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Abstract

Background: High precision protein loop modelling remains a challenge, both in template based and template
independent approaches to protein structure prediction.

Method: We introduce the concepts of protein loop clustering and percolation, to develop a quantitative approach
to systematically classify the modular building blocks of loops in crystallographic folded proteins. These fragments are
all different parameterisations of a unique kink solution to a generalised discrete nonlinear Schrödinger (DNLS)
equation. Accordingly, the fragments are also local energy minima of the ensuing energy function.

Results: We show how the loop fragments cover practically all ultrahigh resolution crystallographic protein
structures in Protein Data Bank (PDB), with a 0.2 Ångström root-mean-square (RMS) precision. We find that no more
than 12 different loop fragments are needed, to describe around 38 % of ultrahigh resolution loops in PDB. But there is
also a large number of loop fragments that are either unique, or very rare, and examples of unique fragments are
found even in the structure of a myoglobin.

Conclusions: Protein loops are built in a modular fashion. The loops are composed of fragments that can be
modelled by the kink of the DNLS equation. The majority of loop fragments are also common, which are shared by
many proteins. These common fragments are probably important for supporting the overall protein conformation.
But there are also several fragments that are either unique to a given protein, or very rare. Such fragments are
probably related to the function of the protein. Furthermore, we have found that the amino acid sequence does not
determine the structure in a unique fashion. There are many examples of loop fragments with an identical amino acid
sequence, but with a very different structure.
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Background
Protein taxonomy [1–5] reveals that crystallographic pro-
tein structures have surprisingly little conformational
diversity. It might be that the majority of different con-
formations have already been found [6, 7]. This apparent
convergence in protein structure provides the rationale
for the development of comparative modelling or thread-
ing techniques [8–12]. These approaches try to predict
the tertiary structure of a folded protein using libraries
of known protein structures as templates. According to
the community-wide Critical Assessment for Structural
Prediction (CASP) tests [13], at the moment this kind of
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methods have the best predictive power to determine a
folded conformation.
In the loop regions, comparative modelling approaches

still continue lacking in their precision [14, 15]. It is not
uncommon that there are gaps in the loop regions that
need to be filled by various insertion techniques. The
success in loop modelling is also often limited to super-
secondary structures where α-helices and β-strands are
connected to each other by relatively short twists and
turns [16, 17]. In the case of a very short loop, with no
more than three residues, the shape can be determined
by a combination of geometrical considerations and stere-
ochemical constraints [18]. In the case of longer loops,
both template based and template independent meth-
ods are being developed to predict their shapes [19–21].
The underlying assumption is that the number of loop
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conformations which can be accommodated by a given
sequence should be limited. The different fragments
which are already available in the Protein Data Bank
(PDB) [22] database could then be used like Lego bricks,
as structural building blocks in constructing the loops.
A given amino acid sequence is simply divided into
short fragments, and the shape of the ensuing loop is
deduced using homologically related fragments that have
known structures. The entire protein is then assem-
bled by joining these fragments together. For the pro-
cess of joining the fragments, both all-atom energy
functions and comparisons with closely homologous
template structures in the Protein Data Bank can be
utilised [8, 9, 12, 14].
In the present article we propose a new systematic,

purely quantitative method to identify and classify the
modular building blocks of PDB loops; we identify a
loop following the DSSP [23] convention. Our approach
is based on a first-principles energy function [24–29]. It
is built on the concept of universality [30–36] to model
the fragments of even long protein loops in terms of
different parameterisations of a unique kink that solves
a variant [37, 38] of the discrete nonlinear Schrödinger
(DNLS) equation [39, 40]. Our starting point is the obser-
vation made in [41] that over 92 % of loops in those
PDB structures that have been measured with better than
2.0 Å resolution, can be composed from 200 different
parameterisations of the kink profile, with better than
0.65 Ångström RMSD (root-mean-square-distance) accu-
racy. Here we refine this observation, with the aim to
develop it into a systematic loop fragment classification
scheme. For this we consider only those ultrahigh preci-
sion PDB structures that have been measured with better
than 1.0 Å resolution. This ensures that the B-factors
in the loop regions are small, and in particular that the
structures have not been subjected to extensive refine-
ment procedures. Indeed, two loop fragments should be
considered different only, when the average interatomic
distance is larger than the average Debye-Waller B-factor
fluctuation distance. If the B-factors are large, any system-
atic attempt to identify and/or distinguish two fragments
becomes ambiguous. In the case of these intra-high res-
olution structures we can aim for the RMSD precision of
0.2 Å. We estimate this to be the extent of zero point fluc-
tuations i.e. a distance around 0.2 Å corresponds to the
intrinsic uncertainty in the determination of heavy atom
positions along the protein backbone. Thus any differ-
ence less than 0.2 Å between average atomic coordinates
is essentially undetectable. By explicit constructions, we
show how in the case of this subset of ultrahigh resolu-
tion PDB protein structures, the loops can be systemati-
cally modeled using combinations of the unique kink of
the generalised DNLS equation. As such, our approach
provides a foundation for a general approach to classify

loops in high precision crystallographic PDB structures,
in terms of an energy function based first-principles
mathematical concept.

Method
Cα based Frenet frames
Let ri (i = 1, . . . ,N) be the coordinates of the pro-
tein backbone α-carbon (Cα) atoms. The indexing starts
from the N terminus. At each ri we introduce the dis-
crete Frenet frame (ti,ni,bi) shown in Fig. 1 following the
method in reference [42].
From the Frenet frames, we define the virtual Cα back-

bone bond (κ) and torsion (τ ) angles shown in Fig. 2 as
follows,

cos κi+1 = ti+1 · ti (1)

cos τi+1 = bi+1 · bi (2)

We identify the bond angle κ ∈ [0,π ] with the latitude
angle of a two-sphere which is centered at the Cα carbon;
the tangent vector t points towards the north-pole where
κ = 0. The torsion angle τ ∈ [−π ,π) is the longitudinal
angle on the sphere. We have τ = 0 on the great circle
that passes both through the north pole and through the
tip of the normal vector n, and the longitude increases in
the counterclockwise direction around the tangent vector.
We stereographically project the sphere onto the complex
(x, y) plane from the south-pole

z = x + iy ≡
√
x2 + y2 eiτ = tan (κ/2) eiτ (3)

as shown in Fig. 3; the north-pole where κ = 0 becomes
mapped to the origin (x, y)=(0,0) while the south-pole κ =
π is sent to infinity.
We often find it convenient to extend the range

of the latitude κ from positive to arbitrary real val-
ues. We compensate for this double covering of the

Fig. 1 Discrete Frenet frame. (Color online) Discrete Frenet frame
vectors t,n,b are shown in arrows
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Fig. 2 Bond and torsion angles. (Color online) Bond (κi) and torsion (τi)
angles with the definitions as Eqs. (1) and (2) are noted in the figure

sphere by introducing the following discrete Z2 gauge
transformation

κk → − κk for all k ≥ i
τi → τi − π

(4)

This transformation has no effect on the backbone coor-
dinates ri, and it leaves the Cα backbone intact.

The Cα trace visualization, loops and kinks
The Cα map
We visualise the backbone Cα trace of a given protein in
terms of a trajectory on the stereographically projected
two-sphere, as follows [43–45]: At the location of each Cα

we introduce the corresponding discrete Frenet frames
(ti,ni,bi). The base of the ith tangent vector ti is located at
the position ri of the ith Cα carbon, it coincides with the
centre of the two-sphere and the vector ti points towards
the north-pole. We translate the sphere from the location
of the ith Cα to the location of the (i + 1)th Cα, without
introducing any rotation of the sphere with respect to the
ith Frenet frames. We identify the direction of ti+1, i.e. the
direction towards the Cα carbon at site ri+2 from the site
ri+1, on the surface of the sphere in terms of the ensuing

Fig. 3 Stereogrphic projection. (Color online) Stereographic
projection of two sphere with latitude κ and longitude τ

spherical coordinates (κi, τi). We repeat the procedure for
all the backbones in PDB. To enhance statistics, for visual-
isation purposes we use here those protein structures that
have been measured with better than 2.0 Å resolution,
which gives us the map shown in Fig. 4a; see also Figure S1
in Additional file 1. The color intensity correlates directly
with the statistical distribution of the (κi, τi): red is large,
blue is small and white is none. The map describes the
direction of the Cα carbon at ri+2 as it is seen at the vertex
ri+1, in terms of the Frenet frames at ri.
Note how the statistical distribution in Fig. 4 concen-

trates within an annulus, roughly between the latitude
angle values (in radians) κ ∼ 1 and κ ∼ π/2. The exterior
of the annulus is a sterically excluded region. The entire
interior is in principle sterically allowed, but it is very
rarely occupied in the case of folded proteins. The four
major secondary structure regions, α-helices, β-strands,
left-handed α-helices and loops, are identified according
to their PDB classification. For example, (κ , τ ) values (in
radians) for which

{
κi ≈ π

2
τi ≈ 1 (5)

describes a right-handed α-helix, and values for which

{
κi ≈ 1
τi ≈ ±π

(6)

describes a β-strand. We note that the Fig. 4a is akin
the Newman projection of stereochemistry: The vec-
tor ti which is denoted by the red dot at the center of
the figure, points along the backbone from the proximal

Fig. 4 Cα stereographical projection map and folding index. (Color
online) a The stereographically projected Frenet frame map of
backbone Cα atoms, with major secondary structures identified. Also
shown is the directions of the Frenet frame normal vector n; the
vector t points upwards and colour coding corresponds to the
number of PDB entries with red large, blue small and white none. b
An example of a loop (kink) trajectory, starting (a) and ending (e) in
α-helical position
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Cα at ri towards the distal Cα at ri+1, and the colour
intensity displays the statistical distribution of the ri+2
direction. We also note that the Fig. 4 provides non-local
information on the backbone geometry; the informa-
tion content extends over several peptide units. This is
unlike the Ramachandran map, which can only provide
localised information in the immediate vicinity of a sin-
gle Cα carbon. As shown in [46], the Cα backbone bond
and torsion angles (κi, τi) are sufficient to reconstruct
the entire backbone, while the Ramachandran angles
are not.
In Fig. 4b we visualise as an example a path made by

a generic protein loop that connects two right-handed
α-helical structures. A notable property of the trajectory
drawn in Fig. 4b is that it encircles the north-pole of the
two-sphere. It turns out that this kind of encircling is quite
generic for loops, even entire folded proteins [47]. Conse-
quently, we assign to each loop a winding number which
we term folding index that we denote Indf [47] and define
as follows,

Indf =
[

�

π

]
(7)

� =
n2−2∑

i=n1+2

⎧⎪⎪⎨
⎪⎪⎩

τi − τi−1 − 2π if τi − τi−1 > π

τi − τi−1 + 2π if τi − τi−1 < −π

τi − τi−1 otherwise

(8)

Here [ x] denotes the integer part of x, and � is the total
rotation angle (in radians) that the projections of the Cα

atoms of the consecutive loop residues make around the
north pole. The folding index is a positive integer when the
rotation is counterclockwise, and a negative integer when
the rotation is clockwise. The folding index can be used to
detect and classify loop structures and entire folded pro-
teins, in terms of its values. The value is equal to twice the
number of times the ensuing pathway encircles the north-
pole in themap of Fig. 4; for the trajectory shown in Fig. 4b
the folding index is +2.

The discrete nonlinear Schrödinger equation
The virtual bond length between two neighboring Cα

atoms is essentially constant, with the value 3.8 Å. Accord-
ingly the Helmholtz free energy for the Cα trace backbone
can be expressed in terms of the virtual bond angles κi and
dihedral angles τi only. To the leading order in the infrared
limit the result coincides with

F = −
N−1∑
i=1

2 κi+1κi +
N∑
i=1

{
2κ2

i + c
(
κ2
i − m2)2

+ b κ2
i τ 2i + d τi + e τ 2i + q κ2

i τi
} (9)

This is essentially the Hamiltonian of the discrete
nonlinear Schrödinger equation [39, 40]; for a detailed
derivation we refer to [24–29]. Remarkably, the free
energy (9) supports a kink (topological soliton) as a clas-
sical solution [37, 38]. An excellent approximation of a
kink can be obtained by naively discretising the kink solu-
tion of the continuum nonlinear Schrödinger equation
[37, 38, 48]

κi = μ1 exp [σ1(i − s)] + μ2 exp [−σ2(i − s)]
exp [σ1(i − s)] + exp [−σ2(i − s)]

(10)

The torsion angles τ are then expressed as functions of
the bond angles κ

τi[κ] = −1
2
d + qκ2

i
e + bκ2

i
(11)

For the torsion angles, from (11) we conclude that the
overall scale of the parameters (d, q) and (e, b) cancel in the
expression (11). This leaves us with only three indepen-
dent parameters. In (10) there are four parameters when
we use translation invariance to remove s. Thus the pro-
file of a single kink becomes fully determined in terms
of seven independent parameters. This coincides exactly
with the number of independent coordinates along a Cα

backbone segment, with six residues. For this, we may
always place the first residue to coincide with the origin
of a Cartesian (xyz) coordinate system. We can always
place the second residue along the z-axis, and we can
always place the third residue on the x = 0 plane. Thus,
there is only one independent coordinate for the three
first residues. Since the remaining three residues can each
be placed to arbitrary angular directions, there are six
additional independent coordinates. Accordingly, a seg-
ment with six residues indeed engages seven independent
parameters.

Clustering and percolation
We shall classify the loop structures in PDB in terms of
the following clustering algorithm:

• We define a cluster to be a set of loop fragments such
that for each fragment in a given cluster there is at
least one other fragment within a prescribed RMS
cut-off distance.
Two clusters are disjoint, when the RMSD between
any fragment in the first cluster and any fragment in
the second cluster exceeds this prescribed RMS
cut-off distance.

• We define the initiator of a cluster to be an a priori
random loop fragment which defines the cluster by
completion, as follows: We start with the initiator.
We identify all those fragments in our entire data set
which deviate from the initiator by less than the given
RMS cut-off distance. We continue the process by
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identifying all those fragments, that deviate from the
fragments that we have identified in the previous
step, by less than the RMS cut-off distance. We
repeat the procedure until we find no additional
fragments in PDB, within the RMS cut-off distance
from any of those fragments that have been identified
in the previous steps.

The cluster is clearly independent of its initiator, any ele-
ment of the cluster could be used as the initiator. But the
cluster depends on the RMS cut-off distance. Moreover, if
the RMS cut-off distance is too large, no clear clustering is
observed.
According to [49] for a PDB protein structure which is

measured with resolution 2.0 Å or better, the character-
istic values of the thermal B-factors are mostly less than
around

Bmax
<∼ 35 Å2 (12)

From the Debye-Waller relation we then obtain the fol-
lowing estimate for the one standard deviation error in the
atomic coordinates

√
< x2 >max =

√
Bmax
8π2 ≈ 0.65 Å (13)

Thus, two loop fragments that have been measured
with 2.0 Å resolution should be (in average) considered
different only, when their RMS distance exceeds 0.65 Å.
The construction of PDB loop fragments in terms of

the kink profile (10), (11) in those crystallographic pro-
tein structures which have been measured with resolution
2.0 Å or better, has been addressed in [41]. There, it was
found that over 92 percent of loops can be covered in a
modular fashion by 200 explicit kink profiles (10), (11),
with RMSD accuracy that matches (13) i.e. with less than
0.65 Å RMSD deviation from the crystallographic struc-
ture. Thus 0.65 Å RMS distance is the appropriate RMS
cut-off value, to search for for the more refined clustering
patterns in those crystallographic structures which have
been measured with resolution 2.0 Å. However, we find
that the value 0.65 Å is too large, to observe clear clus-
tering patterns. Accordingly, we shall search for clustering
by considering only those PDB structures that have been
determined with the ultrahigh resolution 1.0 Å or bet-
ter. For these ultrahigh resolution structures, a precision
better than the value (13) can be expected. To determine
an appropriate value, we display in Fig. 5 the number of
all Cα atoms in all currently available PDB structures,
that have been measured with resolution 1.0 Å or better,
as a function of their Debye-Waller fluctuation distance.
For most of the structures, the fluctuation distance is

clearly below the upper bound (13); the maximum of
the curve is located at around 0.3 Å. We also observe
the (essential) absence of structures with a fluctuation
distance less than 0.1 Å; historically this distance is con-
sidered as the boundary wavelength between x-rays and
γ -rays.
Using a combination of Fig. 5 with various tests that

we have performed, we have arrived at the conclusion
that 0.2 Å in RMS distance can be currently adopted as
a reasonable estimate for the minimal zero-point fluctu-
ation distance in ultra-high resolution structures, those
that have been measured with better than 1.0 Å reso-
lution. Thus we shall try and see, to what extent loops
in these protein structures can be classified in terms of
elemental fragments, such that two fragments are con-
sidered different when their RMS distance exceeds 0.2 Å.
According to Fig. 5, over 99 % of individual Cα carbons
that have been measured with below 1.0 Å resolution,
have a B-factor fluctuation distance which is larger than
0.2 Å; our choice of cut-off distance is close to the
3-σ level.
We note that other cut-off values can be introduced;

the ultimate appears to be 0.1 Å. But our qualitative
conclusions are fairly independent of the value chosen,
provided it is small enough to provide a clustering pat-
tern. In this article our goal is to present a proof-of-
concept. To our knowledge, no related analysis has been
previously attempted, to systematically classify the loop
structures in ultra-high resolution crystallographic pro-
tein conformations, in a quantitative fashion using an
energy function. In particular, no commonly accepted
experimental standard exist, that we could rely on, to infer
the “most preferred” cut-off value. We hope that such
a value can be eventually inferred, from careful experi-
mental measurements. Thus, at the moment we have no
criterion to prefer any other particular value, 0.2 Å i.e.
around 3-σ appears to be a reasonable choice at this
point.
We start the identification of loop fragments, using the

set of 200 fragments constructed in [41]. But our results
are independent of the starting point, quite similar results
can be obtained using a fairly generic set of loop fragments
as a starting point.We note that the fragments in [41] have
between five and nine residues, and most of them (116
out of 200) have six residues. We have already argued that
six is the optimal number of residues in a loop fragment,
as it matches the number of independent parameters in
the kink profile (10), (11). Thus, we shall consider only
fragments that have six residues, in the clustering algo-
rithm. In this manner, we find that we can classify all
PDB fragments into clusters, each determined by their
initiator.
We have found that there are clusters that have a very

large number of fragments. But we also find that there
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Fig. 5 Debye-Waller fluctuations for PDB structures. Number of Cα entries in PDB measured with resolution under 1.0 Å vs. the Debye- Waller
fluctuation distance. The blue line denotes the Debye-Waller fluctuation distance distribution for β-sheets, black for α-helices, and red for loop. The
entries near 0 correspond to the PDB structures 1ETL,1ETM and 1ETN. Note the logarithmic scale

are clusters with only a single, or very few fragments. It
is natural to expect that those clusters which are large,
contain mostly fragments that are structurally important.
On the other hand, those clusters which are small should
include mainly fragments that are functionally impor-
tant. Furthermore, we find several examples of amino
acid sequences that are included in different clusters:
The sequence does not define the structure, in a unique
fashion. This leads us to address the concept of cluster
percolation: Given the sequence of a loop fragment in a
cluster, percolation means that there are other, possibly
new clusters where the same sequence appears but with a
different structure.

Results
Clustering
We have constructed our clusters by starting with the 200
loop fragments that were introduced in [41]. Around 92 %
of all loops in those PDB structures that have been mea-
sured with resolution better than 2.0 Å, are within a 0.65 Å
RMS distance from some of the 200 loop fragments. How-
ever, when we decrease the RMSD cut-off distance to 0.2
Å, which is the cut-off distance used in the present article,
the coverage drops to below 2 % [41].
We remark that the authors of reference [41] did not

investigate clustering, as the concept is defined here. In
[41] all the RMS distances were evaluated from the fixed
set of 200 loop fragments, and the coverage of PDB loop
structures was determined in terms of these fixed loop
fragments.
When we specify to the present subset of PDB struc-

tures in [41] that have been measured with better than 1.0
Å resolution, we find that a total of 102 out of the 200
fragments in [41] have been measured with this resolu-
tion. We use these 102 loop fragments as the initiators, to
start our clustering construction.

12 clusters
The 102 loop fragments in [41] that have been mea-
sured with better than 1.0 Å resolution, have between
five and nine residues. Here we have argued that a loop
fragment modelled by (10), (11) has six residues. There
are 70 such clusters among the 200, but only 14 of them
contain more than 30 fragments. Moreover, two of these
merge together into an α-helical structure, when we sub-
ject them to our clustering algorithm; we call them bends
instead of kinks. The remaining 12 loop fragments deter-
mine clusters which cover around 38% of the 1.0 Å protein
loop structures, when we use our 0.2 Å RMSD cut-off.
These loop fragments are our final initiators. In Table 1
we list the PDB entry codes and residue numbers of these
initiators.

Table 1 The list of 12 initiators for clusters that have 6 residues
and give rise to 30 or more entries in the ensuing clusters (PDB
code, chain, PDB sites), together with the number of entries

Cluster # Initiator # entries

I 1vyr_A (174–179) 76

II 1g4i_A (56–61) 138

III 1gkm_A (163–168) 186

IV 4f18_A (1244–1249) 199

V 1a6m_A (18–23) 215

VI 1cex_A (140–145) 273

VII 1a6m_A (56–61) 308

VIII 1iee_A (47–52) 481

IX 1brf A (5–10) 1166

X 1ixh_A (200–205) 1405

XI 2o7a_A (62–67) 1586

XII 1gkm_A (9–14) 2374
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We proceeded to describe some of the major features
of the ensuing 12 clusters. Additional details including a
breakdown according to amino acid constituents in each
cluster, are presented in Figure S2 of Additional file 1.
The Figs. 6 and 7 show the (κ , τ ) distribution in each

of the 12 clusters on the stereographically projected two-
sphere of Fig. 4; note that the definition of bond angle
takes three residues while the definition of torsion angle
takes four. Thus for a 6 residue loop fragment there are
three (κ , τ ) pairs. The fourth κ-value could be used to
refine the loop classification, but here this possibility is not
considered.
In Figs. 8 and 9 we show the three dimensional pictures

of the initiators of the twelve clusters.
A detailed inspection reveals that except for IV, all the

initiators have the canonical structure of a single kink, in
terms of the folding index (8). Moreover, the initiator I is
part of a short loop connecting an α-helix and a β-strand.
However, the bond and torsion angle spectrum which we

display in Fig. 10a shows that this loop is actually a pair
of two kinks which are very close to each other, and the
initiator I is the second kink along the backbone.
On the other hand, a comparison with (8) suggests that

the initiator IV exhibits a somewhat small variation in the
values of the torsion angles, for a kink. This can be seen
in Fig. 6. The torsion angle values suggest that the ini-
tiator IV resembles more a bent α-helix than a kink. In
Fig. 10b, c we show the spectrum of the bond and tor-
sion angles of the initiator IV, both before and after we
have implemented theZ2 gauge transformation. Since this
bent structure determines an isolated cluster according to
our 0.2 Å cut-off criteria, it is included among our loop
fragments.
In Figs. 11 and 12 we show the three dimensional figures

of each of the twelve clusters, including all the entries.
Finally, we have also investigated how the coverage of

the 12 clusters increases, when we increase the cut-off
distance. The results are shown in Table 2.

Fig. 6 The stereographic maps of 12 clusters I-VI. The clusters I-VI in Table 1 are shown on the stereographic map like Fig. 4a; In each panel the order
along the Cα backbone is red → blue → yellow
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Fig. 7 The stereographic maps of 12 clusters VII-XII. The clusters VII-XII in Table 1 are shown on the stereographic map like Fig. 4a; The ordering
along the Cα backbone is red → blue → yellow

Cluster elongation and completion
In addition of the 12 initiators listed in Table 1, among
the 102 loop fragments of [41] that we have considered,
there is also one initiator that has only five residues. The
PDB code is 1p1x_A (80–84). The ensuing cluster with
five residue long elements is very large: There are a total
of 42618 entries. The reason for the occurrence of such a
large cluster is that the RMSD clustering criteria 0.2 Å is
too large for revealing clustering patterns in five-residue-
long loop segment: The five-residue-long loop fragment
covers all the five-residue-long loops, within the chosen
cut-off criterion. In Fig. 13 we show the distribution of
(κ , τ ) values in this cluster.
There is also an overlap with each of the 12 clusters that

we obtained previously. Together the 13 clusters cover
around 96.1 % of all PDB loop structures.
It is apparent that an initiator with only five residues is

too short to identify a clustering pattern of PDB loops,

even with 0.2 Å precision. Consequently we have elon-
gated this initiator. For this, we have systematically added
residues at the beginning and at the end of the individual
elements in its cluster, to search for clustering patterns.
For example, we may take the element 1p1x_A (80–84),
elongate it to 1p1x_A (80–85) and 1p1x_A (79–84), and
then use these two elongated ones as initiators to do the
clusterings: We denote by H, S and L a residue which
is located in a helix, strand and loop respectively, accord-
ing to the PDB classification. The five residue long cluster
which is generated by 1p1x_A (80–84) consists of several
different elements, such as for example LLLLL, HLLLL,
LLLLS etc.
As an example, we have selected the pattern LLLLL

which has the largest number of elements; there are a total
of 7901 elements. We have elongated each of these 7901
elements into a protein loop fragment with six residues,
by incorporating the corresponding PDB residue which is
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Fig. 8 The initiators of the 12 clusters I-VI. The initiators I-VI listed in
Table 1 are shown in their three dimensional backbone environment.
The (dark) red color identifies the initiator, and the (light) yellow color
identifies the immediate backbone environment

Fig. 9 The initiators of the 12 clusters VII-XII. The initiators VII-XII listed
in Table 1 are shown in their three dimensional backbone
environment. The (dark) red color identifies the initiator, and the (light)
yellow color identifies the immediate backbone environment

Fig. 10 The (κ , τ ) spectrum of initiator I and IV. The figure a shows the
Z2 gauge transformed spectrum of bond and torsion angles in the
case of the initiator I. This reveals that the initiator is a two-kink
configuration that forms a loop between α-helical and β-stranded
regular secondary structures. The figures b and c show the bond and
torsion angle spectra of the bend-like initiator IV prior and
subsequent to the Z2 gauge transformation, respectively

Fig. 11 The 3D superimposed structures for 12 clusters I-VI. The
clusters I-VI in Table 1 are superimposed in three dimensions. The
colour ranges from red (initiator) to blue (the entry with largest RMSD
distance from initiator)
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Fig. 12 The 3D superimposed structures for 12 clusters VII-XII. The
clusters VII-XII in Table 1 are superimposed in three dimensions. The
colour ranges from red (initiator) to blue (the entry with largest RMSD
distance from initiator)

either right before the first L residue, or immediate after
the last L residue. In this manner we find 15802 different
loop fragments with six residues each. We have investi-
gated the corresponding clustering patterns: There are 30
new clusters with more than 30 elements, bringing the
total number of the clusters with more than 30 elements,
to 42. We list these 30 additional clusters in Table 3. In
Figs. 14, 15 and 16 we display the (κ , τ ) distributions of
these 30 clusters. A visual inspection of these clusters
reveals, that at the level of the (κ , τ ) distribution the clus-
ter 26 appears to display additional sub-clustering. But the
present cut-off value 0.2 Å is not sufficiently refined to
detect this sub-clustering, at the level of RMS distance.
Furthermore, the clusters 29 and 30 both appear to merge
with the regular β-strand. In Fig. 17 we show the corre-
sponding initiators: The cluster 29 is clearly a loop, while
the cluster 30 consist of the regular β-strand and thus we
exclude it from our set of loop fragments. This leaves us
with a total of 41 clusters, with 30 or more loop fragments.

Table 2 The coverage of the 12 clusters obtained using the
initiators in Table 1, as a function of the cut-off distance

Cut-off (Å) 0.2 0.3 0.4 0.5

Coverage (%) 37.8 43.6 49.6 56.4

Fig. 13 The stereographic map generated by cluster 1p1x_A (80–84).
In a the distribution of the first (κ , τ ) and in b the distribution of the
second (κ , τ ). Note the widely spreaded distributions of this cluster

These clusters cover around 52 % of all loop structures in
PDB.
By completing the elongation process we have identified

3240 different clusters with 0.2 Å cut-off. These clus-
ters cover around ∼85 % of all those PDB loop sites in our
set of resolution better than 1.0 Å proteins. Among these
clusters there are 1677 unique ones, in the sense that the
cluster has only single element. Thus, around 14 % of all
loop structures in PDB appear to be unique, to the given
protein. In addition, there are 1531 rare clusters with two
or more, but less than 32 elements. Thus, there are 32
clusters with 32 or more elements.
The remaining ∼15 % of loop fragments that are not

covered by the 3240 clusters, can be constructed by com-
pletion. For example, we can search for novel clusters by
using the patterns other than LLLLL in the five residue
cluster generated by 1p1x_A (80–84). But when the four
patterns HLLLL, LLLLH, SLLLL and LLLLS are included
the coverage increases no more than around one per cent.

Cluster percolation
We have also investigated the relation between the
sequence and the structure, using the 42 clusters listed
in Tables 1 and 3. Here we only describe some of the
major features, more details can be found in Figure S3 in
Additional file 1.
There are several examples of identical sequences that

correspond to different structures in different proteins.
Accordingly a sequence clearly does not determine a
unique structure. When a given sequence gives rise to
multiple structures, we have a phenomenon we call clus-
ter percolation. These sequences with multiplet structures
may be utilised to try and introduce novel clusters.
For example, in Table 4 those sequences that are found

both in Cluster VIII and outside of it, are listed, together
with their PDB identifications and RMSD to the initiator
of Cluster VIII.
As an example, in Fig. 18a we compare the four PDB

structures that have the identical sequence SDGNGM in
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Table 3 The 30 clusters with six residues, obtained by elongation of the LLLLL subset of the cluster which is generated by 1p1x_A
(80–84)

Cluster # Initiator Match # Cluster # Initiator Match #

1 1kwf_A (324–329) 32 16 1xg0_A (15–20) 96

2 1byi_A (123–128) 34 17 2pve_A (23–28) 98

3 4iau_A (78–83) 34 18 1vyr_A (23–28) 114

4 2o9s_A (841–846) 37 19 1j0p_A (54–59) 135

5 4ayo_A (233–238) 37 20 2rh2_A (48–53) 151

6 1pwm_A (171–176) 38 21 3p8j_A (240–245) 200

7 1gdq_A (123–128) 39 22 4gda_B (62–67) 240

8 2wur_A (30–35) 40 23 7a3h_A (232–237) 309

9 3zsj_A (190–195) 41 24 1n55_A (31–36) 368

10 4kxu_A (257–262) 42 25 1f94_A (40–45) 507

11 1n4u_A (121–126) 43 26 2pfh_A (305–310) 628

12 1nls_A (155–160) 49 27 1ab1_A (41–46) 723

13 3dk9_A (356–361) 51 28 1gci_A (188–193) 777

14 1o7j_C (119–124) 52 29 3ne0_A (1094–1099) 1505

15 4hen_A (169–174) 95 30 3hyd_A (1–6) 2275

the Table 4 . The difference between the twomutually sim-
ilar structures 2vb1 A (100–105) and 4lzt A (100–105) to
the two equally mutually similar structures 1iee A (100–
105) and 4b4e A (100–105) is visually apparent. A visual
comparison with the Cluster VIII in Fig. 12 also reveals
that both 1iee A (100–105) and 4b4e A (100–105) are
clearly outside of this cluster.
Figure 18b shows the comparison of the sequence

ADGKPV to the initiator. The difference between the
structures of 4hen A (54–59) and the initiator is again
clear. The structure of 4hen A (54–59) is also quite differ-
ent from the structures in Fig. 18a, and from the Cluster
VIII shown in Fig. 12.
In Table S1 of Additional file 1 we list those sequences

that appear both in the 12 clusters of Table 1 and in protein

structures which are not contained in any of the clusters.
We have investigated these structures, and found 454 new
clusters. But most of them have very few elements, only
two of them have more than 30 elements. With these new
clusters the coverage becomes increased to 88 %. In Fig. 19
we show the (κ , τ ) distributions on the stereographi-
cally projected two-sphere of the two clusters with more
than 30 elements; the initiators are 1ix9_A (133–138) and
3aj4_B (73–78) correspondingly. These two clusters are
found by considering the sequences LKGDKL in cluster
III and KDCMLQ in cluster XI, respectively.

Example: Myoglobin
Myoglobin is a widely studied protein, thus we have anal-
ysed its loop structure from the present perspective. We

Fig. 14 The stereographic map of the first 10 clusters in Table 3. The ordering along the Cα backbone is red → blue → yellow
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Fig. 15 The stereographic map of the clusters 11–20 in Table 3. The ordering along the Cα backbone is red → blue → yellow

have chosen the crystallographic oxymyoglobin structure
1A6M [50] which is one of the few myoglobin structures
that have been measured with resolution better than 1.0
Å, for our comparative study.
We have located in 1A6M four putative kink segments

with six residues each, that are either unique or very rare
in PDB, with our 0.2 Å RMSD cut-off. These kinks are
located between helices C and D, and between helices E
and F. The two putative kinks between helices C and D
correspond to the residue sites (41–46) and (48–53). The
two putative kinks between helices E and F correspond to
residue sites (77–82), and the practically overlapping (78–
83). In Fig. 20 we show how in our PDB set, the number of
matches for each of these four kinks depends on the RMS
cut-off distance.
The 1A6M is closely related to the PDB entries 1A6G,

1A6K and 1A6N; they represent four different ligation
states of the same protein. Each of the three 1A6G, 1A6K
and 1A6N have been measured with resolution above 1.0
Å, thus they do not appear in our data set. In Table 5 the

RMS distance of the four rare kinks of 1A6M are com-
pared to the corresponding kinks in 1A6G, 1A6K and
1A6N. All the RMSD values are below the cut-off 0.2 Å.
We conclude that the four kinks are stable, in the sense

that they do not change their conformation when the
ligation state changes.

Chain inversion
Finally, the operation of local chain inversion along a
protein segment is defined as a mapping, that sends a
sequence with Cα coordinates

{ r(i), r(i + 1), . . . , r(i + k − 1), r(i + k) }
into a sequence with Cα coordinates

{ r(i + k), r(i + k − 1), . . . , r(i + 1), r(i) }
We note that a regular secondary structure such as an

α-helix becomes mapped onto itself i.e. remains invari-
ant under chain inversion. But we have found that the
12 clusters that we have constructed are not inversion

Fig. 16 The stereographic map of the clusters 21–30 in Table 3. The ordering along the Cα backbone is red → blue → yellow
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Fig. 17 The initiators 29 (left) and 30 (right) in Table 3. The cluster 29
consists of loops, while the cluster 30 consist of regular β-strands

invariant; the inversion does not map a cluster onto itself.
Thus one might expect that new clusters could be found
by inversion of these clusters. However, surprisingly we
have found only one single example of a PDB segment by
inversion. This is the segment (1115–1120) in the PDB
structure 1MC2. Thus local chain inversion is apparently
a broken symmetry, in the case of protein loops. This sets
the loops apart from the regular structures like α-helices
and β-strands.

Table 4 Sequences that appear both in and outside of cluster
VIII; only the entry outside of the cluster is identified. The RMSD is
evaluated from the initiator of cluster VIII; H stands for helix, L for
loop and S for strand

Sequence PDB entry PDB structure RMSD(Å)

TDGSTD 2vb1_A (47–52) LLLLSS 0.24

TDGSTD 3lzt_A (47–52) LLLLSS 0.26

TDGSTD 4lzt_A (47–52) LLLLSS 0.27

DAGMRF 3odv_A (20–25) HHLLSS 0.71

ESGNVV 2agt_A (126–131) LLLLLL 0.63

ESGNVV 2pzn_A (126–131) LLLLLL 0.72

ESGNVV 3u2c_A (126–131) LLLLLL 0.54

ADGKPV 4hen_A (54–59) SLLSSS 1.43

ESGLSK 1g2y_B (18–23) HHHLHH 1.19

NVGWPR 1mn8_B (47–52) HLLLLL 0.79

KDGVAD 4a7u_A (91–96) LLLLSS 0.68

SDGNGM 1iee_A (100–105) HLLHHH 1.12

SDGNGM 2vb1_A (100–105) HHLLHH 0.38

SDGNGM 4b4e_A (100–105) HLLHHH 1.07

SDGNGM 4lzt_A (100–105) HLLLLH 0.33

QQGLTL 3akq_A (161–166) HHLLLL 0.62

QQGLTL 3akt_A (161–166) HHLLLL 0.66

QQGLTL 3akt_B (161–166) HHLLLL 0.59

Fig. 18 Examples of percolation in Cluster VIII, listed in Table 4. In a
the SDGNGM entries 2vb1 A (100–105) (blue), 4lzt A (100–105) (green),
1iee A (100–105) (yellow) and 4b4e A (100–105) (cyan) with with the
initiator 1iee A (47–52) (red). In b the ADGKPV entry 4hen A (54–59)
(blue) with the initiator 1iee A (47–52) (red)

Discussion
We have introduced the concept of loop clustering to
analyse those ultrahigh resolution crystallographic pro-
tein structures in PDB, that have been measured with
resolution 1.0 Å or less. We have chosen these structures
since we expect, that in the case of a ultrahigh resolu-
tion measurement there should be less need to introduce
structure validation. Thus there should also be less bias
towards a priori chemical knowledge and stereochemical
paradigms, in this subset of PDB proteins. Moreover, our
investigation of 2.0 Å subset shows that high resolution is
necessary to reveal the clustering structure in the case of
protein crystals.
We have inquired to what extent the protein structures

can be constructed in a modular fashion. For the modular
building blocks we have chosen different parameterisa-
tions of the unique kink solution to a generalised discrete
nonlinear Schrödinger equation. The precision we have
used as a criterion in making a difference between two
structures is 0.2 Å in RMSD. We have concluded that
this should be the shortest meaningful RMS distance that
can be introduced, at the moment, to classify different
modular protein components.
We have identified a set of 12 different kink param-

eterisations, which cover around 38 % of all PDB loop
structures. Accordingly, these are loop patterns that are
abundantly present in the folded proteins. It appears to
us, that these kinks are often located in such protein seg-
ments that are structurally important, as opposed to those
that are functionally important. We have introduced vari-
ous techniques to extent the initial set of 12 kinks, and we
have found that around 52 % of loop regions become cov-
ered when we introduce a set of 29 additional kinks. But
in order to cover the remaining ∼48 % of protein loops,
we need to substantially increase the number of kinks. For
example, we need to introduce over 1000 kinks to cover
over 88 % of loops. In particular, we have concluded that
there are several kinks that are very rare, even unique, in
PDB when we use the present cut-off value. We propose
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Fig. 19 The (κ , τ ) distributions of the two clusters with more than 30 entries obtained by percolation. Clusters with initiators a 1ix9_A (133–138) and
b 3aj4_B (73–78)

that a rare or even unique kink should have a an impor-
tant functional rôle, in a protein. This can be exemplified
by the myoglobin 1A6M segments (41–46), (48–53) and
(78–83) which are all rare. These segments also constitute
the CD corner and EF corner in myoglobin, which have
been argued to be closely related to the ligand migration
process [51, 52].

Conclusions
Protein loops are built in a modular fashion, in terms of
various parametrisations of the kink solution to a gen-
eralised version of the discrete nonlinear Schrödinger
equation. Most loops can be built from a very small
number of modular components, these loops are most
likely important for the overall structure of the protein.

Fig. 20 The number of matches for different kinks in myoglobin. In each panel, x-axis is the different RMSD cut-off value (rrmsd) while y-axis is the
number of the entries whose RMSD values compared with the initiator are in the range [ rrmsd , rrmsd + 0.05]. Panels a–d are for different kinks of
myoglobin: a (41–46), b (48–53), c (77–82) and d (78–83)
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Table 5 RMS Distance between the four kinks in 1A6M and the
corresponding segments in the three other ligation states (in Å
ngströms)

Segment 1A6N 1A6K 1A6G

41–46 0.07 0.04 0.17

48–53 0.04 0.02 0.03

77–82 0.04 0.05 0.07

78–83 0.06 0.05 0.07

However, there are also several unique, or very rare loops,
which are most likely related to the function. The amino
acid sequence does not define the structure uniquely,
instead a given sequence can give rise to several different
conformations.
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