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Abstract
Background: Common structural biology methods (i.e., NMR and molecular dynamics) often
produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of
molecular structures (proteins and RNA) is a frequent approach to obtain a consensus structure
that is representative of the ensemble. However, when the structures are averaged, artifacts can
result in unrealistic local geometries, including unphysical bond lengths and angles.

Results: Herein, we describe a method to derive representative structures while limiting the
number of artifacts. Our approach is based on a Monte Carlo simulation technique that drives a
starting structure (an extended or a 'close-by' structure) towards the 'averaged structure' using a
harmonic pseudo energy function. To assess the performance of the algorithm, we applied our
approach to Cα models of 1364 proteins generated by the TASSER structure prediction algorithm.
The average RMSD of the refined model from the native structure for the set becomes worse by
a mere 0.08 Å compared to the average RMSD of the averaged structures from the native structure
(3.28 Å for refined structures and 3.36 A for the averaged structures). However, the percentage
of atoms involved in clashes is greatly reduced (from 63% to 1%); in fact, the majority of the refined
proteins had zero clashes. Moreover, a small number (38) of refined structures resulted in lower
RMSD to the native protein versus the averaged structure. Finally, compared to PULCHRA [1], our
approach produces representative structure of similar RMSD quality, but with much fewer clashes.

Conclusion: The benchmarking results demonstrate that our approach for removing averaging
artifacts can be very beneficial for the structural biology community. Furthermore, the same
approach can be applied to almost any problem where averaging of 3D coordinates is performed.
Namely, structure averaging is also commonly performed in RNA secondary prediction [2], which
could also benefit from our approach.

Background
Methods for the experimental or theoretical determina-
tion of protein structures often output their results as an
ensemble. In the case of experimental data like X-ray crys-
tallography data, the ensemble represents both the con-
formational diversity and the inability to resolve the time
and spatial aspects of the experiment, whereas in the case

of computational experiments, the ensemble in part rep-
resents the uncertainty of interpreting the data[3]. How-
ever, often, there is a requirement for a single consensus
structure. One way to generate this 'consensus' or 'repre-
sentative structure' is to calculate the centroid structure by
averaging the Cartesian coordinates of the ensemble of
superimposed structures.
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A series of computational and experimental studies have
been performed to rationalize the averaging methodol-
ogy. Zagrovic et al. [4] proposed the "mean-structure
hypothesis" which states that the geometry of the col-
lapsed unfolded state of small peptides and proteins in an
average sense corresponds to the geometry of the native
structure at equilibrium. Huang et al[5] have shown that
finding the "averaged structure" from a set of decoys yield
structures that are closer to the native structure than most
individual structures. Moreover, Zagrovic et al[6] have
shown mathematically that the RMSD between the "aver-
aged structure" and the native structure is more similar
than the most individual structures to the native structure.
Furthermore, it was also argued that finding average dis-
tance matrices and using distance based root mean square
deviation as a metric may be one way to capture the rele-
vant features of ensembles of structure and compare them
with other reference structures.

Unlike point based averaging where each member is a
point, in averaging of structures, the "averaged model"
often has unrealistic local geometry, including unphysical
bond lengths and angles. In this regard, several methods
have been developed to remove averaging artifacts. Due to
the process of protein structure prediction, methods to
remove averaging artifacts are most commonly developed
in this context. The 'regularize' function of REFMAC [7]
can be used to regularize the bonds and angles. Further-
more, Betancourt and Skolnick [8] developed a clustering
approach, called SCAR, that uses a harmonic potential to
refine centroid structures. However, structure prediction
results indicate that SPICKER [9] outperforms SCAR in
terms of model selection. Furthermore, it has been shown
[10] that 'the models generated by TASSER [11] have
incorrect side-chain conformations and poor hydrogen
bonding patterns partly because of the on-lattice model-
ling and the unphysical geometry of the SPICKER[9] clus-
ter centroid structure'. PULCHRA [1], which combines a
conjugant gradient search with a harmonic potential,
supersedes both SCAR and SPICKER. Similarly, Kolinski
and Bujnicki [12] have introduced an elegant approach
using a combination of template-based and de novo mod-
elling followed by hierarchical clustering that employed
averaging of very diverse models from threading, that
results in consensus structures with improved local and
global quality.

In general, averaging artifacts become more pronounced
when members of the ensemble are more divergent. This
artifact is exacerbated in TASSER due to the fact that it
begins with a lattice model and averaging is performed
across clusters of dissimilar structures. Consequently, the
averaged structure is often not suitable for detailed atomic
model building due to unrealistic bond lengths and
angles and unphysical local geometry. In the same vein,
the community wide experiment on the Critical Assess-

ment of Techniques for Protein Structure Prediction
(CASP) also penalizes structures with unphysical bond
lengths and unrealistic geometries. CASP defines two
types of clashes for bond length. The first type of clash
involves atoms that are less than 1.9 Å apart, and the other
type of clash involves atoms that are less than 3.6 Å apart.
We adopt these criteria in what follows.

Herein, we apply the proposed algorithm for removing
averaging artifacts from clusters of structures generated by
the TASSER (Threading/ASSembly/Refinement) algo-
rithm [11]. Within TASSER, generated structures are clus-
tered using SPICKER [9] and the cluster with the highest
structural density is selected (this is still true in current
version of TASSER [10]). Subsequently, the centroid
model (called COMBO) that is obtained by averaging all
the cluster members of the most densely populated cluster
is selected as the predicted structure. In various bench-
marks of the TASSER algorithm [13], the averaged struc-
ture (aka, the COMBO model) is generally closest to the
native in terms of global RMSD. It is closer to the native
structure than all the individual cluster members, includ-
ing the medoid (CLOSC model). Hence, TASSER outputs
the cluster centroid (COMBO model) as its final model.
In this regard, averaged models have also been shown to
outperform minimum free energy structures in the con-
text of RNA secondary structure prediction [2].

Our goal is to generate a structure that is as close as possi-
ble to the 'averaged structure' while maintaining realistic
bond lengths and angles and local geometry. Unless oth-
erwise stated, the term bond length refers to 'virtual bond
length' between two Cα atoms throughout this report,
and bond angle refers to 'virtual bond angle' between any
three consecutive Cα atoms. To address this issue, we have
developed a new algorithm, MCORE (Monte CarlO based
REfinement) that is designed to generate such structures
by minimizing the difference between the 'averaged' and
the physically reasonable structure using a Monte Carlo
minimization procedure. We show that our approach is
robust and general and can overcome averaging artifacts
with minimal reduction of structure quality as assessed by
the RMSD of the resulting model from the native struc-
ture. Once the refined Cα model is obtained, then
approaches like the one based on Backbone Building from
Quadrilaterals proposed by Gront et al. [14] can be used
to complete backbone reconstruction.

Methods
The central idea behind our approach is to start from a
structure that has physically allowed bond lengths and
then minimize the difference between this starting struc-
ture and the averaged structure. In this respect, our meth-
odology consists of two basic components: (1) generation
of the starting structure and (2) minimization of this start-
ing structure in the presence of the averaged structure.
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Starting Structure
We explore two types of starting structures: (1) a fully
extended structure with bond length corresponding to the
average bond length obtained from the PDB and all ψ and
ψ = 180°, (2) a model that is close to the 'averaged struc-
ture' but has physically reasonable bond length and
angles, which we call the 'close-by model'. A typical model
of this type can be the structure that is closest (based on
RMSD) to the 'averaged structure' in an ensemble of pro-
teins. In case of TASSER, CLOSC models fall in this cate-
gory. In case, when two structures have the same RMSD to
the averaged structure, one of them is chosen at random.
Extended structures will be required when no 'close-by
model' is available.

Energy Function
The pseudo energy potential, V, in our algorithm is pre-
sented in equation (1). The potential, V, consists of three
components: a harmonic term for excluded volume viola-
tions, a harmonic term for virtual bond angle violations
and a third term that drives the conformation towards the
target structure. Thus, V is given by

where N is the number of Cα atoms; kexcl, kang, kclos are the

weights of corresponding contributions to V. rkl is the dis-

tance between the kth and lth Cα atoms, r0_excl is the cutoff

parameter for excluded volume violations and is set to 4 Å
if rkl < 4.0 Å, otherwise r0_excl is set to be equal to rkl. That

is, this contribution to the potential is turned off. θi, i+1, i+2

is the virtual bond angle formed by the ith, i+1st, and i+2nd

Cα atom θ0_ang is the cut-off angle, and is set to be 70° if

θi, i+1, i+2 < 70°, 150° if θi, i+1, i+2 > 150°, or θ0_ang = θi, i+1, i+2

otherwise;  is the distance between the corresponding

Cα atoms of the target structure and the current confor-
mation, and d0_clo is the maximum allowed displacement

between the corresponding Cα atoms and is set to be

equal to 0.001 if  > 0.001 Å or is set equal to  oth-

erwise. The values for these parameters are chosen such
that they are close to those by Oldfield et al. [15] The val-
ues of kclos, kexcl, and kangare chosen to be 1.0831, 0.56818

and 0.015, respectively, on the basis of optimization of
the parameters using MINUIT [16] to maximize the corre-
lation between the energy function and the RMSD to the
native structure and manual adjustment based on empiri-
cal observation for a set of 726 proteins that are used for
training parameters as described in the data set. The

RMSD values are measured on the Cα atoms for all the
cases except those where specified.

Move Sets
Another important aspect of a Monte Carlo simulation is
the move set that moves the structure from the current con-
formation to the next one. Selection of move sets is very
critical to the performance of the simulation itself. We
have designed two types of move sets, one of which is glo-
bal and another is local. Both sets preserve initial bond
lengths. A schematic overview of both is depicted in Fig-
ure 1. There are two types of local moves: i) one to five
bead moves that preserve the geometry of the chain out-
side the fragment whose conformation is changed and ii)
one to four bead moves at both ends of the chain. In both
the cases, the geometry of the chain outside the targeted
fragment is preserved. The global move involves a global
rotation of the entire chain, which for the ith residue
involves a rotation about the i-1 to ith bond. A given
Monte Carlo step consists of N-k-1 attempts at a k-bead
move (where k = 1 to 5), plus k (= 5) attempts at each of
l-bead N-terminal and l-bead C-terminal moves (where l =
1 to 4), and one attempt at a global reorientation move.
Of course, attempt locations are randomly chosen.

We performed computational experiments on the set of
726 proteins described below where an extended structure
(which has identical bond lengths to the native from
which it was generated) was driven towards the corre-
sponding average structure using the algorithm described
above. The snapshot of energy vs. number of steps for this
set of experiments is shown in Figure 2. The average Cα
RMSD of the proteins to their respective native structure
for a relatively short (1000 steps) run was 0.06 Å.

Convergency Criteria
There are no straightforward convergence criteria for
Monte Carlo Simulations (MCS). However, two obvious
convergence criteria are: (1) allowing for a pre-specified
total number of steps and (2) allowing the algorithm to
proceed until it ceases to make progress. Herein, we use
both types of convergency criteria. Starting from the 726
extended structures, the average final RMSD for a 2000
steps run was 0.05 Å. Hence, we choose 2000 steps as the
specified steps for our simulation. Furthermore, we also
devised a mechanism to stop the algorithm when it ceases
to make progress. We define that the algorithm ceases to
make progress after step j if following criteria is satisfied
for every i, where 1 <i <n:

∀i(RMSDj - RMSDj-i) <T (2)

where RMSDj is the RMSD of the conformation after j
steps and RMDSj-i is the RMSD of the conformation after
j-i steps. The value of i goes from 1 through n and T is the
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tolerance cutoff. Once the step j (where the algorithm
ceases to make progress) is obtained, the simulation is run
for extra x steps. In other words, the simulation is stopped
after j+x number of steps if the value of RMSD of the last
n steps is within the tolerance region compared to the
value of the step j. The values of n, x and T were chosen
empirically and were chosen to be 50, 10 and 0.05 respec-
tively. Monte Carlo simulations were performed using the
above move set and the standard Metropolis criteria at a
temperature of 450 K [17].

Data Set
To verify the application of MCORE algorithm, we use it
to remove the averaging artifacts in the output of TASSER
algorithm. The data set used for this study consists of 2090
non-homologous single domain proteins with less than
200 residues with a maximum of 35% pairwise sequence
identity to each other that cover the Protein Data Bank. All

of these proteins have an initial RMSD of COMBO model
(averaged model) against the native protein to be less
than 6.5 Å. This is from the fact that the predicted models
that are about 6.0 Å to the native structures are likely to
have the same fold as the native structure [18]. In addi-
tion, from the TASSER outputs we have corresponding
COMBO structure and CLOSC structures for each of these
proteins. Out of the 2090 proteins, 726 proteins are used
for training of model parameters, whereas the remaining
1364 proteins are used for validation. All root mean
square deviation (RMSD) values refer to Cα atom com-
parisons unless otherwise stated.

Results and discussion
Comparison of Two Types of Starting Structures
For the comparison between the two types of starting
structure schemes: extended structure and 'close-by'
model, we performed computational experiments on the

Schematic diagram of move setsFigure 1
Schematic diagram of move sets. Illustration of different move sets. The circles represent Cα atoms. The axis joining two 
black circles in each figure represents the axis of rotation of all other involved atoms. The solid line represents the orientation 
of the Cα atoms before the move and dotted lines represent the orientation of the Cα atoms after the move. The middle dots 
represent the same figures for two-bead, three-bead and four-bead moves in case of the top row, two-bead and three-bead 
moves in case of 2nd and 3rd row figures respectively. The move sets in the first three rows are 'local moves' and the 'Rest-all 
bead move' is a global move.
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set of 1364 test set of proteins as described in the data set.
For each type of starting structure scheme, we run our
algorithm for 100, 200 and 2000 steps (the results are pre-
sented in Table 1). It can be observed from the table that
starting from close-by models produce better results in all
three regimes (i.e., 100, 200 and 2000 steps) relative to
the extended models. Hence, for the comparison of our
method with CLOSC and COMBO models, we use the
close-by starting scheme. The algorithm with close-by
starting scheme that uses convergency criteria as described
in equation 2 is termed MCORE, whereas the version of
the algorithm with fixed number of steps (= 2000) using
the same close-by starting scheme is termed MCORE-L.

Refinement of COMBO Models
Before comparing the results of the refined models, we
also take an opportunity to analyze the RMSD to native of
the 1364 COMBO and CLOSC models. Across the dataset,
only 100 CLOSC models had lower RMSD values relative
to the native structure compared to the COMBO models,
reiterating the advantage of averaged structures in this
regard. The average RMSD of COMBO model to the native

structure is 3.28 Å, whereas the average RMSD of CLOSC
model to the corresponding native structure is 3.55 Å.

Upon application of the MCORE algorithm to the refine
the COMBO models, it is found that the refined represent-
ative structures have similar RMSD values to native struc-
tures, but with far fewer unphysical characteristics. Figure
3(a) plots the RMSD values of the MCORE to native com-
parisons versus the COMBO to native comparisons,
which demonstrates a strong linear correlation between
the two methods. The RMSD values of the COMBO mod-
els are only slightly better than those from MCORE. This
point is reinforced by Figure 3(b), which plots the density
of RMSD differences between the methods. The majority
of RMSD differences are slightly less than 0.5 Å. In addi-
tion, 38 MCORE refined structures had even better RMSD
than their corresponding COMBO model. Figure 3(c)
plots fraction of clashes within the MCORE vs. COMBO
models. Clearly, the MCORE models have far fewer
clashes than their COMBO counterparts. The average per-
centage of clashes in MCORE refined models is 1.09%,
whereas the average percentage of clashes in COMBO
models is 63.0%.

We also compared the RMSD (to native) of the MCORE
refined COMBO models to that of the unrefined CLOSC
models. Here, it was observed that only 99 of 1364
MCORE refined models had poorer RMSD values than the
corresponding CLOSC models. The average RMSD for
MCORE models was 3.36 Å. In addition, for MCORE-L,
we were able to obtain an average RMSD of 3.35 Å. Based
on the much reduced compute time of the MCORE algo-
rithm (discussed below), it is satisfying to note that the
average RMSD of MCORE-L models and MCORE models
are virtually the same. These results are summarized in
Table 2.

Overall, it is found that MCORE produces models better
in terms of RMSD and TM-score [19] versus the corre-
sponding CLOSC models. Moreover, the MCORE models
are only slightly worse than the averaged COMBO mod-
els, which is consistent with our initial problem state-
ment. Note that the larger TM-score, the better the model.
Moreover, if we discriminate clashes into the two CASP
types, then it is more evident that our refined models are
much better in terms of clashes as they do not have any
atoms involved in clashes that are less than 1.9 Å, whereas

Snapshot of energy Vs Number of stepsFigure 2
Snapshot of energy Vs Number of steps. The snapshot 
of energy Vs Number of Monte Carlo steps for driving the 
corresponding extended structure to its native structure for 
a set of 726 proteins as defined in the data set.

Table 1: Comparison of results for two types of starting structures1

Starting Structure 100 steps 200 steps 2000 steps

Extended 1 min/3.38 Å/1.8% 2 min/3.35 Å/1.5% 20 min/3.34 Å/1.3%
'Close-by model' 1 min/3.36 Å/1.0% 2 min/3.35 Å/1.0% 20 min/3.34 Å/1.2%

1Extended and 'close-by model' for 100 steps, 200 steps and 2000 steps for the same set of 1364 proteins. The numbers X/Y/Z denote time 
required (on a Desktop pc with 2 GB of RAM and 2.0 G Hz Intel processor) for the respective runs, RMSD to the native and the percentage of 
atoms that are involved in clashes less than 3.6 Å respectively.
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COMBO models have 4.5% of the atoms involved in this
regime of clashes.

We also investigated the average number of steps and time
for the MCORE and MCORE-L algorithms. It was
observed that for MCORE the number of average Monte
Carlo Steps is less than 110 (= 109.21) and the average
running time is 1.88 minutes. Moreover, for MCORE-L,
the average running time is 20 minutes. Hence, MCORE
can be applied to a wide variety of problems concerning
the averaging of macromolecular structures due to its fast
execution time.

We also analyzed some representative proteins that have
higher RMSD deviation compared to the COMBO struc-
ture. In Figure 4(a) we present the COMBO and native
model and in Figure 4(b) we present the MCORE and
native model of protein 1QLE (chain D) which had the
largest RMSD deviation compared to the COMBO struc-
ture. Furthermore, to highlight the differences, we mag-
nify the N-terminus region of Figures 4(a) in 4(c) and
4(b) in 4(d) respectively. As can be seen in the figure, the
N-terminus region of the cytochrome C oxidase of the
protein in the COMBO model is totally unphysical and
hence, the large RMSD deviation between the MCORE
models and COMBO models. We also analyzed the vir-

tual bond distance in the model and found that there were
two bonds less than 0.8 Å and 9 bonds less than 2.5 Å. We
also analyzed other representative structures. As sus-
pected, we found that in most of the cases where there was
a large deviation between the COMBO RMSD and
MCORE RMSD, there was involvement of unphysical
bond lengths which reiterates the fact that there is trade-
off between local geometric correctness and deviation
from the target structure.

Comparison of COMBO models and MCORE modelsFigure 3
Comparison of COMBO models and MCORE mod-
els. (a) Scatter plot of the Cα RMSD of combo models and 
respective MCORE refined models for a set of 1364 proteins 
compared to corresponding native structure (b) Density plot 
of distribution of RMSD deviations between MCORE struc-
tures and the corresponding COMBO structures. c) Scatter 
plot of the fraction of atoms involved clashes in COMBO 
models and corresponding refined models for the same set.

Table 2: Cα RMSD of MCORE and other Models compared to 
the native structure for a set of 1364 proteins in terms of RMSD, 
TM-SCORE and percentage of atoms in the clashes2.

Methods Average Std. Dev
RMSD(Å) COMBO 3.28 1.39

PULCHRA 3.35 1.77
CLOSC 3.55 1.49
MCORE 3.36 1.42

MCORE-L 3.35 1.41
Methods Average Std. Dev

TM-Score COMBO 0.743 0.13
PULCHRA 0.746 0.13

CLOSC 0.719 0.13
MCORE 0.744 0.13

MCORE-L 0.746 0.13
Methods Average Std. Dev

Clashes <1.9 COMBO 4.50 10.01
PULCHRA 0.05 0.4

CLOSC 0 0
MCORE 0 0

MCORE-L 0 0
Methods Average Std. Dev

Clashes <3.6 COMBO 63.40 18.67
PULCHRA 3.64 12.00

CLOSC 0.00 0
MCORE 1.09 3.69

MCORE-L 1.20 4.02

2 The corresponding standard deviation values are also provided.

Comparison of PULCHRA models and MCORE modelsFigure 4
Comparison of PULCHRA models and MCORE mod-
els. (a) Scatter plot of the RMSD of PULCHRA models and 
respective MCORE refined models for a set of 1364 proteins 
(b) Scatter plot of the total number of clashes in PULCHRA 
models and corresponding refined models for the same set.
Page 6 of 9
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1QLE


BMC Structural Biology 2009, 9:12 http://www.biomedcentral.com/1472-6807/9/12
Comparison with PULCHRA
For the comparison of MCORE algorithm with existing
approaches, we also compared our results with PULCHRA
[1] refinement. PULCHRA is an all atom reconstruction
method that has an optimization of Cα carbon position
using steepest descent minimization procedure. Figure
5(a) plots the RMSD values of the PULCHRA to native
comparisons versus MCORE to native comparison. Figure
5(b) plots the fraction of atoms involved in clashes less
than 3.6 Å in PULCHRA models versus the MCORE mod-
els. The average RMSD of MCORE refined COMBO mod-
els was found to be 3.36 Å as compared to 3.35 Å for
PULCHRA. However, in terms of clashes MCORE models
on average only have 1.09%, whereas 3.64% of the atoms
from the PULCHRA models are involved in clashes. This
difference in clashes is statistically significant as shown in
Table 3 using a standard Z-test. Moreover, if we break
down the clashes into clashes less than 1.9 Å and clashes
less than 3.6 Å, it is found that MCORE models do not
have any clashes less than 1.9 Å, whereas PULCHRA does
(see Table 2). The clashes less than 1.9 Å are severe for fur-
ther refinement of the models. While the MCORE models
are slightly worse than those from PULCHRA in terms of
RMSD to native by 0.01 Å, they have a statistically signifi-
cant improvement in terms of clashes. Moreover, 480 (out
of the 1464) of the MCORE models resulted in better
refinement of the COMBO model versus PULCHRA. In
addition, for long runs of MCORE (MCORE-L), we were
able to obtain an average RMSD of 3.35 Å, which is exactly
same as obtained by PULCHRA. Moreover, the MCORE-L
models had far fewer clashes than the PULCHRA models
(1.2% vs. 3.64%, respectively).

Furthermore, MCORE algorithm is comparable to PUL-
CHRA in terms of efficiency also, as on average the com-
putation time is around a minute. One of the major

advantages of our approach compared to PULCHRA is
that if the input structure is heavily distorted, PULCHRA
might fail to converge where MCORE will always con-
verge.

All-atom Model Reconstruction
It is essential to have a model with physical bond lengths
and bond angles if further analysis is to be performed on
the model. Since structure prediction methods often pro-
duce Cα-only models, all-atom models must be con-
structed from the Cα descriptions. In this regard, we built
all-atom representations of the MCORE refined Cα atom
models. The initial backbone reconstruction method
applied is the backbone reconstruction method of an
algorithm proposed by Milik et al [20]. Once the back-
bone atoms are reconstructed, any side-chain packing
methods [21,22] can be utilized to build the side-chains.
We performed the side-chain reconstruction using one of
the most widely used side-chain packing algorithms
SCWRL 3.0 [22]. The MCORE refined models for the set
of 1364 proteins had an average all-atom RMSD of 4.19 Å

Table 3: Comparison of MCORE to COMBO and to PULCHRA 
in terms of RMSD and percentage of atoms involved in the 
clashes3.

Combo Vs MCORE
RMSD (Å) Combo 3.28

MCORE 3.36
p-value 0.008

Clashes Combo 63.00%
MCORE 1.09%
p-value < 2.22E-16

MCORE Vs PULCHRA
RMSD (Å) PULCHRA 3.35

MCORE 3.36
p-value 0.017

Clashes PULCHRA 3.64%
MCORE 1.00%
p-value 2.22E-16

3P-values are given where available using the z-test. Significant P-
values are in bold.

Representative Rasmol view of a PDB (1QLE:D) where the RMSD of the MCORE model and the corresponding COMBO model was the highestFigure 5
Representative Rasmol view of a PDB (1QLE:D) 
where the RMSD of the MCORE model and the cor-
responding COMBO model was the highest. a) The 
COMBO model compared to the native structure. b) Refined 
model compared to the native structure, c) magnified N-ter-
minal region of Figure 4(a) and d) Magnified N-terminal 
region of Figure 4(b). The coloring is based on RasMol 
default coloring where N terminus is colored red and the C 
terminus are colored blue.
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(which is, or course, higher than the value of 3.35 Å for
the Cα models). The PULCHRA refined all-atom models
on the same dataset had a comparable average value of
4.17 Å.

Conclusion
In this paper, we presented MCORE, a Monte-Carlo based
algorithm for removing averaging artifacts of the averaged
structure to improve the quality of the consensus struc-
ture. We verified the application of the proposed algo-
rithm by applying the algorithm to refine the COMBO
models of a set of 1364 proteins generated by TASSER
algorithm, refining and correcting unphysical bond
length and bond angles. On average, the RMSD to native
of the refined model is 3.36 Å; where as RMSD of the
COMBO model to the native is 3.28 Å, which is a mere
0.08 Å poorer than the RMSD of the COMBO model
(averaged model). On the other hand, the average per-
centage of atoms involved in the clashes in the refined
MCORE models is reduced from 63% (for the COMBO
models) to only 1.0%. Moreover, slight RMSD gains were
obtained by using a version of the MCORE algorithm that
samples longer. However, the difference between
MCORE-L (the longer version) and MCORE (Table 3) is
not statistically significant, emphasizing that our conver-
gence criterion is robust.

We have also generated a framework for producing all-
atom models from the Cα only atom models by first
reconstructing the backbone and then doing the side-
chain reconstruction using existing methodologies. An
obvious extension of the work is to refine not only Cα
models, but also to apply MCORE to all-atom models. In
essence, the new refinement algorithm helps in attaining
structures with more physical bond lengths and bond
angles by overcoming averaging artifacts produced due to
averaging of structures. It has to be noted that there is
always a trade-off between local geometric correctness and
the deviation from the target structure. Generating aver-
aged structures that are not heavily distorted can mini-
mize this trade-off. These results provide a genuine model
for the subsequent analysis of the respective protein struc-
ture using molecular mechanics force field. In addition,
this algorithm does not have convergence problems like
PULCHRA (which sometimes fails to converge if the input
models are heavily distorted). Although the algorithm
was tested for TASSER models only, the presented
approach is general and can be applied to remove averag-
ing artifacts arising from averaging over any ensemble of
molecular conformations.
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