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Abstract
Background: Restriction enzymes (REases) are commercial reagents commonly used in recombinant
DNA technologies. They are attractive models for studying protein-DNA interactions and valuable targets
for protein engineering. They are, however, extremely divergent: the amino acid sequence of a typical
REase usually shows no detectable similarities to any other proteins, with rare exceptions of other REases
that recognize identical or very similar sequences. From structural analyses and bioinformatics studies it
has been learned that some REases belong to at least four unrelated and structurally distinct superfamilies
of nucleases, PD-DxK, PLD, HNH, and GIY-YIG. Hence, they are extremely hard targets for structure
prediction and homology-based inference of sequence-function relationships and the great majority of
REases remain structurally and evolutionarily unclassified.

Results: SfiI is a REase which recognizes the interrupted palindromic sequence
5'GGCCNNNN^NGGCC3' and generates 3 nt long 3' overhangs upon cleavage. SfiI is an archetypal Type
IIF enzyme, which functions as a tetramer and cleaves two copies of the recognition site in a concerted
manner. Its sequence shows no similarity to other proteins and nothing is known about the localization of
its active site or residues important for oligomerization. Using the threading approach for protein fold-
recognition, we identified a remote relationship between SfiI and BglI, a dimeric Type IIP restriction
enzyme from the PD-DxK superfamily of nucleases, which recognizes the 5'GCCNNNN^NGGC3'
sequence and whose structure in complex with the substrate DNA is available. We constructed a
homology model of SfiI in complex with its target sequence and used it to predict residues important for
dimerization, tetramerization, DNA binding and catalysis.

Conclusions: The bioinformatics analysis suggest that SfiI, a Type IIF enzyme, is more closely related to
BglI, an "orthodox" Type IIP restriction enzyme, than to any other REase, including other Type IIF REases
with known structures, such as NgoMIV. NgoMIV and BglI belong to two different, very remotely related
branches of the PD-DxK superfamily: the α-class (EcoRI-like), and the β-class (EcoRV-like), respectively.
Thus, our analysis provides evidence that the ability to tetramerize and cut the two DNA sequences in a
concerted manner was developed independently at least two times in the evolution of the PD-DxK
superfamily of REases. The model of SfiI will also serve as a convenient platform for further experimental
analyses.
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Background
Type II restriction endonucleases (REases) comprise one
of the major families of endonucleases and one of the
largest groups of experimentally characterized enzymes
(comprehensively reviewed in: [1]). The "orthodox" Type
IIP REases are dimeric, they recognize a short (4–8 bp)
palindromic sequence of double-stranded DNA and in the
presence of Mg2+, catalyze the hydrolysis of phosphodi-
ester bonds at precise positions within or close to this
sequence, leaving "blunt" or "sticky" ends (with a 5' or 3'
overhangs). The enzymes that do not fit this definition or
exhibit certain structural and functional peculiarities,
have been classified into several subtypes (review: [2]).
REases coupled with DNA methyltransferases (MTases) of
similar specificity form restriction-modification (RM) sys-
tems, which are ubiquitous among Bacteria and Archaea
[3]. While cleavage at specific sequences provides efficient
means of destroying foreign DNA, methylation of these
sequences in the prokaryotic chromosome renders them
resistant to REase and thereby protects the own DNA from
cleavage. Because cleavage of the chromosomal DNA in
unmodified sequences would be deletorious for the cell,
the REases must maintain extremely high specificities,
tightly coupled with that of the methyltransferase. A
change in just one base pair of the "cognate" site can
reduce the ratio kcat/Km for DNA cleavage by a factor ≥106

[4].

To date, only crystal structures of 15 REases have been
solved, compared to over 3000 biochemically character-
ized enzymes (review: [1]; see also [3] for updates). It was
found that they share a characteristic structural core and a
very weakly conserved catalytic motif (P)D-Xn-(D/E)-X-K
(where X is any amino acid), together with a number of
non-specific and structure-specific nucleases, suggesting
that these proteins are evolutionarily related despite the
absence of overall sequence similarity (review: [5]). The
comparison of crystal structures of members of this so-
called "PD-DxK" superfamily suggested that the catalytic
and DNA-binding regions are major determinants of
structural stability of these proteins [6]. Structural com-
parisons revealed also two major branches or classes, α
and β, whose archetypal members were the enzymes that
cleave DNA to generate 4 nt long 5' "sticky ends", for
instance EcoRI (α-class), and those that generate "blunt"
ends after the cleavage, for instance EcoRV (β-class) [7-9].
Using the experimentally solved structures as templates,
bioinformatics methods such as iterative sequence data-
base searches and protein fold-recognition have been
used to predict the active site in some REases [10-13].
From these analyses it was learned that certain functional
peculiarities, like the requirement of a binding of an
uncleaved effector site for cleavage of another site charac-
teristic for Type IIE enzymes, evolved independently in

the α and β branches of the PD-DxK superfamily [11,13-
15].

It was also found that other REases belong to completely
unrelated superfamilies, with different three-dimensional
folds and catalytic sites (review: [9]): BfiI is a member of
the phospholipase D (PLD) superfamily [16], Eco29kI
belongs to the GIY-YIG superfamily [17], and KpnI and a
few other REases belong to the HNH superfamily [17-19].
While the structural information is essential to infer the
molecular basis of sequence specificity in REases, the lack
of overall sequence conservation in these enzymes, the
absence of invariable residues even in the active site and
the presence of several alternative folds make structure
prediction and classification extremely difficult.

SfiI is a REase isolated from Streptomyces fimbriatus. It rec-
ognizes the interrupted palindromic sequence 5'GGCC-
NNNN^NGGCC3', where N denotes any base, and
cleaves it as indicated by "^", leaving 3' extensions 3 nt
long [20]. SfiI is a prototype of Type IIF enzymes, which
function as tetramers that bind simultaneously to two rec-
ognition sites and cleave both sites concertedly [21].
However, a structural model of SfiI, which could be used
as a platform to study its sequence-function relationships,
is not yet available. Thus, despite the availability of a large
body of biochemical data on how SfiI interacts with the
DNA substrate (mainly on the kinetics of protein-DNA
interactions with different substrates and the geometry of
DNA looping [22-25], but not on the "residue-level"
details thereof), the identity of amino acid residues
important for dimerization, tetramerization, DNA bind-
ing and cleavage remains completely unknown. We have
therefore carried out bioinformatics analyses of SfiI that
allowed to identify its closest relative amongst REases
with known structure and use this information to con-
struct a tertiary model of SfiI in complex with its target
DNA.

Results and discussion
In the absence of experimentally determined protein
structures, homology-based models may serve as working
models for the investigation of sequence-structure-func-
tion relationships between diverged enzymes [26].
Homology-modeled structures may be of too low resolu-
tion to characterize the protein-protein or protein-DNA
contacts at the atomic level, but they can suggest which
sequence regions or individual amino-acids are essential
components of the binding surfaces. In particular, identi-
fication of amino acids potentially involved in protein-
DNA contacts may guide mutagenesis experiments aimed
at the engineering protein variants with novel specificities.
However, homology modeling requires a homologous
template structure to be identified and the sequence of the
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protein of interest (a target) to be correctly aligned to the
template.

Identification of the three-dimensional fold of SfiI
The sequence of SfiI showed no significant similarity to
any other protein sequences. Also among the proteins
reported by BLAST with sub-optimal scores, there were no
proteins of known structure and no nucleases (data not
shown) that could hint at potential relationships of SfiI to
any previously characterized protein superfamily. Thus, in
order to identify a template structure for modeling of SfI
we used the threading approach, which allows to assess
the compatibility of the target sequence with the available
protein folds based not only on the sequence similarity
but also on the structural considerations (match of sec-
ondary structure elements, compatibility of residue-resi-
due contacts, etc.) (reviews: [27,28]). The SfiI sequence
was therefore submitted to the GeneSilico protein fold-
recognition metaserver [29]. As expected, fold-recognition
methods that rely only on sequence similarity (PDB-
BLAST, and FFAS) failed to identify any significant
matches between SfiI and proteins with known structrues.
However, several threading methods that explicitly use
the structural information from the templates reported a
match between SfiI and the structure of a Type II REase
BglI [30], a member of the PD-DxK superfamily of nucle-
ases (FUGUE [31]: 4.25, INBGU [32]: 3.8, SAM-T02 [33]:
0.13, 3DPSSM [34]: 4.4; note that these scores are not nor-
malized as each server uses a different evaluation system;
see the individual references for details). Additionally,
FUGUE reported a match (low score 3.17) between SfiI
and the structure of another REase, EcoRV [35]. Despite
the scores reported by the individual threading methods
(except FUGUE for BglI) were hardly significant, the con-
sensus server Pcons5 [36] assigned a significant score
(1.35) to the BglI structure as a potential modeling
template.

Homology modeling of the SfiI monomer
A homology model of SfiI was constructed based on the
alignments reported by threading methods, using the
"FRankenstein's Monster" approach [37] (see Methods).
Since the PD-DxK nuclease fold was selected by Pcons as
the only reasonable template and no other nuclease folds
were identified by the FR methods, only alignments
between SfiI and the PD-DxK superfamily members BglI
and EcoRV were used. The final model was constructed by
iterating the homology modeling procedure (initially
based on the raw FR alignments), evaluation of the
sequence-structure fit by VERIFY3D, merging of fragments
with best scores, and local realignment in poorly scored
regions. Local realignments were constrained to maintain
the overlap between the secondary structure elements
found in the bglI structure used as the modeling template,
and predicted for SfiI. This procedure was stopped when

all regions in the protein core obtained acceptable
VERIFY3D score (>0.3) or their score could not be
improved by any manipulations, while the average
VERIFY3D score for the whole model could not be
improved. The final model, comprising residues 13–240
obtained the average VERIFY3D score of 2.6. The align-
ment between SfiI and BglI is shown in Figure 1, the cor-
responding final model of the monomer is shown in
Figure 2.

Modeling of the SfiI dimer in complex with the DNA
BglI belongs to the "EcoRV-like" β-class of PD-DxK nucle-
ases. The most typical features of REases from this class
are: antiparallel orientation of the 5th strand of the com-
mon β-sheet and recognition of the DNA by an additional
β-sheet formed by extended loops between the common
secondary structure elements [5,7,9]. Most of β-class PD-
DxK REases (including EcoRV) exhibit a similar mode of
dimerization, which results in positioning of the two
active sites as to cut the pair of the opposite phosphodi-
ester bonds in the middle of the recognition sequence and
thereby produce the "blunt" ends. BglI is exceptional in
that its mode of dimerization is completely different,
which leads to a different arrangement of the active sites
and the sequence-recognition loops, resulting in the rec-
ognition of an interrupted sequence 5'GCC-
NNNN^NGGC3' and cleavage in the position indicated
by "^" that yields 3' ends 3 nt long. SfiI also recognizes an
interrupted sequence 5'GGCCNNNN^NGGCC3' and
cleaves it in the same manner and therefore can be
regarded as a more specific variant of BglI. These striking
functional similarities, together with the results of the
threading analysis, suggest that SfiI is indeed closely
related to BglI and that both enzymes interact with their
substrate DNA in a similar manner. Thus, we modeled the
structure of the SfiI dimer in complex with the DNA based
on the available crystal structure of BglI [30]. Briefly, the
SfiI monomer model was duplicated and each of the cop-
ies was superimposed onto the corresponding monomer
in the BglI dimer. A few minor steric clashes between the
side-chains of residues at the protein-protein interface
were removed by choosing alternative rotamers for the
respective amino acids. The DNA duplex (sequence
5'ATCGCCTAATAGGCGAT3') was copied from the BglI
co-crystal structure (1 dmu) [30] and "mutated" to
5'ATGGCCTAATAGGCCAT3' using HyperChem 7.1
(Hypercube, Inc.), followed by local geometry optimiza-
tion. One of the adenine residues in the mismatched A/A
base pair in the middle of the DNA molecule was
"mutated" to T/A. The curvature of the DNA remained
unchanged. Essentially, the global structure of the pro-
tein-DNA complex for SfiI remains exactly as in the BglI
structure, as reliable modeling of macromolecular interac-
tions remains beyond the capabilities of the existing
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methods. The model of SfiI dimer is shown in Figure 3
and is available for download from ftp://genesilico.pl/
iamb/models/R.SfiI/.

Model-based identification of amino acid residues 
important for catalysis, DNA-binding and dimerization of 
SfiI
In the proposed model of SfiI, the spatial configuration of
the catalytic residues is typical for an active site architec-
ture conserved among PD-DxK nucleases. We predict that
the active site of SfiI comprises residues: E55, D79, D100
and K102, which superimpose well on the catalytic

Alignment between SfiI and structurally characterized REasesFigure 1
Alignment between SfiI and structurally characterized REases. A) Fold-recognition alignment between full-length 
sequences of SfiI and BglI. Amino acids are colored according to the physico-chemical properties of their side-chains (negatively 
charged: red, positively charged: blue, polar: magenta, hydrophobic: green. Pairs of residues conserved between SfiI and BglI are 
highlighted. Putative catalytic residues are indicated by "#", putative DNA-binding residues are indicated by "*". Secondary 
structure elements of BglI are shown below the alignment. Numbers of amino acid residues at the N-terminus of each panel 
are shown. B) Structure-based sequence alignment of the conserved core, corresponding to the PD-(D/E)XK motif, including 
SfiI, BglI, and other selected REases from the β-class. Conserved residues of the active site are highlighted.
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Homology model of the SfiI monomerFigure 2
Homology model of the SfiI monomer. A) Superposition of the BglI template structure (red) and the SfiI model (blue). 
The CCGG half-site of the DNA target is shown in green. The Ca2+ ions from the BglI structure are shown as white dots. B) 
SfiI model colored according to the sequence conservation: residues identical between SfiI and BglI are shown in blue, residues 
with physico-chemically similar side chains are in green, dissimilar residues are in yellow and red. The putative conserved active 
site is shown in the wireframe representation.
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residues of BglI: E87, D116, D142 and K144, respectively
(Figure 4). We predict that the DNA-binding mode of SfiI
will be very similar to that of BglI, with the side chains of
residues S210 and R218 (homologs of D268 and R277 in
BglI) involved in the recognition of the inner C/G base
pair (Figure 5a), backbone oxygen and the side chain of
K208 (a homolog of K266 in BglI) recognizing the middle
C/G base pair (Figure 5b), and the side chain of R220 (a
homolog of R279) recognizing the G of the middle G/C
base pair (Figure 5c). The specificity of SfiI towards the
outer G/C base pair, not discriminated by BglI, can be
explained by the development of new contacts made by
residues from a divergent loop adjacent to the REase active
site and comprising residues 104–110 of SfiI and 146–
155 of BglI. In BglI, D150 makes specific contacts to the
middle C/G base pair and the G/C base pair [30], however
this residue is not conserved in SfiI (Figure 1). Instead, we
predict that the changes of the loop length and the amino

acid substitutions lead to a different conformation of the
corresponding loop in SfiI, which allows R109 (not
present in BglI) to make a specific contact to the G of the
outer G/C base pair (Figure 5d). Other residues from the
same loop, such as K107 may also contribute to the spe-
cific sequence recognition by SfiI by making contacts to
either of the two G/C base pairs. It is noteworthy that
according to our model of SfiI, the majority of specific
contacts are achieved by three Arg residues (R109, R218,
and R220). These predictions can be tested by site-
directed mutagenesis of the respective residues to Ala and
testing whether the mutant proteins are proficient in DNA
cleavage and/or binding.

Interestingly, our model suggests that SfiI lacks the coun-
terpart of a loop corresponding to aa 63–80 in BglI used
by this enzyme to interact with the target site from the
minor groove side. Thus, SfiI appears to recognize its

Model of the SfiI dimerFigure 3
Model of the SfiI dimer. Individual subunits are shown in yellow and blue. The modeled DNA sequence is shown in green, 
the specifically recognized CCGG half-sites are in red.
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target solely from the major groove side and to use fewer
specific contacts than BglI to recognize its cognate site.
This suggests that SfiI may be an easier target for the engi-
neering of REases with new sequence specificities.

The dimerization interface of SfiI is comparable to that of
BglI. We predict that the following residues may be impor-
tant for monomer-monomer interactions: Q59, Y60, E63,
E66, R73, F74, G76 and that mutating them to change the
volume of the side chain (for instance G76R) or introduc-
ing (or reversing) the charge (E63R, E66R, R73D, F74R)
could disrupt the formation of the SfiI dimer and destroy
the REase activity.

Prediction of the dimer-dimer interaction surface in the 
SfiI tetramer
SfiI is a Type IIF enzyme, i.e. a tetramer that binds simul-
taneously to two recognition sites and cleaves both sites
concertedly [21], while BglI is an orthodox IIP enzyme,
i.e. a dimer that acts on single sites [38]. Therefore, the
crystal structure of BglI cannot be used to model the tetra-
meric structure of SfiI. To date, the only Type IIF enzymes,

for which crystal structures have been solved, are NgoMIV
[39], Cfr10I [40] and Bse634I [41], which are all relatively
closely related to each other and exhibit similar mode of
interactions between two dimers within the tetramer.
These enzymes, however, even at the level of a dimer
exhibit a completely different arrangement of monomers,
compatible with the generation of 5' overhangs 4 nt long
(compared to 3' overhangs 3 nt long in the case of SfiI and
BglI). Therefore, it is impossible to obtain a meaningful
superposition of the BglI or SfiI dimer onto any pair of
subunits in the NgoMIV, Cfr10I or Bse634I tetramer.
However, it is tempting to speculate that SfiI may
tetramerize in a similar manner to these enzymes, i.e. to
use surface regions on the opposite sites of the molecule
to the protein-DNA and protein-protein binding. A highly
speculative model of SfiI tetramer obtained by manual
docking of two dimers is shown in Figure 6. Based on this
model, we predict that the dimer-dimer interface will be
composed mostly of hydrophobic and polar residues (and
very few charged ones), involve the following segments of
the amino-acid sequence, corresponding to loops on the
surface of the dimer: 26–34, 67–69, and 86–93. The

Superposition of SfiI and BglI structuresFigure 4
Superposition of SfiI and BglI structures. The predicted active site of SfiI (in blue) superimposed onto the BglI structure 
(red) Individual subunits are shown in yellow and blue. The Ca2+ ions from the BglI structure are shown as cyan spheres. Only 
the two nucleotides adjacent to the scissile phosphodiester bond are shown.
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putative dimer-dimer interactions involve contacts
between hydrophobic regions (aa 86–93 from different
subunits) as well as hydrophilic ones (aa 26–34). It is pos-
sible that the C-terminal region of the SfiI sequence,
which could not be modeled (aa 241–269) may also par-
ticipates in tetramerization.

Conclusions
Implications for the evolutionary history of different (sub) 
Types of REases
Comparative analysis of nucleases from the PD-DxK
superfamily suggests that they can be classified into two
remotely related lineages: α (EcoRI-like) and β (EcoRV-
like) [7-9]. It was proposed that extant REases evolved
independently from non-specific or structure-specific
nucleases from both lineages (review: [5]). Interestingly,
the phylogenetic tree of the PD-DxK superfamily revealed
intriguing cases of convergent evolution. So far, it was
found that Type IIE enzymes that bind two copies of the
recognition site (the actual target of cleavage and the non-
cleaved allosteric effector), evolved independently at least
three times: EcoRII is an α-lineage member that appar-
ently evolved from IIP enzymes similar to SsoII or PspGI
by acquisition of an N-terminal effector-binding domain
[12,42]. NaeI is a β-lineage member remotely related to
IIP enzymes EcoRV and HincII that acquired a C-terminal
effector-binding domain unrelated to that of EcoRII [7].
Finally, Sau3AI is a β-lineage member that apparently
evolved by a duplication of a catalytic domain closely
related to a DNA repair enzyme MutH, followed by the
loss of catalytic residues in the C-terminal domain,
thereby adapted to function as an effector-binding
domain [14,15]. Another type of evidence for convergent
evolution is provided by the finding that the specificity for
the GATC sequence appeared independently in the α-lin-
eage (MboI and its close homologs [5,13]) and in the β-
lineage (Sau3AI and its close homologs [14,15]).

Our results strongly suggest that the archetypal Type IIF
enzyme SfiI is closely related to a β-lineage member, an
"orthodox" Type IIP REase BglI. Another well-character-
ized group of Type IIF REases comprises α-lineage mem-
bers for which crystal structures were solved (NgoMIV,
Cfr10I, Bse643I) [39-41]. Thus, our analysis provides evi-
dence that the ability of Type IIF REases to tetramerize and
cut two target sites in a concerted manner was developed
independently at least two times in the evolution of the
PD-DxK superfamily. Different Type IIF REases appear to
have evolved independently from the simplest, "ortho-
dox" Type IIP enzymes, like previously found for Type IIE
REases. It was previously demonstrated that deletion of
the effector-binding domain converts the Type IIE REase
EcoRII to function as a Type IIP enzyme [43]. However,
tetramerization seems to be important for the catalytic
activity of the Type IIF enzyme Cfr10I, since the DNA

Predicted specific protein-DNA contactsFigure 5
Predicted specific protein-DNA contacts. A) Recogni-
tion of the inner C/G pair B) Recognition of the middle C/G 
pair. C) Recognition of the middle G/C pair. D) Recognition 
of the outer G/C pair.
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cleavage activity of the dimeric W220A mutant of this
REase is <0.1% of that of the wild-type enzyme [44]. In
the absence of a high resolution co-crystal structure of SfiI
in complex with DNA, our model will serve as a conven-
ient platform to study sequence-structure-function rela-
tionships in this enzyme. In particular, it will facilitate the
mutagenesis of residues potentially involved in tetrameri-
zation, dimerization, DNA-binding and catalysis.

Methods
Structure prediction
Sequence searches of the non-redundant (nr) database
and of the putative translations from finished and unfin-
ished microbial genomes were carried out at the NCBI
using PSI-BLAST [45]. Secondary structure prediction and
tertiary fold-recognition was carried out via the GeneSilico
meta-server gateway [29]. Secondary structure prediction

was predicted using PSIPRED [46], PROFsec [47], PROF
[48], SABLE [49], JNET [50], JUFO [51], and SAM-T02
[33]. Solvent accessibility for the individual residues was
predicted with SABLE [49] and JPRED [52]. The fold-rec-
ognition analysis (attempt to match the query sequence to
known protein structures) was carried out using FFAS03
[53], SAM-T02 [33], 3DPSSM [34], INBGU [32], FUGUE
[31], mGENTHREADER [54], and SPARKS [55]. Fold-rec-
ognition alignments reported by these methods were
compared, evaluated, and ranked by the Pcons server [36].

Homology modeling
The alignments between the sequence of SfiI and the
structures of selected templates (members of the fold
identified by Pcons) were used as a starting point for mod-
eling of the SfiI tertiary structure using the "FRanken-
stein's Monster" approach [37], comprising cycles of

Putative structure of the SfiI tetramerFigure 6
Putative structure of the SfiI tetramer. Individual subunits are shown in yellow, green, red, and magenta. The two DNA 
substrates are shown in white.
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model building by MODELLER [56], evaluation by
VERIFY3D [57] via the COLORADO3D server [58], rea-
lignment in poorly scored regions and merging of best
scoring fragments. The positions of predicted catalytic res-
idues and secondary structure elements were used as spa-
tial restraints. This strategy has previously helped us to
build accurate, experimentally validated models of other
REases, such as SsoII [11], PspGI [12], MboI [13], and
KpnI [19].

List of abbreviations
aa, amino acid(s); bp, base pair(s); nt, nucleotide; e,
expectation; REase, restriction endonuclease; MTase,
methyltransferase; ORF, product of an open reading
frame, RM, restriction-modification;
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