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Abstract

Background: Leucine-rich repeats (LRRs) are present in more than 6000 proteins. They are found in
organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions.
To date, more than one hundred crystal structures of LRR containing proteins have been determined.
This knowledge has increased our ability to use the crystal structures as templates to model LRR
proteins with unknown structures. Since the individual three-dimensional LRR structures are not
directly available from the established databases and since there are only a few detailed annotations for
them, a conformational LRR database useful for homology modeling of LRR proteins is desirable.

Description: We developed LRRML, a conformational database and an extensible markup
language (XML) description of LRRs. The release 0.2 contains 1261 individual LRR structures,
which were identified from 112 PDB structures and annotated manually. An XML structure was
defined to exchange and store the LRRs. LRRML provides a source for homology modeling and
structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we
modeled the mouse Toll-like receptor 3 (TLR3) by multiple templates homology modeling and
compared the result with the crystal structure.

Conclusion: LRRML is an information source for investigators involved in both theoretical and
applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

Background
Leucine-rich repeats (LRRs) are arrays of 20 to 30 amino
acid long protein segments that are unusually rich in the
hydrophobic amino acid leucine. They are present in
more than 6000 proteins in different organisms ranging
from viruses to eukaryotes [1]. The structure of the
LRRs and their arrangement in repetitive stretches
of variable length generate a versatile and highly
evolvable framework for the binding of manifold

proteins and non-protein ligands [2]. The crystal
structure of the ribonuclease inhibitor (RI) yielded the
first insight into the three-dimensional molecular basis
of LRRs [3]. It has a horseshoe shaped solenoid structure
with parallel b-sheet lining the inner circumference and
a-helices flanking its outer circumference. To date, there
are over one hundred crystal structures available.
All known LRR domains adopt an arc or horseshoe
shape [1].
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The LRR sequences can be divided into a highly conserved
segment (HCS) and a variable segment (VS). The highly
conserved segment consists of an 11 or 12 residue stretch
with the consensus sequence LxxLxLxxN(Cx)xL. Here, the
letter L stands for Leu, Ile, Val or Phe forming the
hydrophobic core, N stands for Asn, Thr, Ser or Cys, and x
is any amino acid. The variable segment is quite diverse in
length and consensus sequence, accordingly eight classes
of LRRs have been proposed [4, 5]: 'RI-like (RI)', 'Cysteine-
containing (CC)', 'Bacterial (S)', 'SDS22-like (SDS22)',
'Plant-specific (PS)', 'Typical (T)', 'Treponema pallidum
(Tp)' and 'CD42b-like (CD42b)'.

The discrepancy between the numbers of structure-known
LRR proteins and the structure-unknown ones triggered
studies focusing on the homologymodeling of LRR proteins
[6-8]. Homology modeling is a computational method,
which is widely used to identify structural features defining
molecular interactions [8-10]. The modeling results are an
important input for the design of biochemical experiments.
The first step of homology modeling is the selection of a
structure-known protein, which serves as a template for the
unknown target structure. In practice, however, it is difficult
to find a complete template which has a high enough
sequence identity to the target repetitive protein (single
template modeling), due to different repeat numbers and
varying arrangements. This limitation can be overcome by
combining multiple templates. First, the most similar
structure-known LRRs are found for each LRR in the target
sequence as a local template. Second, all local templates are
combined to generate the multiple sequence alignments for
the entire target sequence. Thus, it is possible to construct a
start model for further investigation, even if no adequate
single template is available. Such an approach, however,
requires a comprehensive database of LRRs to extract
adequate template candidates. So far, the individual three-
dimensional LRR structures are not directly available from
the established databases and there are only a few detailed
annotations for them. Additional information such as
sequence insertions and types is missing. In order to
consolidate this information and to provide a source for
homologymodeling and structural analysis of LRR proteins,
we developed LRRML, a database and an extensible markup
language (XML) description of LRR structures.

Construction and content
Structure-known LRR proteins were extracted from the
Protein Data Bank (PDB) [11] release Sept 10, 2008. In
order to ensure that all LRR proteins were found, we
combined three groups of search results. First, 'leucine rich
repeat', 'leucine rich repeats', 'leucine-rich repeat', 'leucine-
rich repeats', 'lrr' and 'lrrs' were used as keywords in the PDB
quick search; second, 'SCOP classification -> Alpha and beta
proteins (a/b) -> Leucine-rich repeat' was used as options in

PDB advanced search; third, 'CATH classification -> Alpha
Beta -> Alpha-Beta Horseshoe -> Leucine-rich repeat' was
used as options in PDB advanced search. Because of the
irregularity (mutations and insertions in the sequence) of
LRRs reliable identifications of LRRs contained in the LRR
proteins could only be performed manually. We inspected
the three-dimensional structures of the LRR proteins using
molecular viewers and identified each LRR based on two
criteria:

1. A LRR begins at the beginning of the highly conserved
segment (HCS) and ends at the end of the variable segment
(VS) (just before the HCS of the next LRR).

2. TheHCS of a LRRmust pose a typical conformation, i.e. a
short b-sheet begins at about position 3 and a hydrophobic
core is formed by the four L residues at position 1, 4, 6,
and 11.

The LRRs were then manually classified according to the
consensus sequences [4, 5]. In addition to the eight
canonical LRR classes listed in the background section we
included a new class 'other' for the N-/C-terminal LRRs and
some hyper-irregular LRRs. Table 1 illustrates the consensus
sequences of the eight canonical LRR classes.

During the LRR identification and classification all sequence
insertions longer than 3 residueswere annotated. About one
tenth of entries have insertions longer than 3 residues while
few entries have deletions, which suggests that the evolution
of LRRs may prefer insertion to deletion.

The LRRML release 0.2 contains 1261 LRR entries from
112 PDB structures. Among them 548 LRRs are distinct on
sequence level, indicating that different molecules can
share identical LRRs. By superimposition, we found that
they also have highly similar structures. This fact enhances
the confidence in modeling LRR proteins using multiple
LRR templates. A histogram of entry length distribution

Table 1: Consensus sequences of the eight canonical LRR classes
[4, 5].

Classes HCS VS

Typical type (T) LxxLxLxxNxL xxLxxxxLxxLxx
Bacterial type (S) LxxLxLxxNxL xxLPx(x)LPxx
Ribonuclease inhibitor-like
type (RI)

LxxLxLxxNxL xxxxxxxLxxxLxxxxx

SDS22-like type (SDS22) LxxLxLxxNxL xxLxxLxxLxx
Cysteine-containing type (CC) LxxLxLxxCxxL TDxxxxxLxxxCxx
Plant-specific type (PS) LxxLxLxxNxL xxxLPxxLGxLxx
Treponema pallidum type (Tp) LxxLxLPxxLxx LxxxAFxxCxx
CD42b type (CD42b) LxxLxLxxNxL xxLPxxxxxxxxx

L: Leu, Ile, Val, Phe; N: Asn, Thr, Ser, Cys; P: Pro; T: Thr; D: Asp; G: Gly;
A: Ala; F: Phe; C: Cys; x: random residues.
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(Figure 1) shows that the LRR lengths are concentrated in
the interval from 20 to 29, which covers the characteristic
lengths of consensus sequences of the eight canonical
LRR classes. Some entries have a sequence longer than 30,
because they contain large insertions. Table 2 presents the
distribution of LRR entries and PDB entries over the nine
classes respectively. The classification results are consis-
tent with a previous report which showed that LRRs from
different classes never occur simultaneously in the same
protein and have most probably evolved independently
[4]. Exceptions to this rule are the T and S types which
often exist in the same protein forming the super motif
'STT' [12]. It is assumed that both evolved from a
common precursor [1].

Currently, there are several protein databases containing
information on LRRs, such as Pfam [13], InterPro [14],
SMART [15] and Swiss-Prot [16]. These databases predict
the LRR numbers and boundaries for their LRR protein
entries by various computational methods, no matter
whether the entries have known three-dimensional

structures or not, thereby 'false negative' occurs frequently.
Table 3 lists the numbers of structure-known LRR proteins
and their LRRs covered by these databases. As more
detailed examples, LRR numbers of LRR proteins from
different classes reported by the established databases are
compared in Table 4. Additionally, the individual three-
dimensional LRR structures are not directly available from
these databases. In order to combine the information
required for homology modeling and structural analysis,
LRRML is provided with three prominent characteristics:

1. Each database entry is an individual three-dimen-
sional LRR structure, which was identified with high
accuracy.

2. Extensive annotations, such as systematic classifica-
tion, secondary structures, HCS/VS partitions and
sequence insertion, are provided.

3. LRRs were extracted from all structure-known LRR
protein structures from PDB.

Figure 1
LRR entry length distribution. The most common entry lengths vary from 20 to 29. Each LRR class has a characteristic
length distribution. Some entries have a sequence length larger than 29 due to insertions.

Table 2: Numbers of LRR and PDB entries (release 0.2) in the nine LRR classes.

T S RI SDS22 CC PS Tp CD42b Other Total

LRR structures 272 72 151 372 184 10 0 0 200 1261

LRR entries 169 40 59 114 28 10 0 0 128 548

PDB entries 32 13 50 16 1 0 0 - 112

Up to present, no crystal structures for LRR proteins of Tp/CD42b types are determined. Different from other LRR types, the S type and T type LRRs
evolved from a common precursor [1] and thus can exist in the same PDB entry simultaneously.
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XML description
The extensible markup language (XML) was standardized
in the 90s and is well established as a format for
hierarchical data. It can be queried and parsed more
easily by application programs. Therefore, more and
more biological databases use the XML as data saving
format and database management system (DBMS)
[17-19]. LRRML was designed by using eXist [20], an
XML DBMS, and using XPath/XQuery [21] for processing
queries and web forms. We developed a LRR markup
language (LRRML) for exchanging and storing LRR
structures. It consists of four blocks of information:

1. The sequence information (XML tag <l:Sequence>):
amino acid sequence and sequence length.

2. The classification information (XML tag <l:Type>):
class name and consensus sequences.

3. The sequence partitions (XML tag <l:Regions>): amino
acid sequence, position, length and insertion of HCS
and VS.

4. The corresponding PDB sources (XML tag
<l:Sources>): ID, chain, LRR number and classification
of the source PDB entries; serial number, position,
DSSP [22] secondary structure and three-dimensional

coordinates of the current LRR in these source PDB
entries.

An example describing the LRR3 from PDB entry 2O6S is
shown in Figure 2. The document type definition (DTD)
file of LRRML is provided asAdditional file 1.

Utility
Web application
The entire database can be browsed by LRR IDs or by
PDB IDs. When browsing, the entries appear in a
summary table containing at first ID, type and sequence.
Clicking on an ID opens an XML Stylesheet (XSLT) [21]
converted HTML web page that presents the entry in
detail. The original XML file and the coordinates file in
PDB format can also be downloaded. The XSLT file used
is provided as Additional file 2. Aside from the textual
view, a LRR structure can be visualized by the online
molecular viewer Jmol [23]. After loading, users can
change the view settings flexibly by themselves. LRRML
is provided with various search functions, including PDB
ID search which returns all LRRs contained in this PDB
structure, class search which returns all LRRs of this class,
or length search which returns all LRRs with this
sequence length. To simplify the homology modeling,
the similarity search was implemented. It returns the
structures of the most similar LRRs for a structure-
unknown LRR. The target LRR sequence can be searched
against the entire database, a certain LRR class or LRRs
with a certain length. At first, a global pair wise sequence
alignment with sequence identity will be generated for
the target LRR and each of the LRRs in the user selected
set. Then, the most similar LRRs will be returned as
template candidates, ranked by sequence identity.

The DBMS provides a REST-style application programming
interface (API) through HTTP, which supports GET and
POST requests. A unique resource identifier (URI) 'http://
zeus.krist.geo.uni-muenchen.de:8081/exist/rest/...' is trea-
ted by the server as path to a database collection. Also,
request parameters can help select any required elements.

Table 3: Coverage of LRR proteins with PDB structures of
different databases.

Databases Numbers of LRR proteins
with PDB structures

Numbers of identified
LRRs

InterPro 62 325
Swiss-Prot 98 997
Pfam 48 173
SMART 84 547
LRRML 112 1261

The results were obtained on October 13, 2008.

Table 4: Comparison of LRR numbers of different LRR proteins by different databases.

PDB codes Protein functions LRR classes InterPro Swiss-Prot Pfam SMART LRRML

2A0Z Immune System T 18 22 7 20 25
1G9U Toxin S 7 15 1 0 15
2FT3 Structural Protein T+S 8 8 5 9 12
1K5D Signaling Protein RI 2 8 0 0 11
1GWB Glycoprotein SDS22 6 6 4 7 8
2P1M Signaling Protein CC 2 16 0 6 18
1OGQ Inhibitor PS 7 10 2 0 10

All listed LRR numbers include N-/C-terminal LRRs. To date, only the LRRML database contains the complete set of LRRs of all LRR proteins with
known structures. The results were obtained on October 13, 2008.
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Figure 2
The LRRML description of a LRR structure. This entry is a 24 residue long typical LRR. The first 11 residues compose
its HCS and the last 13 residues compose its VS (no insertions). It is contained only in the chain A of PDB structure
2O6S (a protein involved in the immune system). It is the third one of the 7 LRRs of 2O6S, from position 77 to 100.
Its secondary structure was extracted from DSSP and its three-dimensional coordinate file is available though the hyperlink on
the corresponding web page.
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Table 5: Sequence identities (%) of target-template LRR pairs.

NT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 CT Avg

LRRML ID 406 65 212 465 151 177 110 259 8 203 64 293 270 357 65 152 259 316 152 239 239 92 80 101 173 —

PDB source 1XWD 2O6S 1G9U 1OZN 1XKU 1SQ0 2FT3 2V9S 1IO0 1H6U 2O6S 2Z64 2Z62 2Z81 2O6S 1XKU 2V9S 2Z7X 1XKU 1P8V 1P8V 2ID5 2O6Q 2ID5 1W8A —

Identity (%) 47.60 45.83 45.83 41.67 50.00 50.00 46.15 41.67 41.38 42.31 50.00 50.00 33.33 41.67 42.86 50.00 40.00 37.50 38.46 50.00 45.83 50.00 41.67 40.00 39.29 44.12

In the header line, 1–25 denote canonical LRRs; NT and CT denote N-/C-terminal LRRs.
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Figure 4
Ramachandran plot of model and crystal structure of mouse TLR3 ectodomain. (A) Predicted model of mouse
TLR3 ectodomain. (B) Crystal structure of mouse TLR3 ectodomain. The different colored areas indicate 'disallowed' (white),
'generously allowed' (light yellow), 'additional allowed' (yellow), and 'most favored' (red) regions.

Figure 3
Comparison of model and crystal structure of mouse TLR3 ectodomain at the two ligand interaction regions. Blue:
structure obtained by homology modeling; orange: crystal structure (PDB code: 3CIG). (A) The modeled backbone structure of
mouse TLR3 ectodomain. (B) Model and crystal structure superimposed at the N-terminal interaction region. The root mean square
deviation is 1.96 Å. (C) Superimposition at the C-terminal interaction region. The root mean square deviation is 1.9 Å. The reported
interacting residues are presented with side chain and labelled with residue name and position in (B) and (C).
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For example, '_query' executes a specified XPath/XQuery;
the URL "http://zeus.krist.geo.uni-muenchen.de:8081/
exist/rest/db/lrrml?_query=//LRR [.//TAbbr='S']" returns
all the S type LRRs.

Application in homology modeling
LRRML was designed as a tool for template selection in
homology modeling of LRR proteins. Traditionally, the
template used in homology modeling is one or more full
length protein structures obtained via similarity search.
Nevertheless, due to the different repeat numbers and
arrangements of LRRs, the sequence identity between the
target and the full length template is usually not high
enough for homology modeling. With LRRML the most
similar structure-known LRR can be found for each LRR
in the target sequence as a local template. The combina-
tion of all local templates through multiple alignments
helps to achieve a high sequence identity to the target.

As test case we modeled the structure of mouse Toll-like
receptor 3 (TLR3) ectodomain. We assumed that the
structure of mouse TLR3 ectodomain were unknown and
excluded the LRRs of mouse/human TLR3 ectodomain
from LRRML. Through similarity search the optimal
template for each of the 25 LRRs in mouse TLR3 was
found. The sequence identity between each LRR pair
(target/template LRR) is listed in Table 5. Then a 26-line
multiple alignment was generated by the 25 template
sequences and the target sequence as the input of
MODELLER 9v3 [24]. The resulting three-dimensional
model (Figure 3A) was evaluated by PROCHECK [25],
with 98.2% residues falling into the most favored or
allowed regions of the main chain torsion angles
distribution, whereas the result of the TLR3 crystal
structure (PDB code: 3CIG) was 98.6% (Figure 4). The
mouse TLR3 has been shown to bind double-stranded
RNA ligand with both N-terminal and C-terminal sites
on the lateral side of the convex surface of TLR3 [26]. The
N-terminal interaction site is composed of LRRNT and
LRR1-3, and the C-terminal site is composed of LRR19-
21. We superimposed the resulting model onto the
crystal structure of mouse TLR3 ectodomain at the two
interaction sites by using SuperPose v1.0 [27]. The root
mean square deviations of the structures are 1.96 Å and
1.9 Å respectively (Figure 3B/C), indicating that the
predicted model sufficiently well matched the crystal
structure and was useful for prediction of ligand
interaction sites. These results demonstrate that homol-
ogy modeling using combined multiple templates
obtained from LRRML can create valuable information
to trigger further biochemical research. Interpretation of
structural details, however, should be done exercising
due care.

Conclusion
A specialised conformational leucine-rich repeats data-
base called LRRML has been developed. It is supported
by an XML database management system and can be
searched and browsed with either an easy-to-use web
interface or REST like interface. The interface is suitable
for most graphical web browsers and has been tested on
the Windows, Mac and Linux operating systems. LRRML
contains individual three-dimensional LRR structures
with manual structural annotations. It presents useful
sources for homology modeling and structural analysis
of LRR proteins. Since the amount of structure-deter-
mined LRR proteins constantly increases, we plan to
update LRRML every 2 to 3 months.

Availability and requirements
This database is freely available at http://zeus.krist.geo.
uni-muenchen.de/~lrrml.
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