residue thresh-
old is 7.0Å. The DSPAC, F-score, sensitivity and selectiv-
ity show similar patterns, although the specificity (open
squares with a dotted-dashed line) is almost flat. The
percent sequence identity threshold for the maximum
DSPAC (40%) and those for the F-score and sensitivity
(45%) are close to each other. The score corresponding
to 85% is not plotted, because the numbers of sequences
in the datasets at these thresholds are less than 10.
As in the case of the application to the C-type lyso-

zyme described above, there are three small windows in
tandem, where ACE2 structures are shown. In the top
window, 28 real functional residues are represented by
blue spheres. In the middle window, 64 functional resi-
dues, predicted by using the set of sequences with the
maximum DSPAC, are represented by red spheres.
Among them, 19 residues corresponded to the real func-
tional residues. However, the functional meanings of the
remaining 45 predicted residues have not been charac-
terized. In the bottom window, 26 residues, predicted by
using the set of sequences at a 25% sequence identity
threshold, are represented by purple spheres. No residue



Figure 6 Variation of the DSPAC and evaluation scores of the analysis of ACE2. Each score is plotted as a function of the percent sequence
identity threshold. The real functional residues, the functional residues predicted by using the set of sequences with the maximum DSPAC, and
the functional residues predicted by using the set of sequences at the 25% sequence identity threshold are shown by blue, red and purple
spheres on the ACE2 structures, respectively.
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corresponded to the real functional residues. In the same
manner as that for C-type lysozyme, the DSPAC-based
sequence selection showed high performance for the
appropriate sequence selection.

Discussion
We evaluated the performance of the DSPAC-based
method and that of the cluster detection by LMIC. At
first, we will discuss the differences in the performance
of functional region prediction among the three se-
quence selection methods, under the conditions where
LMIC was used to detect clusters of conserved residues.
The plots of the average F-scores for Naïve approaches
formed a convex shape, with the maximum average F-
score at the threshold with 25% sequence identity. This
reminds us of the percent sequence identities limit
reported by Todd et al. [15], which reserves the first
three digits of the EC numbers for enzymes conserved
within the same family. That is, more than 30% or 40%
sequence identity would be useful as an empirical crite-
rion to select homologous sequences for functional re-
gion prediction. However, our study suggested that it
is better to determine the criterion of the sequence
selection for each protein, instead of using a fixed
threshold, because some proteins share the same func-
tions with closely related homologues, while others share
the same functions with diverged ones and closely
related ones. Hence, we compared the sequence selec-
tion efficiency among Naïve approaches, SDPfox and
DSPAC. Contrary to our expectation, the average F-
score by SDPfox, 0.225, was smaller than those of the
other methods, except for the Naïve approaches with
thresholds ranging from 55% to 85% (0.191, 0.172, 0.087,
0.083, 0.075, 0.065, 0.041). Consider the minimum per-
cent sequence identity between the sequences in the
optimum sequence set for functional region prediction
selected by SDPfox and the target sequence. The average
minimum percent sequence identity over the target
sequences examined in this study was 62.6%. The ave-
rage F-scores of Naïve approaches with the 60% and
65% sequence sets were 0.172 and 0.087, respectively.
These are significantly smaller than the maximum ave-
rage F-score generated by the Naïve approach with
25% sequence identity. Therefore, the sets of sequences
selected by SDPfox tend to consist of less divergent
sequences, as compared to the sets obtained by the
Naïve approach with 25% sequence identity. This might
occur because SDPfox was originally developed to dis-
criminate between the ligand- or substrate-binding spe-
cificities among homologous proteins. In contrast to the
average F-score obtained by SDPfox, the average F-score
by the DSPAC-based sequences was the maximum
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among the average F-scores by all sequence selection
methods. Thus, the sequence selection by the DSPAC-
based method improved the performance of functional
region prediction. The distribution of the adopted per-
cent sequence identity thresholds of the DSPAC-based
method is shown in Additional file 4: Figure SD in the
Additional information. The average of the adopted per-
cent sequence identity thresholds for all target proteins
was 27.1%, which was close to the percent sequence
identity threshold corresponding to the maximum aver-
age F-score by Naïve approaches, 25%. Therefore, it is
better to construct the set of sequences for functional
region prediction for each protein by using DSPAC, in-
stead of a fixed threshold.
Next, we will discuss the differences in the perform-

ance of cluster detection of conserved residues between
LMIC and PatchFinder. Roughly speaking, the plots of
the average F-scores against the percent sequence iden-
tity form convex shapes, regardless of the cluster detec-
tion method. The maximum average F-scores are
obtained by the Naïve approaches with similar thresh-
olds for LMIC (25%) and PatchFinder (30%), although
the maximum score with LMIC is larger than that with
PatchFinder. The prediction performances of both
LMIC and PatchFinder monotonously decline by the
Naïve approaches with the percent identity thresholds
less than 25%. As shown in Figure 4, the decreasing
rate of the average F-scores determined by Naïve
approaches from 25% to 10% with PatchFinder is larger
than that with LMIC. The average F-scores generated
with LMIC were larger than those with PatchFinder
when we used the Naïve approaches with thresholds
smaller than 40% sequence identity, except for 30% se-
quence identity. Likewise, the average F-scores obtained
with LMIC were larger than those with PatchFinder
when we used the DSPAC-based sequence selection. In
contrast, the average F-scores obtained with PatchFinder
were larger than those with LMIC when we used the
Naïve approaches with 30% and larger than 35% se-
quence identities. Likewise, the average F-scores gener-
ated with PatchFinder were larger than those with LMIC
when we used SDPfox. The average of the minimum per-
cent sequence identities of the sequences with the quer-
ies in the SDPfox-based sets is 62.6%. Thus, LMIC is
considered to suit more divergent sequences than Patch-
Finder for functional region prediction. Therefore, LMIC
should be used to detect clusters of conserved residues,
when a set of sequences is constructed and includes at
least one sharing less than 40% sequence identity with
the target protein.
Accordingly, cluster detection with LMIC by using the

DSPAC-based sequences is considered to provide the
best performance. In fact, the combination of DSPAC-
based sequence selection and LMIC showed the best
performance among all combinations of the methods. In
the next section, we will show two results of the ana-
lyses, as examples.

Examples: Exclusion of functionally diverged homologues
from the functional region prediction
We discuss the details of the analyses of two proteins,
canine C-type lysozyme (Figure 5) and human ACE2
(Figure 6), as examples of the application of the com-
bined DSPAC and LMIC approach.
As described in the Introduction, the non-enzyme pro-

teins, the α-lactalbumins, belong to the same family as
the enzymes, C-type lysozymes. In the analysis shown in
Figure 5, no α-lactalbumin sequence was included in any
sets of sequences, in which the percent sequence identity
threshold from the canine C-type lysozyme sequence
was greater than or equal to 50%. The maximum DSPAC
was observed at 50% sequence identity. The decline of
the DSPAC was observed at the 45% sequence identity
threshold. The set of sequences corresponding to the
threshold of less than 50% includes the α-lactalbumin
sequences. Thus, the DSPAC was successfully able to
distinguish the sequence set including only C-type
lysozyme from that including both C-type lysozyme
and α-lactalbumin. When the set of sequences including
α-lactalbumin was used for the prediction, the prediction
accuracy was lower than that with the set of sequences
with the maximum DSPAC.
In the analysis of ACE2, the maximum DSPAC was

observed at 40% sequence identity. The declines of the
DSPAC and F-score for the prediction of ACE2 were
observed at a 35% sequence identity threshold (Figure 6).
These declines coincide with the inclusion of the ACE2
homologue with different substrate specificity, dipeptidyl
carboxypeptidase, in the sequence set. No dipeptidyl car-
boxypeptidase sequence was included in any sets of
sequences, in which the percent sequence identity
threshold from the human ACE2 sequence was larger
than or equal to 40%. Accordingly, the DSPAC was suc-
cessfully able to distinguish the set including only ACE2
sequences from that including both ACE2 and dipeptidyl
carboxypeptidase. Human ACE2 and its homologue, E.
coli dipeptidyl carboxypeptidase (1y79 chain 1), share
the cavity for the catalytic reaction at the corresponding
structural position. However, the catalytic sites of ACE2
(1o8a A: 353, 354, 384, 513, 523, 1y79 A: 498, 614) res-
ide in different locations in the cavity from those of the
dipeptidyl carboxypeptidase, and the locations of the
catalytic sites do not overlap.

Comparison with other methods
As described in the Introduction, there are two other
methods to address the problem of selecting appropriate
homologous sequences for functional region prediction.
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However, it was difficult to compare the performances
of the methods, since the methods used to evaluate the
performances are different not only from each other, but
also from the method adopted in this study. Here, we
describe the similarities and differences among the
methods.
In the method reported by Aloy et al. [8], the pre-

diction is made based on the iterative evaluation of
the clustering of the conserved residues on the tertiary
structure. In this meaning, their approach is similar to
ours. The major difference between their method and
ours resides in the selection of the sequence set for
the functional region prediction. In their method, the
initial MSA consists of divergent sequences. If no
spatial clustering of conserved residues is identified,
then the distant homologues to the target protein are
removed. The construction of the MSA and the identifica-
tion of conserved residues are iterated until the cluster of
conserved residues is identified. In contrast, our method
constructs 18 sequence sets with different percent se-
quence identity thresholds. The DSPACs of all the sets are
calculated, and the set with the maximum DSPAC is
selected for the functional region prediction.
Mihalek et al. [12,17] used an index called the “residue

clustering measure” to evaluate the appropriateness of
an MSA for functional surface prediction. The purpose
of their work was to select an appropriate subset of
sequences from a curated set of homologous sequences
in the HSSP (homology-derived secondary structure of
proteins) database [41]. At first, each residue is ranked
with the rvET score in ascending order of the residue
importance [12,17]. After the residues are ranked, they
calculated a value for a selection function, Sc, which
assigns 1 if residue i belongs to the top fraction c of all
residues in the protein. Using Sc, they defined the clus-
tering weight, wc. This score is designed to have a large
value when the number of conserved residues, which are
not adjacent in the primary structure but are close in
the tertiary structure, is large. Then, the integral of the
z-score of wc over the sequence length is calculated. Fi-
nally, Aclustering is calculated by dividing the integral by
the sequence length. The sequence sets generated by
selecting various nodes on a phylogenetic tree, based on
the Metropolis Monte Carlo simulation, are evaluated by
using Aclustering as the optimization score. Our approach
is different from their method [12,17], although both
strategies consider the importance of the structural in-
formation of proteins as a guide to select the sequences
for an MSA. In Mihalek’s method, the set of sequences
is generated by the Monte Carlo method. In our method,
only 18 sequence sets were generated, by shifting the
percent sequence identity threshold. This could be the
advantage of our method, as compared to Mihalek’s
method. However, the percent sequence identity is not
always a good index to estimate the functional differ-
ences. Therefore, even if the DSPAC is adequate for the
evaluation of the set of sequences, the appropriate set
might not be included in the candidate sets. The pos-
sible improvements and extensions of our method
regarding this disadvantage will be described in the
Concluding remarks. As described above, Mihalek et al.
utilized the rvET-based score, Aclustering, which is calcu-
lated by iterating the wc calculation while shifting the
fraction c. In contrast, our method used DSPAC, which
is simply calculated as the correlation coefficient of a
Moran scatterplot about the conservation scores. This
could be another advantage of our method. These two
advantages would make it possible to search through
the vast sequence space quickly. Our method would be
especially useful with enormous amounts of sequence
information.

Conclusions
We have developed a novel index to select the sequences
appropriate for the evaluation of residue conservation,
and implemented the index within our method to pre-
dict the functional regions of a protein. The implemen-
tation of the index improved the performance of the
functional region prediction. The index represents the
degree of clustering of conserved residues on the tertiary
structure of the protein. For this purpose, structure and
sequence information were integrated within the index
by the application of spatial statistics. The benefits and
the pitfalls of the new method were discussed, based on
the results of the applications. Finally, we would like to
conclude by describing possible improvements and
extensions of our method.
As described in the Introduction, Mihalek et al.

[12,17] used an index called the “residue clustering
measure” to evaluate the appropriateness of an MSA for
functional surface prediction. We addressed a similar
problem by a different approach. However, we could not
compare the performance of our method and that of
their method, since they did not report any evaluation
scores used in this study, and their method is not avail-
able through the Internet. Hence, we will extend our
method by introducing the strength of their method. As
mentioned in the Methods, in our current study, the ap-
propriate sequence set is selected from some candidate
sequence sets. Each candidate is constructed by collect-
ing the sequences with percent sequence identities from
the query that are larger than or equal to a certain
threshold. In contrast, in the method by Mihalek et al., a
candidate sequence set is constructed by combining
some sequence clusters on a phylogenetic tree of the tar-
get protein and its homologues. The construction of
candidate sets by considering the topology of a phylo-
genetic tree could improve the performance of the



Nemoto and Toh BMC Structural Biology 2012, 12:11 Page 17 of 18
http://www.biomedcentral.com/1472-6807/12/11
appropriate sequence selection by the DSPAC-based se-
quence selection.
The second point is the extension of DSPAC to the

template selection in homology modeling, by the appli-
cation of the DSPAC-based sequence selection. The
main purpose of structure modeling is to investigate mo-
lecular function. In recent years, the number of struc-
tures in the PDB has grown rapidly [42], which increases
the chance of enhancing the accuracy of homology-
based modeling by selecting the proper template struc-
ture. Homology modeling is applied to a sequence when
its crystal structure is not available yet. It would be bet-
ter to use the structure of a protein with a function con-
sidered to be the same as or similar to the amino acid
sequence under consideration as a template. However,
the structures retrieved by sequence similarity search
and fold recognition programs do not always have the
same or similar function as that of the target sequence,
because such programs do not directly evaluate the
functional similarity between the target sequence and a
certain structure. Here, we consider the inverse problem.
Suppose that we have a structure. The problem is to de-
termine which homologous sequences can be modeled
with the given structure as the template. A simple se-
quence similarity search may not provide an answer to
the problem, since the functional similarity to the
structure-known protein is not considered in the se-
quence similarity search. The DSPAC-based approach
can be used to solve the problem, since the sequence set
constructed by the maximum DSPAC criterion shares
the same or similar biochemical functions.
The third point is the application of DSPAC-based se-

quence selection to the proteins with other types of
functions. In this work, the performance of our method
was evaluated by the application to monomeric enzymes.
Therefore, we cannot tell if DSPAC-based sequence se-
lection works for the proteins with other types of func-
tions, for example, protein-protein interaction interface,
etc. However, in fact, Mihalek et al. demonstrated that
the performance of their method for protein-protein
interaction interfaces was lower than that for active sites.
The same might be true for our method. In such a case,
we will improve our method to analyze proteins with
different types of functions.
Spatial statistics has been used in population biology,

in fields such as ecology and epidemiology. This work is
the first application of spatial statistics to molecular biol-
ogy. In this study, we applied the method to protein
structure. The applicability of spatial statistics is not
restricted to the protein structure data. The techniques
of spatial statistics would be useful for the analyses of
other molecular and cellular systems with spatial struc-
tures. Spatial statistics will thus be a promising tool for
various fields in bioinformatics.
Additional files

Additional file 1: Figure SA. The average and median sensitivities of
the functional region predictions generated by 18 different criteria for
sequence selection. The horizontal axis represents the sequence selection
methods, DSPAC-based method, SDPfox, and Naïve approaches, with 16
different percent sequence identity thresholds. The red open rectangles
with error bars indicate the averaged sensitivities of the predictions when
LMIC was used to detect the cluster of conserved residues. The negative
part of the error bar, which would extend into the region of negative
sensitivity, is not drawn, since the sensitivity has a positive value by
definition. The light green open triangles indicate the medians of the
predictions when LMIC was used to detect the cluster of conserved
residues. The blue crosses with error bars indicate the averaged
sensitivities of the predictions when PatchFinder was used to detect the
cluster of conserved residues. The purple asterisks indicate the median
sensitivities of the predictions when PatchFinder was used to detect the
cluster of conserved residues.

Additional file 2: Figure SB. The average and median specificities of
the functional region predictions generated by 18 different criteria for
sequence selection. The horizontal axis represents the sequence selection
methods, DSPAC-based method, SDPfox, and Naïve approaches, with 16
different percent sequence identity thresholds. The red open rectangles
with error bars indicate the averaged specificities of the predictions when
LMIC was used to detect the cluster of conserved residues. The negative
part of the error bar, which would extend into the region of negative
specificity, is not drawn, since the specificity has a positive value by
definition. The light green open triangles indicate the medians of the
predictions when LMIC was used to detect the cluster of conserved
residues. The blue crosses with error bars indicate the averaged
specificities of the predictions when PatchFinder was used to detect the
cluster of conserved residues. The purple asterisks indicate the median
specificities of the predictions when PatchFinder was used to detect the
cluster of conserved residues.

Additional file 3: Figure SC. The average and median selectivities of
the functional region predictions generated by 18 different criteria for
sequence selection. The horizontal axis represents the sequence selection
methods, DSPAC-based method, SDPfox, and Naïve approaches, with 16
different percent sequence identity thresholds. The red open rectangles
with error bars indicate the averaged selectivities of the predictions when
LMIC was used to detect the cluster of conserved residues. The negative
part of the error bar, which would extend into the region of negative
selectivity, is not drawn, since the selectivity has a positive value by
definition. The light green open triangles indicate the medians of the
predictions when LMIC was used to detect the cluster of conserved
residues. The blue crosses with error bars indicate the averaged
selectivities of the predictions when PatchFinder was used to detect the
cluster of conserved residues. The purple asterisks indicate the median
selectivities of the predictions when PatchFinder was used to detect the
cluster of conserved residues.

Additional file 4: Figure SD. The distribution of the adopted percent
sequence identity thresholds by DSPAC-based sequence selection. The
horizontal axis represents the percent sequence identity threshold. The
vertical axis represents the percentage of the target proteins with the
maximum DSPAC adopted at the percent sequence identity threshold.
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