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Abstract

Background: Protein model quality assessment is an essential component of generating and using protein structural
models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed
and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM-
CONSTRUCT) that predicted both local and global quality of protein structural models.

Results: MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between
models to measure the global quality and the average Euclidean distance between a model and several top ranked
models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector
machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM-
CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average
similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise
model assessment methods worked better when a large portion of models in the pool were of good quality, whereas
single-model quality assessment methods performed better on some hard targets when only a small portion of models
in the pool were of reasonable quality.

Conclusions: Since digging out a few good models from a large pool of low-quality models is a major challenge in
protein structure prediction, single model quality assessment methods appear to be poised to make important
contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores
could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy.

Keywords: Protein model quality assessment, Protein model quality assurance program, Protein structure prediction,
Support vector machine, Clustering
Background
Predicting protein tertiary structure from amino acid se-
quence is of great importance in bioinformatics and
computational biology [1,2]. During the last few decades,
a lot of protein tertiary structure prediction methods
have been developed. One category of methods adopts a
template-based approach [3-7], which uses experimentally
determined structures as templates to build structural
models for a target protein without known structure. An-
other category uses a template-free approach [8,9], which
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tries to fold a protein from scratch without using known
template structures. The two kinds of methods were often
combined to handle a full spectrum of protein structure
prediction problems ranging from relatively easy hom-
ology modeling to hard de novo prediction [10-13].
During protein structure prediction, one important

task is to assess the quality of structural models pro-
duced by protein structure prediction methods. A model
quality assessment (QA) method employed in a protein
structure prediction pipeline is critical for ranking, refin-
ing, and selecting models [3]. A model quality assess-
ment method can generally predict a global quality score
measuring the overall quality of a protein structure
model and a series of local quality scores measuring
the local quality of each residue in the model. A global
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quality score can be a global distance test (GDT-TS)
score [14-16] that is predicted to be the structural simi-
larity between a model and the unknown native struc-
ture of a protein. A local quality score of a residue can
be the Euclidean distance between the position of the
residue in a model and that in the unknown native
structure after they are superimposed.
In general, protein model quality assessment methods

can be classified into two categories: multi-model
methods [17-21] and single-model methods [13-17].
Multi-model methods largely use a consensus or cluster-
ing approach to compare one model with other models
in a pool of input models to assess its quality. Generally,
a model with a higher similarity with the rest of models
in the pool receives a higher global quality score. The
methods tend to work well when a large portion of
models in the input pool are of good quality, which is
often the case for easy to medium hard template-based
modeling. Multi-model methods tend to work particularly
well if a large portion of good models were independently
generated by a number of independent, diverse protein
structure prediction methods as seen in the CASP (the
Critical Assessment of Techniques for Protein Structure
Prediction) experiments, but they worked less well when
being applied to the models generated by one single pro-
tein structure prediction method because they prefer the
average model of the largest model cluster in the model
pool. And multi-model methods tend to completely fail if
a significant portion of low quality modes are similar to
each other and thus dominate the pairwise model com-
parison as seen in some cases during the 10th CASP ex-
periment (CASP10) held in 2012. Single-model methods
strive to predict the quality of a single protein model with-
out consulting any other models [22-26]. The perform-
ance of single-model methods is still lagging behind the
multi-model methods in most cases when most models in
the pool are of good quality [23,27]. However, because of
their capability of assessing the quality of one individual
model, they have potential to address one big challenge in
protein structure modeling – selecting a model of good
quality from a large pool consisting of mostly irrelevant
models. Furthermore, as the performance of multi-model
quality assessment methods start to converge, single-
model methods appear to have a large room of improve-
ment as demonstrated in the CASP10 experiment.
In order to critically evaluate the performance of

multi-model and single-model protein model quality as-
sessment methods, the CASP10 experiment was de-
signed to assess them in two stages. On Stage 1, 20
models of each target spanning a wide range of quality
were used to assess the sensitivity of quality assessment
methods with respect to the size of input model pool
and the quality of input models. On Stage 2, about top
150 models selected by a naïve consensus model quality
assessment method were used to benchmark model
quality assessment methods’ capability of distinguishing
relatively small differences between more similar models.
The new settings provided us a good opportunity to assess
the strength and weakness of our multi-model and single-
model protein model quality assessment methods in terms
of accuracy, robustness, consistency and efficiency in
order to identify the gaps for further improvement.
In addition to evaluating our four servers on the

CASP10 benchmark, we compare our methods with three
popular multi-model clustering-based methods (Davis-
QAconsensus [28], Pcons [29], and ModFOLDclust2 [21]).
Our clustering-based methods (MULTICOM-REFINE,
MULTICOM-CONSTRUCT) performed comparably to
the three external tools in most cases. Our single-model
methods (MULTICOM-CLUSTER, MULTICOM-NOVEL)
had a lower accuracy than the clustering-based methods,
but performed considerably better than them on the
models of hard template-free targets. Besides the reason-
able performance and a comprehensive comparative
study, our methods have some methodological innova-
tions such as using single-model quality scores to weight
models for clustering methods, repacking side chains
before model evaluation, and improved machine learning
methods for single-model quality assessment for template-
free targets.
The rest of the paper is organized as follows. In the

Results and discussions section, we analyze and discuss
the performance of the methods on the CASP10 bench-
mark. In the Conclusion section, we summarize this work
and conclude it with the directions of future work. In the
Methods section, we introduce the methods in our protein
model quality assessment servers tested in CASP10.

Results and discussions
Results of global quality predictions
We evaluated the global quality predictions using five
measures (see the detailed descriptions of the evaluation
methods in the Evaluation methods section). The results
of the global quality evaluation on Stage 1 of CASP10
are shown in Table 1. The weighted pairwise model
comparison method MULTICOM-CONSTRUCT per-
formed best among all our four servers according to all
the five measures, suggesting using single-model quality
prediction scores as weights can improve the multi-
model pairwise comparison based quality prediction
methods such as MULTICOM-REFINE. The two multi-
model global quality assessment methods had the better
average performance than the two single-model global
quality assessment methods (MULTICOM-NOVEL and
MULTICOM-CLUSTER) on average on Stage 1, suggest-
ing that the advantage of multi-model methods over
single-model methods was not much affected by the
relatively small size of input models (i.e. 20). Instead, the



Table 1 The average correlation (Ave. Corr.), overall correlation (Over. Corr.), average GDT-TS loss (Ave. Loss),
average Spearman’s correlation (Ave. Spearman), average Kendall tau correlation (Ave. Kendall) of MULTICOM
servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on Stage 1 of CASP10

Servers Ave. corr. Over. corr. Ave. loss Ave. Spearman Ave. Kendall

MULTICOM-REFINE 0.6494 0.8162 0.0615 0.5989 0.4908

MULTICOM-CLUSTER 0.5144 0.5946 0.0727 0.4364 0.3273

MULTICOM-NOVEL 0.5016 0.4848 0.0791 0.4483 0.3380

MULTICOM-CONSTRUCT 0.6838 0.8300 0.0613 0.6182 0.5043

DAVIS-QAconsensus 0.6403 0.7927 0.0537 0.5798 0.4745

Pcons 0.7501 0.7683 0.0327 0.6781 0.5457

ModFOLDclust2 0.6775 0.8301 0.0572 0.6206 0.5064
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multi-model methods still work reasonably well on a
small model pool that contains a significant portion of
good quality models. It is worth noting that the average
loss of the two single-model quality assessment methods
(MULTICOM-CLUSTER and MULTICOM-NOVEL) is
close to that of the two multi-model quality assessment
methods (MULTICOM-REFINE and MULTICOM-
CONSTRUCT) (i.e. +0.07 versus +0.06). We also com-
pared our methods with three popular multi-model
clustering-based methods (DAVIS-QAconsensus, Pcons,
and ModFOLDclust2) on Stage 1. According to the evalu-
ation, MULTICOM-CONSTRUCT performed slightly
better than the naive consensus method DAVIS-
QAconsensus and ModFOLDclust2, while Pcons per-
formed best.
Table 2 shows the global quality evaluation results

on Stage 2. Similarly as in Table 1, the weighted pair-
wise comparison multi-model method (MULTICOM-
CONSTRUCT) performed better than the simple
pairwise multi-model method (MULTICOM-REFINE)
and both had better performance than the two single-
model quality assessment methods (MULTICOM-
CONSTRUCT and MULTICOM-NOVEL). That the two
single-model quality prediction methods yielded the simi-
lar performance indicated that some difference in their in-
put features (amino acid sequence versus sequence
profile) did not significant affect their accuracy. In com-
parison with Stage 1, all our methods performed worse on
Table 2 The average correlation, overall correlation, average
Kendall tau correlation of MULTICOM servers, DAVIS-QAcons

Servers Ave. corr. Over. corr.

MULTICOM-REFINE 0.4743 0.8252

MULTICOM-CLUSTER 0.3354 0.6078

MULTICOM-NOVEL 0.3350 0.5057

MULTICOM-CONSTRUCT 0.4853 0.8272

DAVIS-QAconsensus 0.5050 0.8383

Pcons 0.4891 0.8194

ModFOLDclust2 0.4489 0.8337
Stage 2 models. Since the models in Stage 2 are more
similar to each other than in Stage 1 in most cases, the re-
sults may suggest that both multi-model and single-model
quality assessment methods face difficulty in accurately
distinguishing models of similar quality. On Stage 2
models, MULTICOM-CONSTRUCT delivered a perform-
ance similar with DAVIS-QAconsensus and Pcons, and
had a higher average correlation than ModFOLDclust2.
We used the Wilcoxon signed ranked sum test to as-

sess the significance of the difference in the performance
of our four servers, DAVIS-QAconsensus, Pcons, and
ModFOLDclust2. The p-values of the difference between
these servers are reported in Table 3. On Stage 1 models,
according to 0.01 significant threshold, the difference be-
tween clustering-based methods (MULTICOM-REFINE
and MULTICOM-CONSTRUCT) and single-model
methods (MULTICOM-CLUSTER and MULTICOM-
NOVEL) is significant, but the difference between our
methods in the same category is not significant. One
Stage 2 models, the difference between all pairs of our
servers except the two single-model methods is sig-
nificant. Compared with the three external methods
(DAVIS-QAconsensus, Pcons, and ModFOLDclust2), the
difference between our multi-model method MULTICOM-
REFINE and the three methods is not significant, while
the difference between our single-model methods
(MULTICOM-CLUSTER, MULTICOM-NOVEL) and the
three methods is significant. The difference between
GDT-TS loss, average Spearman’s correlation, average
ensus, Pcons, and ModFOLDclust2 on Stage 2 of CASP10

Ave. loss Ave. Spearman Ave. Kendall

0.0511 0.4763 0.3510

0.0675 0.3361 0.2343

0.0654 0.3394 0.2358

0.0510 0.4824 0.3566

0.0499 0.5031 0.3686

0.0416 0.4843 0.3524

0.0470 0.4621 0.3393



Table 3 The p-value of pairwise Wilcoxon signed ranked
sum test for the difference of correlation score between
MULTICOM servers and three external methods (DAVIS-
QAconsensus, Pcons, ModFOLDclust2) on Stage 1 and
Stage 2 of CASP10

MULTICOM servers, DAVIS-QAconsensus, Pcons, and
ModFOLDclust2 on Stage 1 or Stage 2

P-value

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage 1 7.552e-05

MULTICOM-REFINE and MULTICOM-NOVEL on Stage 1 3.280e-05

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage 1 0.031

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage 1 0.201

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage 1 3.757e-06

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage 1 7.013e-07

MULTICOM-REFINE and Pcons on Stage 1 0.1723

MULTICOM-REFINE and ModFOLDclust2 on Stage 1 0.578

MULTICOM-REFINE and DAVIS-QAconsensus on Stage 1 0.6238

MULTICOM-CLUSTER and Pcons on Stage 1 2.872e-08

MULTICOM-CLUSTER and ModFOLDclust2 on Stage 1 5.517e-05

MULTICOM-CLUSTER and DAVIS-QAconsensus on Stage 1 0.002873

MULTICOM-NOVEL and Pcons on Stage 1 5.65e-09

MULTICOM-NOVEL and ModFOLDclust2 on Stage 1 2.116e-05

MULTICOM-NOVEL and DAVIS-QAconsensus on Stage 1 0.002066

MULTICOM-CONSTRUCT and Pcons on Stage 1 0.7492

MULTICOM-CONSTRUCT and ModFOLDclust2 on Stage 1 0.01223

MULTICOM-CONSTRUCT and DAVIS-QAconsensus on Stage 1 0.0002211

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage 2 4.133e-05

MULTICOM-REFINE and MULTICOM-NOVEL on Stage 2 3.180e-05

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage 2 2.439e-05

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage 2 0.658

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage 2 7.75e-06

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage 2 5.276e-06

MULTICOM-REFINE and Pcons on Stage 2 0.2465

MULTICOM-REFINE and ModFOLDclust2 on Stage 2 0.08742

MULTICOM-REFINE and DAVIS-QAconsensus on Stage 2 0.4976

MULTICOM-CLUSTER and Pcons on Stage 2 1.114e-05

MULTICOM-CLUSTER and ModFOLDclust2 on Stage 2 0.001202

MULTICOM-CLUSTER and DAVIS-QAconsensus on Stage 2 7.495e-06

MULTICOM-NOVEL and Pcons on Stage 2 1.073e-05

MULTICOM-NOVEL and ModFOLDclust2 on Stage 2 0.001128

MULTICOM-NOVEL and DAVIS-QAconsensus on Stage 2 5.717e-06

MULTICOM-CONSTRUCT and Pcons on Stage 2 0.9807

MULTICOM-CONSTRUCT and ModFOLDclust2 on Stage 2 0.003362

MULTICOM-CONSTRUCT and DAVIS-QAconsensus on Stage 2 9.597e-05
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MULTICOM-CONSTRUCT and Pcons is not significant,
while the difference between MULTICOM-CONSTRUCT
and the other two external methods (DAVIS-QAconsen-
sus and ModFOLDclust2) is significant.
To elucidate the key factors that affect the accuracy of
multi-model or single-model quality assessment methods,
we plot the per-target correlation scores of each target on
Stage 2 against the ratio of the average real quality of the
largest model cluster in the pool and the average real qual-
ity of all the models in the pool in Figure 1. To get the lar-
gest model cluster for each target, we first calculate the
GDT-TS score between each pair of models, and then use
(1 – the GDT-TS score) as the distance measure to hier-
archically cluster the models. Finally, we use a distance
threshold to cut the hierarchical tree to get the largest
cluster so that the total number of models in the largest
cluster is about one third of the total number of models in
the pool.
Figure 1 shows that the quality prediction accuracy (i.e.

per-target correlation scores of each target) positively cor-
relates with the average real quality of the largest model
cluster divided by the average real quality of all models
for two multi-model methods (MULTICOM-REFINE,
MULTICOM-CONSTRUCT), whereas it has almost no
correlation with single-model methods (MULTICOM-
CLUSTER, MULTICOM-NOVEL). The results suggest
that the performance of clustering-based multi-model
methods depends on the relative real quality of the large
cluster of models and that of single-model methods does
not. This is not surprising because multi-model methods
rely on pairwise model comparison, but single-model
methods try to assess the quality from one model.
As CASP10 models were generated by many different

predictors from around of the world, the side chains of
these models may be packed by different modeling tools.
The difference in side chain packing may result in differ-
ence in input features (e.g. secondary structures) that
affect the quality prediction results of single-model
methods even though they only try to predict the quality
of backbone of a model. In order to remove the side-
chain bias, we also tried to use the tool SCWRL [30] to
rebuild the side chains of all models before applying a
single-model quality prediction method - ModelEvalua-
tor. Figure 2 compares the average correlation and loss
of the predictions with or without side-chain repacking.
Indeed, repacking side-chains before applying single-
model quality assessment increased the average correl-
ation and reduced the loss. We did a Wilcoxon signed
ranked sum test on the correlations and losses of the
predictions before and after repacking side-chains. The p-
value for average correlation before and after repacking
side-chains on Stage 1 is 0.18, and on Stage 2 is 0.02. The
p-value for loss on Stage 1 is 0.42, and on Stage 2 is 0.38.
Since mining a few good models out of a large pool of

low-quality models is one of the major challenges in
protein structure prediction, we compare the perform-
ance of single-model methods and multi-model methods
on the models of several hard CASP10 template-free



Figure 1 The per-target correlation scores of each target against the average real quality of the largest model cluster divided by the
average real quality of all models of this target on Stage 2.
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targets. Tables 4 and 5 report the evaluation results of
our four servers, DAVIS-QAconsensus, Pcons, and
ModFOLDclust2 on all standalone template-free model-
ing (FM) targets on Stages 1 and 2, i.e. the targets whose
domains are all FM domains. The results show that the
single-model methods (MULTICOM-CLUSTER and
MULTICOM-NOVEL) clearly performed better than
the multi-model methods (MULTICOM-REFINE and
MULTICOM-CONSTRUCT) on both stages. They also
performed better than the DAVIS-QAconsensus and
ModFOLDclust2 on both stages, achieved the similar per-
formance with Pcons on Stage 1, and the better perform-
ance than Pcons on Stage 2. For instance, the average
Pearson’s correlation score of MULTICOM-NOVEL on
Stage 1 is 0.539, which is much higher than 0.082 of
MULTICOM-REFINE. The multi-model methods even
get low negative correlation for some targets. For example,
the Pearson’s correlation score of MULTICOM-REFINE
on target T0741 at Stage 1 is −0.615. We use the tool
TreeView [31] to visualize the hierarchical clustering of the
models of T0741 in Figure 3. The qualities of the models
in the largest cluster are among the lowest, but they are
similar to each other leading to high predicted quality
scores when being assessed by multi-model methods. The
example indicates that multi-model methods often com-
pletely fail (i.e. yielding negative correlation) when the
models in the largest cluster are of worse quality, but simi-
lar to each other. Multi-model methods often perform



Figure 2 The influence of side chain on average correlation and loss of both Stage 1 and Stage 2. A shows the average correlation of the
predictions with or without side-chain repacking, and B demonstrates the loss of the predictions with or without side-chain repacking on both
Stage 1 and Stage 2. The tool SCWRL [30] is used for the side-chain repacking.
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worse than single-model methods when all models in pool
are of low quality and are different from each other. In this
situation, the quality scores predicted by multi-model
methods often do not correlate with the real quality scores,
whereas those predicted by single-model methods still
positively correlate with real quality scores to some degree.
As an example, Figure 4 plots the real GDT-TS scores and
predicted GDT-TS scores of a single-model predictor
MULTICOM-NOVEL and a multi-model predictor
MULTICOM-REFINE on the models of a hard target
T0684 whose best model has quality score less than 0.2. It
is worth noting that, since the quality of the models of the
template-free modeling targets is rather low on average,
the quality assessment on these models can be more arbi-
trary than on the template-based models of better quality.
Table 4 Pearson correlation of the FM (template-free modelin

Targets MULTICOM-NOVEL MULTICOM-CLUSTER MULTICOM-CONS

T0666 0.570 0.454 0.138

T0735 0.725 0.704 0.414

T0734 0.522 0.544 0.152

T0737 0.878 0.878 0.221

T0740 0.558 0.512 0.710

T0741 −0.020 0.214 −0.659

Average 0.539 0.551 0.163
Therefore, more cautions must be put into the interpret-
ation of the evaluation results.
Based on the per-target correlation between predicted

and observed model quality scores of the official model
quality assessment results [28], the MULTICOM-
CONSTRUCT was ranked 5th on Stage 2 models of
CASP10 among all CASP10 model quality assessment
methods. The performance of MULTICOM-CONSTRUCT
was slightly better than the DAVIS-QAconsensus (the
naïve consensus method that calculates the quality score
of a model as the average structural similarity (GDT-TS
score) between the model and other models in the
pool) on Stage 2, which was ranked at 10th. The
methods MULTICOM-REFINE, MULTICOM-NOVEL,
and MULTICOM-CLUSTER were ranked at 11th, 28th,
g) targets on Stage 1 of CASP10

TRUCT MULTICOM-REFINE DAVIS-QA
consensus

Pcons ModFOLDclust2

0.272 0.274 0.346 0.538

0.083 0.086 0.667 0.030

−0.099 −0.096 0.509 −0.014

0.118 0.124 0.565 0.421

0.732 0.726 0.684 0.770

−0.615 −0.611 0.475 −0.674

0.082 0.084 0.541 0.179



Table 5 Pearson correlation of all FM (template-free modeling) targets on Stage 2 of CASP10

Targets MULTICOM-NOVEL MULTICOM-CLUSTER MULTICOM-CONSTRUCT MULTICOM-REFINE DAVIS-QA
consensus

Pcons ModFOLDclust2

T0666 0.213 0.206 0.490 0.499 0.492 0.338 0.520

T0735 0.466 0.433 0.261 0.159 0.150 0.238 −0.070

T0734 0.459 0.44 −0.134 −0.342 −0.334 0.199 −0.363

T0737 0.787 0.806 0.200 0.155 0.147 0.583 0.525

T0740 0.490 0.451 0.487 0.412 0.411 0.434 0.478

T0741 −0.079 0.022 −0.444 −0.397 −0.397 0.125 −0.382

Average 0.389 0.393 0.143 0.081 0.078 0.320 0.118
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and 29th, respectively. However, it was not surprising
that the single-model methods such as MULTICOM-
NOVEL and MULTICOM-CLUSTER were ranked lower
than most clustering-based methods because the latter
tended to work better on most CASP template-based
targets with good-quality predicted models. But, among
all single-model methods, MULTICOM-NOVEL and
MULTICOM-CLUSTER were ranked at 3th and 4th.

Results of local quality
Table 6 shows the performance of local quality assess-
ment of our four local quality assessment servers,
Figure 3 The hierarchy tree of T0741 on Stage 1. All models in the circ
Figure 3 lists the real GDT-TS score of each model. The models in the circle
score is the best model in this target.
DAVIS-QAconsensus, Pcons, and ModFOLDclust2 on
both Stage 1 and Stage 2. Among our four servers, the
multi-model methods performed better than single-
model methods on average for all the targets. We used
the pairwise Wilcoxon signed ranked sum test to assess
the significance of the difference between our four
servers and the three external methods (Table 7). Generally
speaking, the difference between multi-model local quality
methods (MULTICOM-REFINE, DAVIS-QAconsensus,
Pcons, and ModFOLDclust2) and single-model local
quality methods (MULTICOM-NOVEL, MULTICOM-
CLUSTER, MULTICOM-CONSTRUCT) on both stages
le form the largest cluster in this target. The rightmost column of
form the largest cluster. The model with the underline real GDT-TS



Figure 4 The real GDT-TS score and predicted GDT-TS score of MULTICOM-REFINE and MULTICOM-NOVEL for T0684 on Stage 1 and
Stage 2.
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is significant. The difference between MULTICOM-
REFINE and Pcons is not significant on both stages ac-
cording to a 0.01 threshold.
However, the single-model local quality prediction

methods (MULTICOM-NOVEL, MULTICOM-CLUSTER,
MULTICOM-CONSTRUCT) and the multi-model local
quality prediction method (MULTICOM-REFINE) per-
formed not very differently on FM targets as shown
in Tables 8 and 9. This is not surprising because multi-
model methods cannot select real good models as refer-
ence methods for evaluating the local quality of residues.
According to the CASP official evaluation [28],

MULTICOM-REFINE performs best among all of our
four servers for the local quality assessment on both
Stage 1 and Stage 2 models of CASP10. Compared with
DAVIS-QAconsensus, Pcons, and ModFOLDclust2, the
multi-model local quality prediction method MULTICON-
REFINE performed best on Stage 1, achieved the similar
Table 6 Evaluation result of local quality score of four
MULTICOM servers, DAVIS-QAconsensus, Pcons, and
ModFOLDclust2 on Stage 1 and Stage 2 of CASP10

Servers Ave. corr. on
Stage 1

Ave. corr. on
Stage 2

MULTICOM-REFINE 0.6102 0.6251

MULTICOM-CLUSTER 0.2604 0.2956

MULTICOM-NOVEL 0.2882 0.3289

MULTICOM-CONSTRUCT 0.2889 0.3095

DAVIS-QAconsensus 0.5841 0.6633

Pcons 0.5793 0.6226

ModFOLDclust2 0.5997 0.6526
performance with Pcons on Stage 2, but performed
worse than DAVIS-QAconsensus and ModFOLDclust2
on Stage 2.

Conclusion
In this work, we rigorously benchmarked our multi-
model and single-model quality assessment methods
blindly tested in the Tenth Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP10). In
general, the performance of our multi-model quality pre-
diction methods (e.g., MULTICOM-REFINE) was com-
parable to the state-of-the-art multi-model quality
assessment methods in the literature. The multi-model
quality prediction methods performed better than the
single-model quality prediction methods (e.g., MULTICOM-
NOVEL, MULTICOM-CLUSTER), whereas the latter,
despite in its early stage of development, tended to work
better in assessing a small number of models of wide-
range quality usually associated with a hard target. Our
experiment demonstrated that the prediction accuracy of
multi-model quality assessment methods is largely influ-
enced by the proportion of good models in the pool or the
average quality of the largest model cluster in the pool.
The multi-model quality assessment methods performed
better than single-model methods on easy modeling tar-
gets whose model pool contains a large portion of good
models. However, they tend to fail on the models for hard
targets when the majority of models are of low-quality
and particularly when some low-quality models are similar
to each other severely dominating the calculation of pair-
wise model similarity. The problem can be somewhat
remedied by using single-model quality prediction scores
as weights in calculating the average similarity scores



Table 7 The P-value of pairwise Wilcoxon signed ranked
sum tests for the difference of correlation scores for local
model quality prediction methods (MULTICOM servers,
DAVIS-QAconsensus, Pcons, and ModFOLDclust2)

MULTICOM servers, DAVIS-QAconsensus, Pcons, and
ModFOLDclust2 and on Stage 1 or Stage 2

P-value

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage 1 2.220e-16

MULTICOM-REFINE and MULTICOM-NOVEL on Stage 1 6.661e-16

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage 1 6.661e-16

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage 1 0.0009948

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage 1 0.0008437

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage 1 0.1781

MULTICOM-REFINE and Pcons on Stage 1 0.01575

MULTICOM-REFINE and ModFOLDclust2 on Stage 1 0.2678

MULTICOM-REFINE and DAVIS-QAconsensus on Stage 1 0.00699

MULTICOM-CLUSTER and Pcons on Stage 1 2.2e-16

MULTICOM-CLUSTER and ModFOLDclust2 on Stage 1 2.553e-16

MULTICOM-CLUSTER and DAVIS-QAconsensus on Stage 1 2.442e-15

MULTICOM-NOVEL and Pcons on Stage 1 2.2e-16

MULTICOM-NOVEL and ModFOLDclust2 on Stage 1 3.046e-16

MULTICOM-NOVEL and DAVIS-QAconsensus on Stage 1 4.885e-15

MULTICOM-CONSTRUCT and Pcons on Stage 1 2.2e-16

MULTICOM-CONSTRUCT and ModFOLDclust2 on Stage 1 3.137e-16

MULTICOM-CONSTRUCT and DAVIS-QAconsensus on Stage 1 4.78e-15

MULTICOM-REFINE and MULTICOM-CLUSTER on Stage 2 2.269e-16

MULTICOM-REFINE and MULTICOM-NOVEL on Stage 2 6.661e-16

MULTICOM-REFINE and MULTICOM-CONSTRUCT on Stage 2 3.137e-16

MULTICOM-CLUSTER and MULTICOM-NOVEL on Stage 2 0.00327

MULTICOM-CLUSTER and MULTICOM-CONSTRUCT on Stage 2 0.5493

MULTICOM-NOVEL and MULTICOM-CONSTRUCT on Stage 2 1.029e-14

MULTICOM-REFINE and Pcons on Stage 2 0.2498

MULTICOM-REFINE and ModFOLDclust2 on Stage 2 0.0005575

MULTICOM-REFINE and DAVIS-QAconsensus on Stage 2 2.443e-06

MULTICOM-CLUSTER and Pcons on Stage 2 2.220e-16

MULTICOM-CLUSTER and ModFOLDclust2 on Stage 2 2.220e-16

MULTICOM-CLUSTER and DAVIS-QAconsensus on Stage 2 2.220e-16

MULTICOM-NOVEL and Pcons on Stage 2 4.441e-16

MULTICOM-NOVEL and ModFOLDclust2 on Stage 2 2.220e-16

MULTICOM-NOVEL and DAVIS-QAconsensus on Stage 2 2.220e-16

MULTICOM-CONSTRUCT and Pcons on Stage 2 4.089e-16

MULTICOM-CONSTRUCT and ModFOLDclust2 on Stage 2 2.2e-16

MULTICOM-CONSTRUCT and DAVIS-QAconsensus on Stage 2 2.2e-16
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between models. However, to completely address the
problem, more accurate single-model quality prediction
methods that can assess the quality of a single model need
to be developed. On one hand, more informative features
such as sequence conservation information, evolutionary
coupling information, torsion angle information, and stat-
istical contact potentials may be used to improve the dis-
criminative power of single-model methods; on the other
hand, new powerful machine learning and data mining
methods such as deep learning, random forests and outlier
detection methods may be developed to use existing qual-
ity features more effectively. Despite it may take years for
single-model methods to mature, we believe that im-
proved single-model quality prediction methods will play
a more and more important role in protein structure
prediction.

Methods
Protein model quality prediction methods
The methods used by the four automated protein model
quality assessment servers are briefly described as follows.
MULTICOM-REFINE is a multi-model quality assess-

ment method using a pairwise model comparison ap-
proach (APOLLO) [29] to generate global quality scores.
The 19 top models based on the global quality scores
and the top 1 model selected by SPICKER [32] formed a
top model set for local quality prediction. After superim-
posing a model with each model in the top model set, it
calculated the average absolute Euclidean distance be-
tween the position of each residue in the model and that
of its counterpart in each model in the top model set.
The average distance was used as the local quality of
each residue.
MULTICOM-CLUSTER is a single-model, support

vector machine (SVM)-based method initially imple-
mented in [24]. The input features to the SVM include a
window of amino acids encoded by a 20-digit vector of 0
and 1 centered on a target residue, the difference be-
tween secondary structure and solvent accessibility pre-
dicted by SCRATCH [33] from the protein sequence and
that of a model parsed by DSSP [34], and predicted con-
tact probabilities between the target residue and its
spatially neighboring residues. The SVM was trained to
predict the local quality score (i.e. the Euclidean distance
between its position in the model and that in the native
structure) of each residue. The predicted local quality
scores of all the residues was converted into the global
quality score of the model according to the formula [35]
as follows:

Global quality score ¼ 1
L

Xt

i¼1

1

1þ Si
T

� �2
 !

In the formula, L is the total number of residues, Si is
the local quality score of residue i, and T is a distance
threshold set to set to 5 Angstrom. Residues that did not
have a predicted local quality score were skipped in
averaging.



Table 8 Local quality score of four MULTICOM servers, DAVIS-QAconsensus, Pcons, and ModFOLDclust2 for all FM
(template-free modeling) targets on Stage 1 of CASP10

Targets MULTICOM-NOVEL MULTICOM-CLUSTER MULTICOM-CONSTRUCT MULTICOM-REFINE DAVIS-QA
consensus

Pcons ModFOLDclust2

T0666 0.261 0.216 0.262 0.261 0.195 0.303 0.164

T0735 0.118 0.083 0.122 0.366 0.190 0.214 0.224

T0734 0.025 0.105 0.025 0.402 0.302 0.166 0.232

T0737 0.554 0.664 0.551 0 0.186 0.704 0.122

T0740 0.242 0.196 0.243 0.442 0.368 0.377 0.407

T0741 0.078 −0.035 0.084 0.227 0.108 −0.072 0.136

Average 0.213 0.205 0.215 0.283 0.225 0.282 0.214
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MULTICOM-NOVEL is the same as MULTICOM-
CLUSTER except that amino acid sequence features
were replaced with the sequence profile features. The
multiple sequence alignment of a target protein used to
construct profiles was generated by PSI-BLAST [36].
MULTICOM-CONSTRUCT uses a new, weighted

pairwise model evaluation approach to predict global
quality. It uses ModelEvaluator [37] – an ab initio
single-model global quality prediction method – to pre-
dict a score for each model, and uses TM-score [35] to
get the GDT-TS score for each pair of models. The pre-
dicted global quality score of a model i is the weighted
average GDT-TS score between the model and other
models, calculated according to the formula: Si ¼XN

j¼1
Xi;j � WJXN

j¼1
Wj

0
@

1
A . In this formula, Si is the pre-

dicted global quality score for model i, N is the total
number of models, Xi,j is the GDT-TS score between
model i and model j, Wj is the score for model j pre-
dicted by ModelEvaluator, which is used to weight the
contribution of Xi,j to Si. In case that no score was predicted
for a model by ModelEvaluator, the weight of the model is
set to the average of all the scores predicted by ModelEva-
luator. The local quality prediction of MULTICOM-
CONSTRUCT is the same as MULTICOM-NOVEL
Table 9 Local quality score of four MULTICOM servers, DAVIS
(template-free modeling) targets on Stage 2 of CASP10

Servers MULTICOM-NOVEL MULTICOM-CLUSTER MULTICOM-CONS

T0666 0.244 0.226 0.227

T0735 0.125 0.122 0.127

T0734 0.129 0.151 0.122

T0737 0.426 0.578 0.419

T0740 0.268 0.197 0.257

T0741 0.105 −0.011 0.109

Average 0.216 0.211 0.210
except that additional SOV (segment overlap measure of
secondary structure) score features were used by the SVM
to generate the local quality score.

Evaluation methods
CASP10 used two-stage experiments to benchmark for
model quality assessment. Stage 1 had 20 models with
different qualities for each target, and Stage 2 had 150
top models for each target selected from all the models
by a naïve pairwise model quality assessment method.
We downloaded the native structures of 98 CASP10 tar-
gets, their structural models, and the quality predictions
of these models made by our four servers during the
CASP10 experiment running from May to August, 2012
from the CASP website (http://predictioncenter.org/
casp10/index.cgi).
We used TM-score [35] to calculate the real GDT-TS

scores between the native structures and the predicted
model as their real global quality scores. The predicted
global quality scores of our four servers were used to
compare with the real global quality scores. In order to
calculate real local quality scores of residues in a model,
we first used TM-score to superimpose the native struc-
ture and the model, and then calculate the Euclidean
distance between each residue’s coordinates in the super-
imposed native structure and the model as the real local
-QAconsensus, Pcons, and ModFOLDclust2 for all FM

TRUCT MULTICOM-REFINE DAVIS-QA
consensus

Pcons ModFOLDclust2

0.310 0.322 0.282 0.337

0.288 0.290 0.150 0.351

0.172 0.330 0.255 0.305

0 0.202 0.583 0

0.270 0.422 0.377 0.425

0.165 0.129 0.009 0.119

0.200 0.283 0.276 0.256

http://predictioncenter.org/casp10/index.cgi
http://predictioncenter.org/casp10/index.cgi
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quality score of the residue. The real local and global
quality scores of a model were compared with that pre-
dicted by the model quality assessment methods to
evaluate their prediction accuracy.
We evaluated the global quality of our predictions

from five aspects: the average of per-target Pearson cor-
relations, the overall Pearson’s correlation, average GDT-
TS loss, the average Spearman’s correlation, and the
average Kendall tau correlation. The average of per-
target Pearson’s correlations is calculated as the average
of all 98 targets’ Pearson correlations between predicted
and real global quality scores of their models. The over-
all Pearson’s correlation is the correlation between pre-
dicted and real global quality scores of all the models of
all the targets pooled together. The average GDT-TS loss
is the average difference between the GDT-TS scores of
the real top 1 model and the predicted top 1 model of
all targets, which measures how well a method ranks
good models at the top. The Spearman’s correlation is
the Pearson’s correlation of the ranked global quality
scores. In order to calculate the Spearman’s rank correl-
ation, we first convert the global quality scores into the
ranks. The identical values (rank ties or duplicate values)
are assigned a rank equal to the average of their positions
in the rank list. And then we calculate the Pearson’s cor-
relation between the predicted ranks and true ranks of the
models. The Kendall tau correlation is the probability of
concordance minus the probability of discordance. For
two vectors x and y with global quality scores of n models
of a target, the number of total possible model pairs for x

or y is N ¼ n� n−1ð Þ
2 . The number of concordance is the

number of pairs and (Xj,Yj) when (xi − xj) * (yi − yi) > 0, and
the number of discordance is the number of pairs Xi,Yi
and (Xj,Yj) when (xi − xj) * (yi − yi) < 0. The Kendall tau cor-
relation is equal to the number of concordance minus the
number of discordance divided by N. (http://en.wikipedia.
org/wiki/Kendall_tau_rank_correlation_coefficient).
The accuracy of local quality predictions was calcu-

lated as the average of the Pearson’s correlations be-
tween predicted local quality scores and real local
quality scores of all the models of all the targets. For
each model, we used TM-score to superimpose it with
the native structure, and then calculated the Euclidean
distance between Ca atom’s coordinates of each residue
in a superimposed model and the native structure as the
real local quality score of each residue. The Pearson’s
correlation between the real quality scores and the pre-
dicted ones of all the residues in each model was calcu-
lated. The average of the Pearson’s correlations of all the
models for all 98 targets was used to evaluate the per-
formance of the local quality prediction methods.
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