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Abstract

Background: Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and
functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the
structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between
virtual drug screening results (calculated binding free energy values) and the geometry of protein binding sites.
Molecular Affinity Fingerprints (MAFs) were determined for 154 proteins based on their molecular docking energy
results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker
descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were
examined by principal component analysis; association between principal components extracted from these two
sets of variables was then investigated by canonical correlation and redundancy analyses.

Results: PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the
energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained
94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs
with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker
descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total
variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-
cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors.

Conclusions: This is the first study to investigate complex multivariate associations between affinity profiles and
the geometric properties of protein binding sites. We found that, except for few specific cases, the shapes of the
binding pockets have relatively low weights in the determination of the affinity profiles of proteins. Since the MAF
profile is closely related to the target specificity of ligand binding sites we can conclude that the shape of the
binding site is not a pivotal factor in selecting drug targets. Nonetheless, based on strong specific associations
between certain MAF profiles and specific geometric descriptors we identified, the shapes of the binding sites do
have a crucial role in virtual drug design for certain drug categories, including morphine derivatives,
benzodiazepines, barbiturates and antihistamines.

Background
Finding complementary shapes for the active site of a
druggable protein is a starting point of de novo drug
design if the target structure is previously determined
[1]. Fragment positioning and molecule growth meth-
ods, together with fragment searches in cheminformatics
databases typically produce the primary hits which are

evaluated further by scoring functions considering more
parameters for a better prediction of ligand-binding
properties.
Numerous studies point to the efficiency of shape-

based descriptors in different fields of drug development
[2]. Among several attempts published along this line in
the literature, Zauhar et al developed a method called
Shape Signatures to describe ligand and protein binding
site shapes using ray-tracing algorithm, producing one-
dimensional histograms for ray-trace segment lengths
[3]. The authors demonstrated the suitability of this
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method in finding shape similarities among small-mole-
cule ligands for estrogen and serotonin receptors. It
should be noted that shape-based techniques play an
important role in the simulation of protein-protein
interactions. From this area of research we mention a
recent publication by Venkatraman et al which reports
on the development of a docking algorithm based on
3D Zernike Descriptors (i.e., 3D function representations
of protein surface) that produced outstanding perfor-
mance compared to other methods [4].
High-throughput screening techniques were intro-

duced in drug research at a time when known target
protein structures rarely existed [5]. Kauvar et al devel-
oped a method for predicting ligand binding to proteins,
using a fingerprinting method called affinity fingerprint-
ing [6]. A total of 122 structurally different small mole-
cules were screened in vitro against a reference set of 8
proteins. Based on the resulting affinity fingerprints for
the proteins, it was possible to detect binding similari-
ties between structurally unrelated proteins.
As a further advancement of this approach, Hetenyi

et al presented the in silico version of affinity finger-
print, called MAF (Molecular Affinity Fingerprint) [7].
In their study, 39 aromatic compounds were docked to
31 known protein structures using AutoDock3. The cal-
culated lowest binding free energies for all dockings
were ordered into a matrix where energy values for a
given protein have been arranged vertically. Each col-
umn of this matrix represents a Molecular Affinity Fin-
gerprint which can characterize the protein uniquely. Li
et al used such in silico affinity fingerprints to describe
and classify 12 phospholipase A2 (PLA2) proteins [8].
Overall, 84 PLA2 inhibitors were docked to the 12 pro-
teins in order to produce a robust affinity matrix. The
proteins have been successfully clustered into functional
subfamilies based on the affinity data. Based on principal
component analysis (PCA), selective inhibitors of human
nonpancreatic sPLA2 have been separated and the phar-
macophore has been produced.
It is noteworthy that despite the promising results

pointing to the possibility of biologically meaningful
clusterings along both lines of inquiries (i.e., shape-
based and affinity fingerprinting), the connection
between the affinity profiles and the structural charac-
teristics of protein binding sites still remains unclear.
Specifically, to our knowledge no attempt has been
made to relate these two approaches in a single study.
The principal goal of our study was to investigate the
relationship between virtual drug screening results (cal-
culated binding free energy values) and the shape of
protein binding sites based on a large data set including
154 proteins and 1,255 FDA-approved drugs. As an
ancillary aim, adopting the PCA approach, we wanted to
gain an insight into the basic underlying component

structure of MAFs and shape-based characteristics such
as binding site geometries, respectively.

Methods
General background
In order to achieve the aforementioned aims, 154 pro-
teins were selected and 1,255 FDA-approved small
molecule drugs were screened against them. AutoDock4
was used for mapping the conformational space while
X-SCORE was adopted as a principal scoring function
for this investigation since it produces more reliable
binding free energy estimates than other methods [9,10].
However, we note that scoring function reliability has
been widely discussed in the literature and the compari-
son of different methods is inherently difficult [11-13].
Therefore, in order to conduct a sensitivity analysis, ori-
ginal AutoDock4 scoring function was also applied and
the results were subjected to the same data processing
and evaluation described below. For better reliability,
redocking was performed instead of rescoring the pre-
viously docked conformations. Lowest energy values for
each molecule were ordered into a matrix containing
154 rows (i.e., the proteins) and 1,255 columns (i.e.,
energy values for the drugs). Each row of this matrix
forms a 1,255-dimensional vector called Molecular Affi-
nity Fingerprint (MAF) which describes the discrimina-
tive properties of a given protein [7]. Protein binding
sites were characterized using the PocketPicker algo-
rithm which creates a 420-dimensional fingerprint for
each protein [14]. The PocketPicker algorithm detects
areas of different accessibility within the binding site,
defined by their buriedness values. The shape of the
binding site is described by the spatial distribution of
these areas.
As mentioned above, our main goal was to determine

the association between MAFs and the shape properties
of the protein binding sites. Since both of our datasets
(the MAF matrix and the geometrical descriptors) were
expected to contain a certain amount of redundant
information, PCA was performed on each of them for
data reduction. Further analyses were performed on the
dimensionally reduced secondary datasets. Using canoni-
cal correlation analysis (CCA) we tested the relationship
between the shape of the binding sites and the MAFs of
the proteins. A detailed description of the specific
approaches we adopted for the study will be provided in
the subsequent parts of this section.

Construction of the MAF matrix
1,255 FDA-approved drug molecules were extracted
from DrugBank database [15] as of June, 2009. A two-
step selection was applied: molecules labeled “FDA-
approved small molecule drug” were separated first (969
entries) and extended later with “FDA approved drugs”
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below the molecule size limit of 600 Da (286 entries).
154 proteins were collected from RCSB Protein Data
Bank [16] which met the following requirements: (1)
structure contained ligand, (2) resolution better than 2.3
Å, (3) complete ligand binding site, (4) primary struc-
ture was not significantly different from the wild type
protein’s structure. If a structure contained water mole-
cules involved in ligand coordination, its conformation
was compared with available structures without water. If
no significant difference was observed around the ligand
binding site, the one with better resolution was used.
(See Table 1 for the list of the PDB codes of the applied
proteins.) Docking preparations and calculations were
performed by DOVIS 2.0 software (DOcking-based VIr-
tual Screening) [17], using AutoDock4 docking engine
[18], Lamarckian genetic algorithm and X-SCORE scor-
ing function [10]. Docking runs were repeated using
AutoDock4 scoring function to assess the impact of dif-
ferent scoring functions on the results and the same
analysis procedure was further applied to them. Explicit
hydrogens were added to the drug molecules and opti-
mization procedures were applied for aromatic rings
and for the overall 3 D structure before docking using
ChemAxon JChem Base software (version 5.2.0, 2008)
[19]. The docking box was centered to the geometrical
center of the original ligand of the protein (as found in
the intact PDB file); box size and grid spacing were set
to 22.5 Å and 0.375 Å, respectively. Protein parts out-
side the box were excluded from the calculations. The
applied box size enables each member of the drug set to

rotate freely in order to find the conformation with the
lowest binding free energy without steric clashing to the
box perimeter. For consistency, no further reductions in
box size were applied to smaller ligands and the same
box was used for geometric characterization of the bind-
ing site as well (see later). 25 docking runs were per-
formed for each job. Each drug molecule was docked to
each protein (1,255*154 = 193,270 dockings, individual
docking runs: 193,270*25 = 4,831,750). Binding free
energies were extracted and the minima were imported
to a database. Docking runs were performed on a Hew-
lett-Packard cluster of 104 CPUs.

PocketPicker descriptors
In order to analyze the relationship between the MAFs
of the proteins and the geometry of their binding sites,
we used the PocketPicker algorithm [14] to generate
420-dimensional fingerprints representing the geometri-
cal features of the binding sites. It is important to note
that the algorithm considers the areas of the entire pro-
tein located closely to the protein surface. This is in
contrast to the docking process which aims to find the
best fit of a ligand in a well defined area of the protein,
i.e., in the docking box. Consequently, applying the
PocketPicker algorithm on the original protein structure
might lead to the detection of binding sites outside of
the docking box. To prevent this scenario and to ensure
that the same set of atoms is involved in the MAF
matrix generation and the PocketPicker description, the
atoms of the given protein enclosed by the docking box
defined above were extracted while preserving their ori-
ginal spatial coordinates. PocketPicker algorithm was
applied to this set of atoms. This process assures that
the PocketPicker algorithm characterizes the geometrical
features of the docking box only. Therefore, it enables
us to investigate the relation between the MAFs and the
geometrical features of the binding sites of the proteins
used in the docking process.
The process of generating the PocketPicker finger-

prints is as follows. In the first step the degree of buried-
ness of the different areas of the docking box is
determined, which in turn provides information on how
accessible that particular area is. A rectangular grid with
1Å mesh size is generated around the protein; each
point of this grid is described as a grid probe. Over the
process of scanning it is determined how many atoms
are located in the surroundings of each grid probe. This
is achieved by placing on each grid probe 30 so-called
search rays that are distributed in a closely equidistant
manner on a sphere. Each search ray is 10 Å long and
has a width of 0.9 Å. The buriedness value Bu(j), of the
given grid probe j is the number of search rays that hit
at least one atom. Grid probes of buriedness value in
the range of 15 and 26 are recorded and classified into

Table 1 List of PDB codes of the applied 154 proteins

13gs 1dug 1hvr 1n5u 1rwx 1yb5 2axm 2g5r

1a3b 1e51 1ig3 1nhz 1s1d 1ytv 2axn 2g72

1aj0 1ewf 1j3j 1nrg 1s2c 1z57 2az5 2gwh

1aj6 1exa 1j8u 1of1 1s3v 1zcm 2b2u 2h7j

1apy 1ezf 1jmo 1okc 1sr7 1zd3 2bat 2ipx

1aq1 1f0x 1k0e 1opb 1sz7 1zid 2bka 2iwz

1auk 1f5f 1kfy 1oq5 1t46 1zsq 2bm2 2jis

1b2y 1fcy 1ki0 1oth 1t65 1zsx 2bxs 2oaz

1b3d 1fj4 1kpg 1p0p 1uae 1zx0 2c67 2ozu

1bj4 1fkd 1ksp 1p60 1uhl 1zxm 2cbz 2p0a

1bj5 1g3m 1kvo 1ph0 1uze 1zy7 2cca 2p54

1blc 1g9v 1l7z 1qh5 1v97 2a1h 2cjz 2pk4

1bwc 1gkc 1lo6 1qkm 1w6k 2a3i 2cmd 3fap

1bzm 1hck 1lpb 1qon 1x9d 2a5d 2cmw 3nos

1c5o 1hcn 1lpg 1r1h 1x9n 2aax 2d0t

1cjf 1hrn 1lxi 1r5l 1xap 2aeb 2f4j

1cjy 1hso 1mf8 1r9o 1xkk 2afw 2f6q

1d3g 1hsz 1mp8 1rbp 1xpc 2ag4 2fbr

1dfv 1ht0 1mzs 1ro9 1xzx 2aid 2fvv

1dkf 1hur 1n52 1rsz 1y6a 2avd 2fy3
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the following six categories: (1) category A: Bu(j) = 15-
16, (2) category B: Bu(j) = 17-18, (3) category C: Bu(j) =
19-20, (4) category D: Bu(j) = 21-22, (5) category E: Bu
(j) = 23-24, (6) category F: Bu(j) = 25-26.
The PocketPicker algorithm characterizes the geome-

trical features of binding sites on the basis of the distri-
bution of the distances between grid points of each
buriedness category. Therefore, in the second step it is
counted how many grid probes of the different buried-
ness categories can be found in a distance of 1-20 Å
from each grid probe. Considering that there are 21
possible combinations of the six buriedness categories
(e.g. A-A, A-B, A-C, ... , F-F), and that the distances are
divided into 20 bins covering ranges of 1-20 Å, there
are 21 * 20 = 420 possibilities to record the distance
between a pair of grid probes of the same or different
buriedness types. These possibilities give rise to the 420
components of the PocketPicker fingerprints. Therefore,
the value of the coordinate of each component provides
information on how many times it is observed that two
grid points of particular buriedness types are located
within a given distance from each other. The buriedness
types of these two grid probes and the distance between
them are exactly defined by the given component of the
fingerprint. We note that, in contrast to scoring func-
tions used for evaluating docking results, the Pocket-
Picker algorithm shows no stochasticity as it describes
binding pockets in a fully reproducible manner while
scoring functions are able only to find local minima on
the energy landscape, depending greatly on the initial
conformation and the applied parameters of searching
and scoring methods [13]. Therefore we decided to eval-
uate the reliability of docking results but not the geo-
metric descriptive method.
In summary, the geometrical features covering the

shape of the binding site are given by the spatial distri-
bution of the pairs of grid probes of different buriedness
types. Buriedness and distance parameters were assigned
to 3 categories for further examinations. In particular, A
and B type descriptors were considered as representing
low; C and D medium; and E and F high buriedness
levels. Distances between 1-7 Å, 8-14 Å and 15-20 Å
were considered as representing low, medium and large
distance values, respectively.

Statistical analyses
The Statistical Analysis System for Windows (version
9.2; SAS Institute, Cary, NC) was used for computing
Type I error probability. The alpha error level of 0.05
(two-sided) was adopted for all statistical analyses. The
data analyses consisted of 3 steps, including (1) data
preparation (normalization, centralization); (2) factor
analysis of the molecular affinity profiles of target pro-
teins (n = 154) and geometric characteristics of their

respective binding sites, as indexed, respectively, by the
estimated binding free energies via X-SCORE and Pock-
etPicker descriptors; and (3) examination of relationship
between molecular affinity profiles of target proteins
and geometric features of their respective binding sites
based on canonical correlation and redundancy analyses.
(1) Normalization and centralization
The principal goal of normalization and centralization in
our study was to transform the data to a common statis-
tical scale, thereby ensuring that the underlying data
vectors reflect the molecular affinity profiles instead of
the scale parameters (such as the mean and the standard
deviation) that are more sensitive to measurement errors
and outlying observations. First, a matrix of the MAF
source data was created. In this dataset, drugs were con-
sidered as variables (1,255 columns) and proteins as
cases (154 rows). Normalization and centralization were
performed row-by-row for each protein as follows:

energy
energy mean

SD
′ = −

Where mean is the mean and SD is the standard
deviation of the docking energies for a given protein.
(2) Factor analysis of the molecular affinity profiles of
target proteins and geometric features of their respective
binding sites
In the second step, factor analysis was performed on the
set of molecular affinity profiles and the structural char-
acteristics of the protein binding pockets yielded by the
PocketPicker descriptor system. The purpose of factor
analyses was twofold: (1) delineation of the basic under-
lying structure of the molecular affinity profiles and of
the structural characteristics of the target proteins used
for the investigation; and (2) data reduction in order to
facilitate further examination of the relationship between
molecular affinity profiles of target proteins and their
geometric features. Such a data reduction was needed
for subsequent multivariate analyses since the number
of variables exceeded the number of cases. In particular,
for the 154 proteins of interest (i.e., used as “cases” for
the final association analyses) we had a total of 1,255
MAF variables (energy values) and 405 structural char-
acteristics (geometric descriptors). 15 descriptors were
omitted from the original set of 420 descriptors due to
lack of variance.
The two data matrices subjected to factor analysis had

the following layout: proteins were included as cases
(i.e., 154 rows), and the MAF energy values (n = 1,255)
and the set of geometric descriptors (n = 405) were
included as variables, respectively. A separate factor ana-
lysis was conducted for the MAF energy values and for
the geometric descriptor variables. For the purpose of
these analyses, we adopted the principal component
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method for factor extraction. The extracted factors were
subjected to ORTHOMAX/PARSIMAX rotation in
order to derive a simple structure for helping the inter-
pretation. Variables were allocated to factors according
to their highest loading; the threshold loadings of 0.4
and -0.4 were chosen to indicate saliency. For the exam-
ination of the dimensionality of data based on the factor
analysis (i.e., to determine the number of factors to be
used in further analyses), we adopted the average var-
iance criterion, in other words considered factors further
if they explained more than the average (> 1/154 =
0.65%) of the total variance individually. This threshold,
which corresponds to the Kaiser-Guttman eigenvalue >
1 rule [20], was chosen since it represents the variance
accounted for an individual variable by chance based on
the intrinsic dimensionality of our data (i.e., 154, or in
more general terms, the smaller of the number of cases
or variables in the data). For the implementation of the
factor analyses we used the SAS “FACTOR” procedure.
(3) Relationship between molecular affinity profiles of
target proteins and geometric features of their respective
binding sites
For the analyses in the third step, we adopted “bimulti-
variate” methods, including canonical correlation and
canonical redundancy analyses that have the advantage
of simultaneous handling of two separate sets of vari-
ables, which we had in our study (i.e., MAF and struc-
tural descriptive variables, respectively). In these
approaches, the relationship between the two sets is stu-
died by creating derived variables ("variates”) that are
linear composites of the original variables. The principal
objective is to simplify complex relationships, while pro-
viding some specific insights into the underlying struc-
ture of the data. An analogy to factor analysis, a more
familiar method, may be helpful in explaining canonical
correlation analysis. In factor analysis, variates (factors)
are formed from one set of variables to describe the cor-
relation structure in the same set of variables. In canoni-
cal correlation analysis, variates in one set are formed to
describe the correlation structure in a different set of
variables. Therefore, canonical correlation analysis can
be considered to be an extension of factor analysis for
two separate sets of variables. In particular, the objective
of this method is to obtain as high a correlation as pos-
sible between the derived variables (here, pairs of vari-
ates or “factors” are formed from the two sets) in
variable set 1 and those in variable set 2. In other
words, this technique is an optimal linear method for
studying interset association: components from the two
sets are extracted jointly to be maximally correlated
with a component of the complementary variable set,
within the constraint of orthogonality of all components
except the correlated pair.

The statistically significant canonical factor pairs were
examined further in order to visualize the relationship
between drugs and protein binding sites. PCA factors of
the MAF and the PocketPicker descriptor matrices with
salient canonical loading over 0.25 or below -0.25 were
collected in each canonical factor pairs. Canonical PCA
loading structures were analyzed and in case of the
MAF PCA factors representatives of the appeared typi-
cal drug groups were selected. In case of the Pocket-
Picker PCA factors, salient descriptors were collected
mapping the concomitant buriedness indices within the
three distance levels. Proteins having salient canonical
scores (over 1 and below -1) were also collected. Sign of
the loadings was taken into consideration for the
interpretation.
Canonical redundancy analysis makes it possible to

examine how much of the two sets of variables (MAF
and structural descriptors) “overlap” in terms of
explained variance or redundancy. This approach allows
the determination of the amount of variance (or redun-
dancy) that the canonical components (factors) account
for in their “own set” of variables, and in the “opposite
set” of variables (e.g., how much the individual structural
canonical factors explain of the total variance of the
structural characteristics of the protein binding pockets
and of the MAF profiles, respectively).
In addition to the explained variance associated with

the individual canonical factors, we also determined
total redundancy, i.e., the total amount of explained
(predicted) variance one set of variables given the whole
predictor set. We note that, unlike canonical correlation,
redundancy indices are nonsymmetric; in general, by
designating one variable set a predictor set, the asso-
ciated redundancy of the other set differs from what it
would be if the functions of the two sets were reversed.
The F-statistic was used for significance testing of corre-
lations measured between canonical variate pairs. To
perform these analyses (canonical correlation and
redundancy) we used the SAS “CANCORR” procedure.

Results
PCA of Molecular Affinity Profiles of target proteins
As described in the Methods, PCA with ORTHOMAX/
PARSIMAX rotation of the molecular affinity finger-
prints was conducted in order to determine the underly-
ing factor structure of the MAF profiles, characterizing
the set of 154 proteins used for the purpose of our
study. Table 2 displays the explained variances for the
first 40 factors resulted by the factor analysis. Overall,
the PCA analysis based on the average variance criterion
provided 30 factors which explained 71.4% of the total
variance of the MAF energy values, and were therefore
retained for subsequent analyses. As shown by the table,
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three factors explained, respectively >5% of the variance;
in addition, 90% of the total variance is explained by
using 78 factors of the theoretically possible total of 154
factors with nonzero eigenvalues. To investigate the per-
formance of the orthogonal rotation procedure (ortho-
gonal factor parsimax) in terms of achieving a simple
structure, we examined the number of salient loadings
for each of the individual factors retained for further
analyses. Figure 1 shows the distribution of the number
of salient loadings (i.e., loadings with a value of ≥ 0.4 or
≤ -0.4) for each of the factors across the 30 factors
retained on the basis of the average variance criterion.
As the Figure shows, the number of salient loadings var-
ied between 10 and 35 for the individual factors, indicat-
ing that simple structure was achieved since the rotated
factors contained only a small subset of the original
variables.

PCA of the geometric characteristics of protein binding
sites (PocketPicker Descriptors)
Analogous to the analysis of the MAF fingerprints, PCA
analysis with ORTHOMAX/PARSIMAX rotation was
performed for the full set of 405 variables comprised in
the PocketPicker descriptor matrix. Explained variances
for the first 40 factors resulted by the factor analysis are
displayed in Table 3. Analogous to the approach
adopted for the PCA analysis of the molecular affinity
fingerprints of the 154 proteins, we determined the
number of factors that explained at least 0.65% of the
total variance individually. As indicated by Table 3, this
criterion resulted in 13 factors which explained cumula-
tively 94.1% of the total variance. Altogether, 5 factors,
respectively, explained >5% of the total variance of the
geometric descriptors. Furthermore, 9 factors of the the-
oretically possible total of 154 factors with nonzero
eigenvalues accounted for 90% of the total variance. We
also note that 116 factors explained 100% of the varia-
tion of the full set of PocketPicker descriptors (n = 405).
Similar to the PCA of the MAF profiles, the perfor-

mance of the orthogonal rotation procedure in achieving
a simple structure was examined through the number of
salient loadings for each of the individual factors. Figure
2 shows the distribution of the number of salient load-
ings (i.e., a value of ≥ 0.4 or ≤ -0.4) across the first 13
factors. As shown by the Figure, the number of salient
loadings varied between 42 and 75 across the individual
factors. Again, similar to the PCA analysis of the MAF
profiles, such a distribution of salient loadings reflects a
simple structure since the rotated factors contained only
a small subset of the original variables.

Table 2 Explained variances of PCA Factors obtained
from the MAF Matrix

Factor
Number

Explained
Variance

Cumulative
Explained
Variance

1 0.1816 0.1816

2 0.0768 0.2584

3 0.0574 0.3158

4 0.0382 0.3539

5 0.0322 0.3861

6 0.0309 0.4171

7 0.0247 0.4417

8 0.0236 0.4653

9 0.0197 0.4850

10 0.0181 0.5032

11 0.0169 0.5200

12 0.0164 0.5364

13 0.0147 0.5511

14 0.0139 0.5650

15 0.0127 0.5777

16 0.0123 0.5900

17 0.0118 0.6018

18 0.0113 0.6131

19 0.0107 0.6239

20 0.0105 0.6344

21 0.0100 0.6443

22 0.0089 0.6533

23 0.0087 0.6619

24 0.0082 0.6702

25 0.0080 0.6781

26 0.0078 0.6860

27 0.0073 0.6933

28 0.0070 0.7003

29 0.0069 0.7072

30 0.0068 0.7139

31 0.0064 0.7203

32 0.0063 0.7266

33 0.0061 0.7327

34 0.0059 0.7386

35 0.0058 0.7444

36 0.0056 0.7500

37 0.0053 0.7553

38 0.0052 0.7605

39 0.0051 0.7656

40 0.0050 0.7706

The first 40 factors obtained from the factor analysis of the MAF profiles of
154 target proteins are displayed. 30 factors were retained in accordance with
the average variance criterion (i.e., explaining individually more than 1/154 =
0.65% of the total variance). They explain cumulatively 71.4% of the total
variance.
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Comparison of the factorial structure of Molecular Affinity
Profiles and geometric characteristics of protein binding
sites
Figure 3 displays superimposed Scree plots based on the
MAF fingerprints and the PocketPicker-based geometric
descriptors, respectively. As shown by the cumulative
variance of MAF factors and PocketPicker factors,
explained variances for the PocketPicker factors saturate
much faster than for the MAFs. Accordingly, Molecular
Affinity Fingerprints consisting of the 1,255 energy
values for each protein, can be described by substantially
more parameters (factors) than the set of PocketPicker
descriptors.

Canonical correlation analysis
As detailed above, relationship between molecular affi-
nity profiles of target proteins (n = 154) and structural
properties of their respective binding sites was investi-
gated by canonical correlation and canonical redundancy
analyses. For the purpose of these analyses, factor scores
from the set of 30 and 13 factors from the PCA of MAF
and PocketPicker descriptors, respectively, were used as
input variables.
Results of CCA indicated statistically significant multi-

variate relationships between the two sets (Table 4). In
particular, the first 3 canonical correlations with a value
of 0.87, 0.84, and 0.77, respectively, reached statistical
significance. Canonical factor structure for the first 3
pairs of canonical factors is shown in Table 4. As shown

Figure 1 Number of salient loadings across the 30 PCA factors
of the MAF matrix. 30 factors were obtained from the matrix of
the Molecular Affinity Fingerprints (MAFs) of target proteins by
principal component analysis (PCA). The number of salient loadings
(i.e., loadings with a value of ≥ 0.4 or ≤ -0.4) varied between 10 and
35 for the individual factors, indicating a simple factor structure
since the number of variables in the original MAF matrix was 1,255.

Table 3 Explained variances of PCA Factors obtained
from the PocketPicker descriptor matrix

Factor
Number

Explained
Variance

Cumulative
Explained
Variance

1 0.3847 0.3847

2 0.2359 0.6206

3 0.0818 0.7024

4 0.0544 0.7568

5 0.0524 0.8091

6 0.0377 0.8469

7 0.0257 0.8726

8 0.0180 0.8906

9 0.0136 0.9042

10 0.0120 0.9162

11 0.0100 0.9262

12 0.0078 0.9340

13 0.0074 0.9414

14 0.0057 0.9471

15 0.0049 0.9520

16 0.0041 0.9561

17 0.0038 0.9599

18 0.0029 0.9628

19 0.0029 0.9657

20 0.0028 0.9685

21 0.0025 0.9709

22 0.0022 0.9732

23 0.002 0.9752

24 0.0019 0.9771

25 0.0017 0.9788

26 0.0016 0.9804

27 0.0015 0.9819

28 0.0012 0.9831

29 0.0012 0.9843

30 0.0011 0.9854

31 0.0009 0.9863

32 0.0009 0.9872

33 0.0008 0.9880

34 0.0007 0.9888

35 0.0007 0.9895

36 0.0006 0.9901

37 0.0006 0.9908

38 0.0006 0.9913

39 0.0005 0.9919

40 0.0005 0.9924

The first 40 factors obtained from the factor analysis of the geometric features
of the binding sites of 154 target proteins are shown. 13 factors were retained
in accordance with the average variance criterion (i.e., explaining > 1/154 =
0.65% of the total variance). Cumulatively, they explain 94.1% of the total
variance.
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by the table, relatively small number of the underlying
principal components attain saliency in the canonical
factor pairs of the MAF and geometric descriptors (3, 5
and 3 for MAF; 6, 3 and 4 for PocketPicker geometric
descriptors) based on the threshold loadings of 0.25 and
-0.25 applied for these examinations.
Despite the close multivariate association between the

two sets of variables, redundancy analysis indicated that
canonical components of MAF factor fingerprints asso-
ciated with the first 3 canonical correlations explained

approximately 15.9% of the total variance of the geo-
metric descriptor factor set (Table 5). Analogously,
results of redundancy analysis revealed that canonical
components of the corresponding PocketPicker descrip-
tor factors (associated with the first 3 canonical correla-
tions) explained approximately 6.9% of the total variance
of the MAF factor set. In addition, the theoretically pos-
sible 13 canonical components with nonzero eigenvalue
explained 13% of the total variance of the MAF factor
fingerprints; the analogous value for the PocketPicker
descriptor factors using 13 canonical components with
nonzero eigenvalue was 100%.
Salient components of the 3 statistically significant

canonical factor pairs were examined in order to further
interpret our findings.
Factor pair I contained benzodiazepines, barbiturates

and morphine derivatives with high positive scores from
the MAF side and a fairly homogenous distribution of
PocketPicker descriptors associated with low, medium
and high values of buriedness and distance (Figure 4A).
There were no detectable correlations with short-dis-
tance, low-buriedness or distant, highly buried descrip-
tors (white blocks). High negative scores were observed
for several drugs including proton pump inhibitors and
others that do not form any cohesive groups.
Factor pair II contained phenotiazines, tricyclic antide-

pressants and certain large molecules (e.g., antibiotics)
with negative scores on the MAF factor side while beta-
lactams and antiviral agents participated with positive
scores in this factor. On the PocketPicker factor side,
low and medium buriedness values, associated with low
and medium distances, were observed with positive
scores. Large distance descriptors in association with
medium buriedness levels displayed a negative
correlation.

Figure 2 Number of salient loadings across the 13 PCA factors
of the PocketPicker descriptor matrix. 13 factors were obtained
from the matrix of geometric features of the binding sites of target
proteins by PCA. The number of salient loadings (i.e., loadings with
a value of > 0.4 or ≤ -0.4) varied between 42 and 75 for the
individual factors which reflect a simple factor structure since the
original PocketPicker descriptor matrix contained 405 variables.

Figure 3 Superimposed Scree plots based on the MAF
fingerprints and the PocketPicker descriptors. Cumulative
variance explained by the PCA factors for the geometric descriptor
matrix based on PocketPicker (red circle) saturates much faster than
the cumulative variance for the MAF profiles (black square),
suggesting that the MAF matrix has more complex structure. The
first 40 factors of both matrices are plotted.

Table 4 Canonical correlations and component structure
for canonical factor pairs between the MAF and
PocketPicker Matrices

Canonical
Factor
Pair

Canonical
R

F-
statistic

p

Structure of Canonical
Factor Pairs

MAF
Factor

PocketPicker
Factor

I. 0.87 2.17 <
0.0001

6, 12, -19 5, 8, 9, 10, 11,
12

II. 0.84 1.74 <
0.0001

-7, -15,-
16, 28,
-30

1, 2, -12

III. 0.77 1.34 =
0.0004

-8, 9, 18 -1, 2, 5, -12

Canonical correlation analysis between the PCA factors of the MAF profiles of
target proteins and the geometric characteristics of their respective binding
sites indicated a statistically significant association for 3 pairs of canonical
factors. PCA factors of the MAF and the PocketPicker matrices with salient
canonical loading (> 0.25 or < -0.25) are shown for each of these canonical
factor pairs. (Negative signs indicate negative loading.)
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On the MAF factor side of factor pair III, compact
molecules (amino acids, tertiary amines, antihistamines)
produced positive correlation, in contrast with mole-
cules that have elongated chains which yielded negative
correlation. From the PocketPicker side, medium and
large buriedness and small/medium distance values
obtained positive scores while small (and medium)
buriedness values associated with small, medium and
especially large distances had a negative correlation.

Sensitivity analysis
To determine the robustness of our findings and to
study the impact of the applied scoring function on the

results, an altered MAF matrix was produced containing
binding free energies based on AutoDock4 scoring func-
tion. There was no significant difference between the
canonical correlation analyses based on X-SCORE or
AutoDock4 data set. Three significant factor pairs were
obtained in both cases. For AutoDock4 data, canonical
R values were 0.83, 0.70 and 0.66 for the three factor
pairs, respectively. The canonical redundancy analyses
also revealed consistency between the two approaches.
The significant PocketPicker factors explain 8.54% of
the variance of the AutoDock4-based MAF factor set
while this factor set explains 12.5% of the variance of
the PocketPicker descriptors.

Table 5 Results of the canonical redundancy analysis

Variance of the MAF Variables Explained by

Canonical
Variable
Number

Their Own Canonical
Variables

Canonical
R-Square

The Opposite
Canonical Variables

Proportion Cumulative
Proportion

Proportion Cumulative
Proportion

1 0.0333 0.0333 0.7638 0.0255 0.0255

2 0.0333 0.0667 0.7122 0.0237 0.0492

3 0.0333 0.1000 0.5852 0.0195 0.0687

4 0.0333 0.1333 0.4275 0.0142 0.0830

5 0.0333 0.1667 0.3403 0.0113 0.0943

6 0.0333 0.2000 0.2952 0.0098 0.1041

7 0.0333 0.2333 0.2362 0.0079 0.1120

8 0.0333 0.2667 0.1811 0.0060 0.1181

9 0.0333 0.3000 0.1238 0.0041 0.1222

10 0.0333 0.3333 0.1168 0.0039 0.1261

11 0.0333 0.3667 0.0833 0.0028 0.1288

12 0.0333 0.4000 0.0180 0.0006 0.1294

13 0.0333 0.4333 0.0129 0.0004 0.1299

Variance of the PocketPicker Variables Explained by

Canonical
Variable
Number

Their Own Canonical
Variables

Canonical
R-Square

The Opposite
Canonical Variables

Proportion Cumulative
Proportion

Proportion Cumulative
Proportion

1 0.0769 0.0769 0.7638 0.0588 0.0588

2 0.0769 0.1538 0.7122 0.0548 0.1135

3 0.0769 0.2308 0.5852 0.0450 0.1586

4 0.0769 0.3077 0.4275 0.0329 0.1914

5 0.0769 0.3846 0.3403 0.0262 0.2176

6 0.0769 0.4615 0.2952 0.0227 0.2403

7 0.0769 0.5385 0.2362 0.0182 0.2585

8 0.0769 0.6154 0.1811 0.0139 0.2724

9 0.0769 0.6923 0.1238 0.0095 0.2819

10 0.0769 0.7692 0.1168 0.0090 0.2909

11 0.0769 0.8462 0.0833 0.0064 0.2973

12 0.0769 0.9231 0.0180 0.0014 0.2987

13 0.0769 1.0000 0.0129 0.0010 0.2997

Proportion of the variance of PCA factor sets (yielded by the MAF and the PocketPicker matrices, respectively) explained by the canonical variates obtained from
the same and from the other matrix, respectively. According to the canonical correlation analysis, the first 3 canonical variables reached significance.
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Figure 4 Visual summary of the results of canonical correlation between the MAF and PocketPicker descriptor matrices. A. Three
statistically significant canonical factor pairs were obtained with the correlation values of 0.87, 0.84 and 0.77, respectively. Canonical correlation
(R value) for each factor pair is shown in the middle part. Representative molecules for the MAF factors are shown on the left panel (orange and
blue background for positive and negative salients, respectively). Distribution of PocketPicker salients is shown on the right panel. The six
different buriedness levels are represented by the letters A-F, with F representing the highest level of buriedness while distance parameters were
collected into three groups (1-7 Å, 8-14 Å, 15-20 Å). Orange and blue colors stand for the positive and negative salients, respectively. White
blocks represent the absence of a given descriptor pair within a given distance. See text for the details. Abbreviations: BZDs: benzodiazepines;
Morph.: morphine derivatives; Barb.: barbiturates; PPIs: proton pump inhibitors; Phen: phenotiazines; TCAs: tricyclic antidepressants. B. Shapes of
protein binding pockets represented with high scores among the first three canonical factor pairs. Positive and negative salients are represented
by orange and blue boxes. Binding site shapes are represented with colored balls positioned in a 1Å-spaced grid with deeper blue representing
a higher level of buriedness. Protein surfaces were removed for better view of the binding pockets in most cases excluding flat, surface sites e.g.
2pk4. Proteins of the positive salients of factor III have narrow, deep binding pockets while negative salients contain shallow, small pockets (1aj6,
1apy) and wide, extensive binding sites (2fvv, 3fap). Factor II proteins can be described as having binding sites of medium size and width. Based
on the distribution of salient loadings of PocketPicker variables, factor I proteins do not form a coherent group. Elongated (1d3g), branching
(1zsx, 2p0a) and bulky binding sites (2cca) belong to this factor.
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Discussion
According to our knowledge, this is the first study in
which complex multivariate associations were assessed
between robust binding affinity profiles and the geometric
properties of protein binding sites. Large data matrices
were assembled from both sides i.e. the interactions of 154
proteins and 1,255 FDA-approved small-molecule drugs
were studied while protein binding site shapes were
described using 405 geometrical parameters. The same set
of atoms isolated from each protein and centered to the
gravity center of the natural ligand was applied in docking
simulations and binding site description procedure as well.
The size of the docking box was set to ensure that even
the largest members of the drug set have enough space for
finding the lowest-energy conformation. Box sizes were
not adjusted to smaller ligands, keeping consistent treat-
ment of proteins our priority. As a consequence, if the ori-
ginal ligand was markedly smaller than a docked drug, it is
possible that the drug interacts with protein parts not
involved in the binding of the natural ligand. On the other
hand, a small drug molecule can potentially bind to many
restricted sites on the binding surface for a larger original
ligand; thus its calculated binding free energy will contain
insufficient information to describe the whole binding site.
These factors increase the variation in the input data set;
however, in the current investigation we used a large num-
ber of drugs to test the binding surface in order to over-
come these issues.

Comparison of the factorial structure of Molecular Affinity
Profiles and geometric characteristics of protein binding
sites
Figure 3 suggests that the MAF matrix can be described
by far more parameters than the PocketPicker shape
descriptor matrix. This result reflects the fact that the
energy values of the drugs are more heterogeneous as
compared to the geometries of the protein pockets,
which can be characterized by 13 underlying geometric
descriptor factors effectively (with approximately 94% of
the variance explained; in contrast to the 55% of the
variance explained by the same number of factors for
the MAF fingerprints [Table 2]). A similar observation
was made by other groups [21,22] including Favia et al
who studied the interactions between 27 members of a
protein family and approximately 1,000 compounds
including their natural ligands. They found that binding
affinities vary in a wide range even within clusters of
structurally similar molecules, docked to a set of struc-
turally and evolutionary related proteins [22].

Canonical correlation analysis
CCA was performed to study whether there is a rela-
tionship between binding site shape and virtual affinity
profiles of the proteins. Figure 4 summarizes the results

of the examination of the significant canonical factor
pairs.
Overall, because of the abundance of medium/large

buriedness and small/medium distance values, we con-
clude that canonical factor pair III is associated with
narrow, deep binding sites. This is supported by the fact
that descriptors associated with large distances and low
buriedness values have negative correlation. Deep, nar-
row pockets are in good agreement with the shapes of
the drug molecules responsible for the salients of the
MAF side of canonical factor pair III since small, com-
pact molecules have positive correlation while elongated
compounds have negative correlation. Figure 4B shows
the binding pockets of the proteins responsible for the
salients on the PocketPicker side. These pockets corre-
late well with the hypothesized overall shape discussed
above. Factor pair II points to medium-sized binding
sites as they can be described with small/medium dis-
tance parameters and the anticorrelation of parameters
coding large distances. Large molecules showed a nega-
tive correlation as well; however, this relationship is not
as straightforward as in the case of factor pair III. (See
Figure 4B for the binding pockets.) Due to the fact that
a wide range of PocketPicker descriptors from different
classes are represented in the salients of factor pair I, no
specific association can be identified in this case. The
reason for the appearance of different structural classes
of GABAA-acting pharmaceuticals - e.g. benzodiaze-
pines, barbiturates and morphine derivatives - requires
further investigation since the binding pockets of this
group possess different shape properties (i.e., elongated
and highly branched structures can be found here as
well).

Sensitivity analysis
Sensitivity analysis was performed using AutoDock4
scoring function instead of X-SCORE to assess the
robustness of our method. The results suggest that our
principal findings are robust both in terms of the close
association and the moderate amount of explained var-
iance observed in the case of the original data set.

Conclusions
Molecular Affinity Fingerprints were created for 154
proteins based on their molecular docking energy results
for 1,255 FDA-approved drugs. Protein binding site
shapes were characterized by PocketPicker descriptors
and the two data matrices were examined using PCA
and compared by canonical correlation analysis. PCA of
the MAF matrix provided 30 factors which explained
71.4% of the total variance of the MAF energy values
while 13 factors were obtained from the PocketPicker
descriptor matrix which explained cumulatively 94.1% of
its total variance. Based on these results we conclude
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that the energy values of the drug molecules are more
heterogeneous than the geometries of the protein bind-
ing sites.
CCA resulted in 3 statistically significant canonical

factor pairs with the correlation values of 0.87, 0.84 and
0.77, respectively. This result indicates a close associa-
tion between the two sets of variables; however, redun-
dancy analysis indicated that PocketPicker descriptors
from the statistically significant factor pairs are not suf-
ficient to completely describe the energy values of the
MAF matrix as they explain only 6.9% of the variance of
the MAF factor set. Inspection of the salient structures
of the significant canonical factor pairs revealed an asso-
ciation between the shapes of the drug molecules and
the protein binding sites. This finding is particularly
interesting if we consider the fact that drug shapes were
assessed solely through the energy values obtained by
molecular docking simulations rather than being
assessed directly using small-molecule shape descriptors.
Overall, our statistical analyses indicate that the MAF

matrix has a complex structure that is correlated with
the geometry of the ligand molecules and the protein
itself; however, it cannot be sufficiently described by
binding site shape descriptors. Binding pocket shape
does not play a principal role in the determination of
the affinity profiles of proteins except for few specific
cases discussed above. Since the MAF profile reflects to
the target specificity of ligand binding sites we can con-
clude that the shape of the binding site is not a key fac-
tor to select drug targets. Protein binding sites can be
characterized through other more complex descriptors
that take additional variables into consideration, for
example electrostatic interactions [23,24]. Along these
lines, the aforementioned Shape Signatures method was
also refined by incorporating an additional electrostatic
surface descriptor in the model. This modified proce-
dure was further applied and generated better prediction
results as compared to the original approach [25]. Our
findings are in agreement with a recent study where
NMDA receptor antagonists were selected from a library
of 8.8 million compounds, applying different virtual
screening methods i.e. 2D descriptor-based filtering,
molecular docking, QSAR pharmacophore hypothesis
and 3D shape search [26]. The best positive hits from
each approach were further evaluated by in vitro tests.
Comparing the four approaches, the 3D-shape-based
one gave the worst hit rates while docking produced the
highest number of successfully validated compounds.
From another perspective, our results suggest that the

shapes of the binding sites could have an impact in vir-
tual drug design for a few drug categories such as mor-
phine derivatives, benzodiazepines, barbiturates and
antihistamines, where they strongly correlate with the
MAF profiles. Using two different docking evaluation

functions, we showed that our findings may reflect the
intrinsic properties of protein binding sites and drug
molecules and not artifacts of the applied methodology.
However, additional studies are needed in order to
further investigate the robustness of our results using
different affinity scoring and binding pocket descriptive
approaches.
Finally, our findings point to the possible uses of the

MAF matrix for the characterization of the small-mole-
cule compounds based on their affinity fingerprints.
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