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Abstract

Background: An efficient building block for protein structure prediction can be tripeptides. 8000
different tripeptides from a dataset of 1220 high resolution (< 2.0°A) structures from the Protein
Data Bank (PDB) have been looked at, to determine which are structurally rigid and non-rigid. This
data has been statistically analyzed, discussed and summarized. The entire data can be utilized for
the building of protein structures.

Results: Tripeptides have been classified into three categories: rigid, non-rigid and intermediate,
based on the relative structural rigidity between C, and Cg atoms in a tripeptide. We found that
18% of the tripeptides in the dataset can be classified as rigid, 4% as non-rigid and 78% as
intermediate. Many rigid tripeptides are made of hydrophobic residues, however, there are
tripeptides with polar side chains forming rigid structures. The bulk of the tripeptides fall in the
intermediate class while very small numbers actually fall in the non-rigid class. Structurally all rigid
tripeptides essentially form two structural classes while the intermediate and non-rigid tripeptides
fall into one structural class. This notion of rigidity and non-rigidity is designed to capture side chain
interactions but not secondary structures.

Conclusions: Rigid tripeptides have no correlation with the secondary structures in proteins and
hence this work is complementary to such studies. Tripeptide data may be used to predict plausible
structures for oligopeptides and for denovo protein design.

Background planarity of the peptide bond. In this work we would like

The exact conformation of a tripeptide in a protein can be
determined from its side chain and hydrogen bond inter-
actions. The backbone conformation is captured in the
Ramachandran angles ¢, v [1]. The rotamer degrees of
freedom fixes the entire side chain. A fixed tripeptide oc-
curring in different proteins will have different side chain
interactions, which in turn determine the range of ¢, y an-
gles. These ranges are typically fairly wide and hence their
utility in protein structure prediction is limited. The use of
Ramachandran angles comes about from the well known

to complement this bias. We expect that Cg locations are
more directly constrained by the side chain interactions.
The data was therefore analyzed in terms of the C, and Cg
locations, without the bias of the planarity of the peptide
bond. For structure prediction, we need the side chain in-
teraction statistics in terms of C, and Cg locations. The
planarity of the peptide bonds can be imposed as a further
constraint.

Page 1 of 8

(page number not for citation purposes)


http://www.biomedcentral.com/1472-6807/2/9
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Structural Biology 2002, 2

http://www.biomedcentral.com/1472-6807/2/9

Cr
Coz
Caa Ces
Cp1 Cpa
Figure |
Tripeptide "R| Ry R3" with C;, and Cg positions
Table I: Sample of the Mean (M), Standard Deviation (SD) in Angstroms and Frequency (F).
R|R; distances
RiRyR;3 (al,02) (al,B2) Bl,02) (B1.B2)
M SD F M SD M SD F M SD F
AAA 3.80 0.02 292 4.82 0.10 291 4.50 0.10 291 5.37 0.18 291
AAC 3.80 0.03 37 4.8l 0.12 37 451 0.12 37 5.39 0.23 37
AAD 3.80 0.02 123 4.79 0.11 122 4.55 0.15 123 5.43 0.25 122
AAE 3.80 0.02 138 4.8l 0.11 138 4.50 0.10 138 5.38 0.21 138

Only the R|R; set for four tripeptides is shown here. Similar data for R|R,, R|R3and RyR; for 7964 tripeptides is available at http://www.au-

kbc.org/research_areas/bio/projects/protein/tri.html

In theory there are 8000 tripeptides and 160,000 tetrapep-
tides. With the dataset of about 1220 polypeptide chain
structures of high resolution (< 2°A), an analysis of
tripeptide study is feasible and a tetrapeptide study will be
statistically insignificant. In our representative protein
data set, for each tripeptide "R; R, R3" (Figure 1) we pick
the corresponding Cg;, Cg; i = 1,2,3 positions, and then
compute distances (ai,0j), (aiBj) and (Bi,Bj) for i not
equal to j. These 12 distances along with the covalent
bond length (ai,Bi) capture the entire solid structure of
the tripeptide as embedded in the protein. This informa-
tion is sufficient to fix a unique ¢, y value along with the
position of the Cg. The same " Ry R, R3" is picked up from
different proteins and from different locations within the
same protein. This data is statistically analyzed without

any further physico-chemical bias about the residues. In
this way, data about various possible conformations of a
tripeptide is gathered and analyzed as explained in the
discussion section.

Attempts to understand and capture structural features
were first done as inter residue contact statistics [2,3] in-
volving long range interactions. Short range pairwise resi-
due statistics is contained in the Protein Atlas [4]. In the
literature [5-12] there have been many attempts to pre-
dict new protein or peptide structures using small amino
acid subsequences or fragments of length 3 t010. In the
seminal paper [5], Unger et al. analyzed hexamers and
identified about 100 structural building blocks, in which,
each amino acid has a position dependent probability of
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Table 2: Column | shows the standard deviation ranges in °A. For example the first range is between 0 and 0.1°A and the second range
is between 0.1 and 0.2°A and so on. Columns 2 to |12 show for the 12 distances, number of tripeptides, which fall in the range.

The number of tripeptides in different standard deviation ranges

St{:ev (el,a2)  (alp2) (Bl,a2) (BLB2) (al,e3) (al,/3) (Bl,a3) (BLA3) (02,03) (a2,53) (F2,03) (62./3)

0.1 7451 2500 594 192 130
0.2 153 4829 5862 632 82
0.3 165 128 873 3540 141
0.4 89 31 112 2380 459
0.5 38 26 57 352 1455
0.6 12 I 19 48 2606
0.7 16 8 12 10 2525
0.8 7 4 9 3 424
0.9 4 | 5 9 62

| 3 4 0 3 20
.1 2 5 4 2 12
1.2 2 2 2 3 7
1.3 2 3 4 2 5
1.4 4 5 3 | 7
1.5 4 [ 0 5 4
1.6 2 3 0 0 3
1.7 2 | 3 2 4
1.8 3 [ 2 | |
1.9 0 0 2 0 |

2 | 0 | | 2

109 151 123 7443 2319 604 188
50 157 69 190 5025 5885 601
67 255 116 159 118 858 3600
160 615 203 69 23 96 2424
397 1312 434 31 22 52 290
795 1317 604 15 I 15 29
1774 1512 1068 12 13 15 17
1746 909 1041 6 3 9 9
1469 711 1125 12 9 4 5
624 350 773 2 4 6 6
223 162 542 4 2 5 |
88 48 427 3 2 2 4
27 28 306 | 2 | 2

7 6 188 | 2 | 2

6 9 83 0 0 2 2

3 6 36 2 2 | 0

2 2 19 3 4 | 4

2 2 I | | 4 2

2 0 7 | | | 0

0 0 3 3 0 2 0

occurrence. Others [10] classified the 20 amino acids into
4 classes (Glycine, Proline, hydrophobic and hydrophilic)
and identified structural clusters. Baker et al [11,12] used
fragments with definite amino acid sequences, and their
structural variations in different known proteins, as po-
tential templates for predicting new protein structures. In
all the cases they have only used the backbone structure
(i.e. C, co-ordinates only). In contrast, we have used the
C, and Cg co-ordinates, which then captures a significant
side chain configuration. Recently, de novo protein design
[13-19,22] is gaining importance and our data can also be
used for this purpose.

Results

Tripeptides have been classified into three categories: rig-
id, non-rigid and intermediate based on the relative struc-
tural rigidity of various distances between C, and Cg
atoms in a tripeptide. In our sample of crystallized pro-
teins, of the possible 8000 tripeptides, only 7964 oc-
curred. The 36 tripeptides, which do not occur in our
sample, however do occur in the SWISS-PROT [20] se-
quence data. The tripeptides, which occurred more than 5
times in our sample, were taken into consideration in our
analysis. We found that 1294 (18%) tripeptides can be
classified as rigid, 302 (4%) as non-rigid and 5731(78%)
as intermediate. We classify rigid tripeptides as those,
where at least one (1,3) distance has a fluctuation less

than 0.4°A and non-rigid tripeptides as those with all the
(1,3) distance fluctuations greater than 0.7°A. After ac-
counting for rigid and non-rigid, all the intermediates
have at least one (1,3) distance fluctuation between 0.4 to
0.7°A. The entire dataset of 7964 tripeptides along with
all the 12 relative average distances, standard deviations
and frequencies is available at the URL http://www.au-
kbc.org/research_areas/bio/projects/protein/tri.html. A
profile of this large data set can be obtained by studying
side chain relative abundance (Table 3) and structural ho-
mology (Table 4). To find correlation between the three
classes of tripeptides and known secondary structure sub-
sequences, 9986 helices of sequence length > 5, 4541 hel-
ices of sequence length > 12, 9544 beta strands of length
> 3 and 3120 beta strands of length > 7 from DSMP [21]
were analyzed and the results are tabulated in Table 5. The
distribution of the three classes of tripeptides in these sec-
ondary structure elements mirrors their distribution in the
entire dataset, occurrence being predominantly interme-
diate followed by rigid and non-rigid. It can be inferred
that the rigid tripeptides have no definite correlation with
secondary structure elements.

Table 3 shows the frequency of various amino acid resi-
dues occurring in the three categories intermediate, rigid
and non-rigid. In any category we have mentioned the rel-
ative percentage of occurrence within the same tripeptide
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Table 3: Column | shows the amino acid. Columns 2 to 4 show percentage of occurrence of the 20 amino acids in Intermediate (1), Rigid

(R) And Non-rigid (N) categories respectively.

Amino acid 1% R% N%
Glycine G 18 5 18
Alanine A 16 13 18
Valine V 16 12 Il

Leucine L 16 15 8

IsoLeucine | 15 16 10
Methionine M 10 23 10
Proline P 13 23 10
Phe Alanine F 15 14 Il

Tryptophan W 10 20 12
Serine S 16 6 34
Threonine T 16 7 25
Asparagine N 16 Il 14
Glutamine Q 13 20 10
Tyrosine Y 14 15 15
Cysteine C 9 16 16
Lysine K 15 14 13
Arginine R 14 16 14
Histidine H 13 15 Il

Asp acid D 16 9 19
Glu acid E 15 17 10

Table 4: Column | has the mean (a.l,0.3) distance ranges (first bin 5.2 to 5.4°A and so on) Columns 2 to 4 have counts of intermediate,

rigid and non-rigid tripeptides respectively, falling in each bin.

Mean (al,a3) | R N
5.4 2 5 0
5.6 22 121 0
5.8 772 335 6

6 1744 276 40
6.2 1755 200 128
6.4 1052 209 89
6.6 330 113 23
6.8 52 27 9

7 2 8 5
72 0 0 |
74 0 0 0
76 0 0 |

category. The amino acids Methionine, Proline, Tryp-
tophan and Glutamine occur predominantly in the rigid
tripeptides and not as much in the other two categories,
suggesting that Methionine, Proline, Tryptophan and
Glutamine can cause structural rigidity in a tripeptide.
Similarly, it can be inferred that Serine and Threonine can
cause structural non-rigidity in a tripeptide. The amino
acid Cysteine tends to be either in the rigid or in the non-
rigid category, but rarely in the intermediate category. The
sum of all the percentage numbers within a category falls

a little short of 300, since the residues occur at any of the
three possible positions in a tripeptide. Multiple occur-
rences of a residue within a tripeptide are counted only
once.

Table 3 does not reflect the absolute frequency of occur-
rence in our dataset. For example Methionine and Tryp-
tophan actually occur rarely. Therefore, we looked at
those tripeptides that occur with more than the average
frequency which is greater than 40 in our sample. This
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Table 5: Intermediate, rigid and non-rigid tripeptide occurrence in relative percentages * Standard deviation (in %), in secondary

structures and in the entire dataset.

Secondary Structure Sequence length 1% R % N %
Type

Helix 25 82+ 16 14+ 14 37
Helix > 12 82+ 1|1 15+ 11 3+5
B Strands >3 84 +24 13+22 311
B Strands >7 85+ I5 1113 37
Entire dataset >0 12 4 84
high frequency sample dataset again shows that Serine  Discussion

and Threonine are predominant amongst non-rigids,
while Proline, Alanine, Isoleucine, and Leucine occur of-
ten amongst the rigids.

The structural homology of most tripeptides is shown in
Table 4. The fluctuating nature of tripeptides is quite often
captured by (o;,03) distances. So, we chose to classify var-
ious structural similarities by looking at the (o,05) dis-
tances alone. This was done by taking the (o;,03) mean
distances in bins of 0.2°A (range being 5.0 to 7.8°A) and
counting the number of tripeptides falling into each bin.
Table 4 shows that almost all the intermediate tripeptides
have an (o,03) distance of (6.0 + 0.7)°A. We take the
range to be 1.4 as the allowed fluctuation in any single
tripeptide is 0.7 °A. The tabulated results show that all in-
termediates are broadly similar in structure. Among the
rigid tripeptides where the maximum allowed fluctuation
in any individual tripeptide is 0.4°A only, we find that
there are essentially two structural categories namely (5.8
+ 0.4)°A and (6.4 + 0.4)°A. Finally the non-rigid tripep-
tides, whose fluctuations are certainly larger than 0.7°A,
can be thought of having essentially one structure.

The frequency with which each of the tripeptides occurs in
our sample set of 0.27 million tripeptides from 1220
polypeptide chains is shown in Figure 2.

In the graph (Figure 2), Series 1 indicates the frequency
profile of all the tripeptides, Series 2 is for intermediate,
Series 3 is for rigid and Series 4 is for non-rigid. About
10% of the tripeptides occur with a frequency of less than
6. All the categories except the non-rigid do show that
tripeptides that occur very frequently are fewer. They obey
Poisson like statistics. Most tripeptides occur with a fre-
quency of 15. Non-rigids are rare and almost each non-
rigid tripeptide occurs with a different frequency. We find
in our sample size of 0.27 million tripeptides, 12.6% fall
into the rigid category, 4% in non-rigids and the remain-
ing in intermediate.

Every tripeptide, which occurs in a particular protein and
in a particular position, may yield one possible conforma-
tion. Examining the entire crystallized data will give the
other possible conformations of the tripeptide structures
in proteins. When this is statistically analyzed, it will give
a clue to the magnitude of conformational fluctuations. It
should be borne in mind that in every event, there are par-
ticular chemical bonds or steric hindrance, which makes
the conformation possible.

The data set that we studied typically has about 0.2°A (R
factor) uncertainty in the position of any co-ordinates of
the atom. Consequently, most of the nearest neighbour
distance data show a standard deviation ranging from 0 to
0.4°A. Next nearest neighbour (R;, R3) data will typically
have a standard deviation of 0.4°A to 0.7°A. Let us say, we
start with a rigid structure in three dimensions given by
mutual distances between Cg;, Cgy, Cyp, Cpy points. We
have to find the C,3 and Cgj co-ordinates. Eight addition-
al distances with corresponding standard deviations (fluc-
tuations) are given in Table 1 for each of the tripeptides.
Many of the distances are actually redundant. Therefore,
the best distances are picked to achieve our goal. It can be
noted that the nearest neighbour distances have smaller
fluctuations, and to fix a point we need the distance of a
said point from three other known points. This translates
to saying that we should know, at least one next to nearest
neighbour distance. We can choose from amongst all the
(1,3) distances, the one, which has the lowest fluctuation
and thus fix C,3 and then Cgj or vice versa. This yields the
optimum procedure for fixing the three co-ordinates accu-
rately. In Table 2 we have boldfaced the significant range
around the medians within the category. This helps us in
demarcating those with fewer fluctuations than the medi-
an.

In Table 2 there are occasions where Ry, R, or R,, R3 dis-
tances show a large standard deviation, greater than
0.2°A. These abnormalities are artificial fluctuations in
our crystallized data sample. For example, in certain PDB
data, the authors have given more than one possible coor-
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Legend: Series| (All tripeptides) Series2 (Intermediate tripeptides) Series3 (Rigid tripeptides) Series 4 (Non-rigid tripeptides).

dinate information due to experimental uncertainties in
data interpretation. In our analysis, the first choice with its
uncertainties has been taken. This is reflected in Table 2.
These occasions are rare, and therefore, we have taken
them as random errors causing fluctuations.

We discuss some possibilities for the rigidity of certain
tripeptides. At the outset, we cannot make any strict crite-
rion for rigidity. However, statistically more often than
not the following observations hold. Rigidity due to Pro-
line is well understood because of the side chain interact-
ing covalently with the backbone. Consequently, Cg is
held rigidly upto trans and cis ambiguity. This amounts to
the fact that essentially ¢ is frozen to -60° + 20° [22]. The
tripeptide therefore tends to be rigid. On closer examina-
tion, we find Proline in position 3 in the tripeptide, makes
the tripeptide rigid. This is in agreement with the expecta-
tions from the covalent bond structure.

Methionine and Tryptophan are fairly bulky; perhaps, the
good space filling is the cause for rigidity. Rigid tripeptides
with Glutamine invariably also have another polar side
chain residue; consequently they form a weak ionic bond
within the tripeptide. Usually residues with long side
chains have more rotameric fluctuations [23]. Occasional-
ly we find they may bind with another residue within the
tripeptide and end up being rigid. Lastly, non-rigids tend
to have Serine and Threonine residues, which is consistent
with their high polarity. Cysteine, which is well known for
its tendency to form di-sulfide bridge, can fall into either
rigid or non-rigid category but rarely in the intermediate
category.

A single tripeptide does not have a unique structure, in-
deed it varies as the position of the tripeptide changes
within a protein and across proteins. This fluctuation is
captured by the standard deviations in Table 1. The classi-
fication of rigid, non-rigid and intermediate is most often
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determined by (a1,a.3) distance alone. Therefore we can
assess that two different tripeptides have similar structure,
when their (a1,0.3) distance along with their standard de-
viations overlap. This criterion implies that structurally
homologous tripeptides have similar backbones. We have
also looked at various other cross co-relations such as
(a1,a3) vs (B1,p3) distances, (a1,a3) vs (a1,43) distanc-
es etc. The structural homology conclusion, as presented
in the results remains unaltered.

Conclusions

Tripeptide analysis is shown to be feasible and statistically
significant results have been obtained. Some regular fea-
tures of side chain interactions suggest that there are es-
sentially three classes of tripeptides: rigid, non-rigid and
intermediate. These have no correlation with the second-
ary structures in proteins and hence are complementary to
such studies. This data may be used to predict plausible
structures for oligopeptides and for denovo protein de-
sign. Attempts are being made by us to develop useful
pseudo energy functions to realize the above aims.

Methods

A representative data set of 1220 protein structures was
obtained from Protein Data Bank PDB [24] with a se-
quence identity ranging from 0-90% and < 2°A resolu-
tion. This PDB list was generated from CulledPDB
(R.L.Dunbrack Jr.,, http://www.fccc.edu/research/labs/
dunbrack/pisces/), which uses an algorithm similar to the
remove-until-done algorithm of Hobohm and Sander
[25]. A statistical analysis of 0.27 million tripeptides from
this set was done. If the distribution of tripeptides across
proteins were random, we would expect each of these
tripeptides to occur on an average about 34 times. For
each of these 0.27 million tripeptides 12 distances
(a1,02), (al1,B2), (B1,02), (B1.B2), (al,a3), (al,p3),
(B1,03), (B1,B3), (a2,a3), (a2,83), (B2,03), (B2,B3) were
calculated. The mean and standard deviation was then
computed for each of these distances. The frequency of oc-
currence of each of the 12 distances was also calculated.
The objective is to find if there is a conservation of distanc-
es in these tripeptides irrespective of where they occur in a
protein sequence, or which protein they came from.

As a countercheck for the statistical reliability of our anal-
ysis, another representative dataset of 0.15 million tripep-
tides in 700 proteins with sequence identity ranging from
0-20% and < 2°A resolution was taken and similar com-
putational analysis was done. The quantitative results as
reflected in Table 2 remained the same in both the sets.
Statistical significance became better in the 0-90% se-
quence identity set. The standard deviation obtained in
the 0-90% set is therefore much more reliable.

http://www.biomedcentral.com/1472-6807/2/9

In order to determine the structural homologs in the
tripeptides, (a.1,a.3) mean distances were taken in bins of
0.2°Ain arange of 5.0°A to 7.8 °A. The number of tripep-
tides from each of the three categories rigid, non-rigid and
intermediate which fall into these 0.2°A bins was count-
ed. The results are tabulated in Table 4. Helix and beta
strand subsequences from DSMP [21] were extracted and
the frequency of the three classes of tripeptides was com-
puted. The results are tabulated in Table 5.

Supplementary material

The tripeptide distance data is available on the World
Wide Web at the following URL: http://www.au-kbc.org/
research_areas/bio/projects/protein/tri.html
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