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Abstract

Background: A protein structure can be determined by solving a so-called distance geometry problem whenever
a set of inter-atomic distances is available and sufficient. However, the problem is intractable in general and has
proved to be a NP hard problem. An updated geometric build-up algorithm (UGB) has been developed recently
that controls numerical errors and is efficient in protein structure determination for cases where only sparse exact
distance data is available. In this paper, the UGB method has been improved and revised with aims at solving
distance geometry problems more efficiently and effectively.

Methods: An efficient algorithm (called the revised updated geometric build-up algorithm (RUGB)) to build up a
protein structure from atomic distance data is presented and provides an effective way of determining a protein
structure with sparse exact distance data. In the algorithm, the condition to determine an unpositioned atom
iteratively is relaxed (when compared with the UGB algorithm) and data structure techniques are used to make the
algorithm more efficient and effective. The algorithm is tested on a set of proteins selected randomly from the
Protein Structure Database-PDB.

Results: We test a set of proteins selected randomly from the Protein Structure Database-PDB. We show that the
numerical errors produced by the new RUGB algorithm are smaller when compared with the errors of the UGB
algorithm and that the novel RUGB algorithm has a significantly smaller runtime than the UGB algorithm.

Conclusions: The RUGB algorithm relaxes the condition for updating and incorporates the data structure for
accessing neighbours of an atom. The revisions result in an improvement over the UGB algorithm in two
important areas: a reduction on the overall runtime and decrease of the numeric error.

Introduction
Proteins are important bio-molecules in biological systems
and activities. A protein is a polypeptide chain made of 20
different types of amino acids. An amino acid sequence
determines the structure of the protein. Knowledge of the
protein structure gives us insight into function of the pro-
tein and its dynamics. Therefore, it is always important to
have an accurate protein structure in the highest resolu-
tion available. The distances between many pairs of atoms
in a protein can often be determined based on our knowl-
edge of chemistry (for example certain types of bond-

lengths and bond angles) [1], or from nuclear magnetic
resonance (NMR) experiments [2]. If a sufficiently large
set of inter-atomic distances can be obtained, then a pro-
tein structure can be determined by solving a so-called
molecular distance geometry problem (MDGP) [3].
MDGPs in their most general form are known to be com-
putationally intractable (NP-hard) [4].
In an experimental setting there are two additional

restrictions: First, often only a small subset of all pair-
wise distances may be available. Second, instead of a sin-
gle distance, experiments might only yield a distance
range for a pair of atoms (a lower bound and upper
bound of a distance). Several algorithms have been
developed as solutions or approximate solutions to
MDGP. These algorithms include singular value

* Correspondence: di.wu@wku.edu
Department of Mathematics and Computer Science, Bioinformatics and
Information Sciences Center, Western Kentucky University, Bowling Green, KY
42103, USA

Davis et al. BMC Structural Biology 2010, 10(Suppl 1):S7
http://www.biomedcentral.com/1472-6807/10/S1/S7

© 2010 Wu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:di.wu@wku.edu
http://creativecommons.org/licenses/by/2.0


decomposition [3], the embedding algorithm [3], the
alternative project algorithm [5], the graph reduction
algorithm [6], the multi-scaling algorithm [7], and the
global optimization algorithm [8][9]. Many of these
algorithms are computationally expensive, in particular
if they attempt to solve the MDGP in a general form.
In this paper we will only consider the MDGP in the

case when exact distances are available. Furthermore
we concentrate on a particular class of algorithms that
are computationally quite fast and will often suffice to
solve the MDGP problem. These are so called geo-
metric build-up algorithms (GB) [10]. A GB algorithm
is based on the idea of iteratively adding one atom at a
time to a list of positioned atoms.
Here we will refer to a positioned atom as an atom

with known coordinates in 3D space and an unposi-
tioned atom as an atom where we do not know its 3D
coordinates. It is well-known in geometry that in 3D
an unpositioned point P can be positioned when there
exist four positioned non-planar points, each of which
has a known distance to P. It is easy to see that when
all pair-wise distances between atoms are available, a
set of four such atoms can always be found. Such a
set of four atoms used to determine another atom is
also called a metric base. The algorithm in the case
when all distances are known has a linear running
time because a metric base is easily found [10]. How-
ever, such an ideal situation will hardly ever arise.
Clearly in this case the MDGP is not a hard problem.
The algorithm needs to be modified to determine a
protein structure when only a sparse set of pair-wise
distances is available. In such a case, finding a metric
base to add an atom to the list of positioned atoms
requires more work. The simplest idea would be to
exhaustively search through all possible metric bases
until one is found that allows the positioning of an
atom. Theoretically, when a sparse distance data has
sufficiently many entries a protein structure can be
determined.
A major problem in the geometric build up procedure

is numerical stability when a protein has a large number
of atoms. Due to computational round off or truncation,
errors are introduced into the build-up coordinates and
the iterative nature of the algorithm can cause these
errors to accumulate. This problem has been solved by
using an updated geometric build-up (UGB) algorithm
[11]. The updating reduces the accumulation of numeri-
cal error to a tolerable level. The UGB algorithm can
solve the MDGP with high accuracy. The idea of the
updating procedure is to re-compute the coordinates of
the four atoms in the metric base whenever possible
using the original, correct pair-wise distances. Therefore,
the fresh coordinates of these four atoms, with a mini-
mal numerical error, can be used to determine the

unpositioned atom more accurately. The drawback of
the UGB algorithm is the additional computational time
it requires to select a metric base carefully and the
updating procedure itself.

Geometric build-up algorithms
Initially, four atoms that are not co-planar are selected
such that all six inter-atomic distances between each
pair of these four atoms are known. A set of coordinates
for the four atoms is determined that satisfies the dis-
tances between them. We call atoms with fixed coordi-
nates positioned atoms. Thus there are initially only four
positioned atoms. Next, the GB algorithm increases the
number of positioned atoms by determining the coordi-
nates of an unpositioned atom that has four known dis-
tances to four distinct non-planar already positioned
atoms. As before, we call these four already positioned
atoms a metric base of the unpositioned atom. Using
this procedure repeatedly all the coordinates of the
remaining atoms can be determined using a distance
from four positioned atoms. The algorithm can solve a
MDGP even when only a sparse set of pair wise dis-
tances are available. In this case, the metric base of four
base atoms may need to be changed frequently in the
determination of the remaining atoms. This general geo-
metric build-up algorithm is outlined in the Figure 1
and also in reference [12]. The geometric build-up (GB)
algorithm will solve a MDGP when a sufficiently large
set of exact pair wise distances is given. It is possible to
formulate conditions that grantee a sufficiently large set
of distances so that a geometric build-up algorithm will
be successful, for details see [13].
Definition 1.1 A set of points B (with known coordi-

nates) in a space (usually R3) is a metric basis of a set S
of points provided the coordinates of each point of S
are uniquely determined by its known distances to the
points in B.
Definition 1.2 A set of four points in R3 is called

independent if they are not co-planar.
Definition 1.3 A point ui is called a neighbouring point

of a point uj if ui has a known distance di,j from uj.
Theorem 1.1 Given a set of distances among four

non-coplanar points, then the coordinates of the four
points can be uniquely determined up to a rigid motion
that is a combination of a translation, a rotation and
possibly a reflection.
Proof. The distances between the four points define a

tetrahedron and therefore this is obvious.
Theorem 1.2 If the coordinates of four non-planar

atoms xi, i=1,2,3,4 and the distances di,j, , i=1,2,3,4 to a
fifth atom xj are given, then the coordinates of the fifth
atom xj can be determined uniquely. In other words,
any four independent points in R3 form a metric basis
for R3.
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Proof. While this theorem is geometrically obvious,
we provide a short proof that will give us insight of how
the coordinates of the fifth atom are actually computed.
Let xi = (ui, vi, wi)

T, i = 1, 2, 3, 4, be the coordinate vec-
tors of the first four atoms and xj = (uj, vj, wj)

T the
coordinate vector of the fifth atom. We then have a set
of equations, || || , , , , .,x x d ii j i j  1 2 3 4
Square the equations and expand their left-hand-sides

to obtain
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We can then write the above equations in the follow-
ing matrix form.

Ax bj 

Since x1, x2, x3, x4 are not in the same plane, the
matrix A is nonsingular and therefore, the linear system
of equations can be solved to obtain a unique solution
for xj. Therefore, any four independent points in R3

form a metric basis for R3.

Note that the above algorithm (given in the proof of
Theorem 1.2) shows that the coordinates of xj can be
computed in a constant time. Therefore, the geometric
build-up algorithm can determine a protein structure in
a linear running time when all exact distances are avail-
able. Moreover, when all distances are available a single
metric base can be used throughout the process because
in each iteration as the four required distances will be
available. However there is no guarantee that a solution
to the MDGP can be found when only sparse distance
data is available. If we assume that any initial four
atoms will lead to a protein structure using the GB, the
algorithm will require a O(n3) running time in a worst
case analysis. There are three nested loops in the GB
algorithm: A while-loop (while L is not empty, where L
is the list of unpositioned atoms), within the while-loop
a for-loop (check all remaining atoms in L to find which
one can be determined with currently determined
atoms), and within the for-loop finding four determined
atoms with a distance from a given atom. Each step has
in the worst case O(n) many steps. Therefore, the worst
case total running time is O(n3).
As shown in previous reports [12], sparse distance data

can produce a large numerical rounding error that must
be dealt with. In the case of given sparse distance data,
almost always a new different metric base must be used
in the determination of a single atom. Thus, the metric
bases used in determination of unpositioned atoms con-
tain rounding errors from earlier calculations. Therefore
the errors introduced in previous steps accumulate. As a
result, the matrix A in the proof of Theorem 1.2 is often
not accurate and hence cannot be used to determine new
coordinates of atoms accurately. In summary, the GB
algorithm produces larger and larger rounding error in
the coordinate determination of unpositioned atoms.

An updated geometric build-up algorithm (UGB)
This algorithm incorporates the idea of re-computing
the coordinates of the four atoms in a metric base to

Figure 1 The outline of the General Geometric Build-Up Algorithm for Solving MDGP [Dong and Wu 2002b]
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minimize the rounding error. In many cases, there exist
many options to select a metric base of four atoms that
can determine an unpositioned atom. In the updated
geometric build-up algorithm, four non-coplanar atoms
with original distances among them are preferred. The
reason is that a metric base forms a tetrahedron T con-
sisting of original distances that allows to position the
atoms of the metric base relative to each other with
minimal rounding error. The coordinates of the unposi-
tioned atom can now be determined with minimal
rounding error relative to the tetrahedron T creating a
complex consisting of 5 atoms whose edges form a com-
plete graph K5.
It is important to realize that the determination of the

coordinates of the unpositioned atom is independent of
the coordinates of other atoms obtained previously.
After translation and rotation of the complete graph K5

consisting of the five atoms (the metric base and unpo-
sitioned atom) will be put back into the protein struc-
ture in a way that will minimize the rounding errors of
the positions of all 5 atoms simultaneously. The old
already build-up coordinates of the four atoms in T
(with their potential error) will be replaced by the new
updated set. We call this procedure re-initializing the
coordinates of the five atoms. This algorithm is outlined
in the Figure 2 and also in reference [11].
There are two major steps in this algorithm. First, the

positions of the four base atoms are recomputed based
on Theorem 1.1. The new positions of the four base
atoms are completely independent of their old positions,
and this first step just guarantees that the four base
atoms form a tetrahedron where the distances between

the atoms as accurate as possible. Second, the transla-
tion vector and rotation matrix need to be found for re-
initializing. This second step requires techniques used in
computation of the Root Mean Square Deviation
(RMSD).
We explain the re-initialization step for a tetrahedron

when all distances among four atoms are available. Let
(xi, yi, zi) be coordinates of i th atom, i=1,2,3,4, four
atoms and let dij be the distance between i th and j th

atoms, i=1,2,3,4. The initialization consists of the follow-
ing steps. We put the first atom at the origin, the sec-
ond atom on the x-axis and the third atom into the
xy-plane. Then we can determine the position of the
fourth atom. The formulas below explain the above
steps and a more detailed explanation of the procedure
is available in the reference [11],
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x2=d21, y2=0, z2=0
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We explain the standard RMSD steps for any two
structures of embedded points with coordinate matrices
X and Y of an identical set of n points. In our case n=4,
the matrix X contains the old coordinates of metric base
atoms and the matrix Y contains the recomputed

Figure 2 The outline of the updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse exact
distances [Wu and Wu]

Davis et al. BMC Structural Biology 2010, 10(Suppl 1):S7
http://www.biomedcentral.com/1472-6807/10/S1/S7

Page 4 of 10



coordinates of the metric base atoms. First, we need to
translate these two structures so that their geometric
centers are both at the origin. This can be done using
the following formulas,
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for i =1,2,…,n.

Now, X1 and Y1 are the two translated ( )n3
matrices with the same geometric center at the origin.
We can then find the rotation matrix Q so that RMSD
value of X1 and Y1 is minimized. This is formulated as

RMSD( , ) min || || /X Y X YQ nQ F1 1 1 1  , where Q is a

rotation matrix and || ||F is defined by 1

1
n

X Yi i
i

n



 , where

is the distance between the two points Xi and Yi. Q
can be computed through the following steps. Com-
pute C= Y1

TX1; then let UΣVT=C be the singular value
decomposition of C. That Q=UVT can be easily verified
to be the solution to the above minimization problem.
In the updated geometric build-up algorithm, the
above computations will give the translation vectors
(xc(1),xc(2),xc(3)) and (yc(1),yc(2),yc(3)) and the rotation
matrix Q. Applying this to the recomputed coordinates
of four metric base atoms and the newly determined
atom, the five atoms can be translated and rotated back
to the protein structure. Compared to the general geo-
metric build-up algorithm, in many cases, only the
updated geometric build-up algorithm can determine
protein structures completely and accurately when a
sparse set of distance data is available [9]. However, the
algorithm has a drawback that a brute force search for a
metric base of four atoms with known distances among
them can take up to O(n4) (if one considers all 4 element
subsets of n points) and then the total running time can
be O(n6). The majority of this worst case running time is
spent finding four atoms with all distances among them.

In this paper, the UGB algorithm is improved by a
revised updated geometric build-up algorithm (RUGB).
This algorithm aims at reducing the computational
complexity of the UGB algorithm. As we will show the
RUGB algorithm also improves the numerical error over
the performance of the UGB algorithm.

Methods
A revised updated geometric build-up algorithm (RUGB)
Although the updated geometric build-up algorithm
UGB has shown the property of controlling numerical
errors, the UGB algorithm requires searching for four
atoms with distances among them as a metric base in
every iteration. A revised updated geometric build-up
algorithm is described in this paper. The algorithm is
based on the regular updated geometric build-up algo-
rithm and modified by adding a new data structure
and relaxing the condition of a metric base. The first
modification in the algorithm is that instead of requir-
ing four metric base atoms with distances among
them, this algorithm requires three metric base atoms
with distances among them and one additional atom.
The purpose of relaxing the condition is to cut down
the time it takes to find a new metric base. The updat-
ing scheme can still be implemented with only three
metric base atoms. However, using three atoms, with
all distances among them, will result in two possible
sets of coordinates for the position of an undetermined
atom. In order to distinguish the correct solution from
the incorrect solution we use the distance to a fourth
determined atom that is not in coplanar with the first
three base atoms. This strategy is also based on Theo-
rem 1.2. The re-initialization and updating of the
metric base of three atoms also follows the steps simi-
lar to those in UGB algorithm introduced in the pre-
vious section. In this case, three atoms rather than
four atoms are considered.
A second modification is the creation of a data struc-

ture that makes it easy to access all of the neighbouring
atoms given by the original distance matrix for any
atom. Here we refer to the degree of an atom as the
number of neighbouring atoms and dmax as the largest
degree of all the atoms. Using the original distances we
generate a list of adjacency arrays, whose lengths are
bounded by dmax. Then searching through these lists of
neighbouring atoms, three metric base atoms and one
additional atom can be much faster because dmax is typi-
cally small when compared to n the number of all
atoms, especially as n gets large. Recall that previously
the UGB algorithm may require in the worst case an
exhaustive search through all subsets of four atoms out
of n atoms. The relative size difference between the
number of atoms n and dmax is illustrated in Table 1,
consisting of the ten largest of the tested proteins. Note
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that in Table 1 the size of dmax is somewhat dependent
on how the data set is generated. However we assume
that this is still typical for a sparse data set. The revised
geometric build-up algorithm UGB is outlined in Figure 3.
Two theorems illustrate the computational complexity of
the revised geometric build-up algorithm.
Theorem 3.1 Assume that any four initial metric base

atoms can lead to the complete determination of a pro-
tein structure given a sparse set of distance data, then a
protein structure can be determined by the revised geo-
metric build-up algorithm (RUGB) using O(n2dmax

3)
many steps, where n is the number of atoms and dmax is
the largest degree of atoms.

Proof. For any unpositioned atom A, it will take O
(dmax

3) many steps to know if there exist three neigh-
bouring atoms x1, x2, x3, which have known distances
between them. If it is the case, then it will take O(dmax)
many steps to know if there is any additional neighbour-
ing atom x4 of A such that x1, x2, x3, and x4 are non
planar.
If both a metric base of three atoms x1, x2, x3 and an

additional neighbouring atom x4 can be found, then
apply the updating strategy, which includes re-comput-
ing the coordinates of a metric base of three atoms x1,
x2, x3, determining the coordinates of the unpositioned
atom A, updating coordinates by translation and rota-
tion and using the additional atom x4 to determine the
correct position for A. For any choice of the four atoms
x1, x2, x3, and x4 this can be done in constant time.
Thus for an unpositioned atom A the total running

time will be at most O(dmax
3) regardless if the position

of A can be determined at this point. There are at most
n unpositioned atoms and in the worst case we have to
look at all of them before we can add a single atom.
Thus it may take O(ndmax

3) many steps to add a single
atom. Since the size of the initial list L is n-4 initially,
the total running time is O(n2dmax

3).
Note that often in NMR structure determination, only

distances less than 5Å can be obtained. Therefore, the
typical distance matrix is sparse in realistic applications.
However, the RUGB algorithm of Figure 3 relies on the

Table 1 The size of dmax compared to the total number
of atoms n

PDB Name # Atoms dmax dmax/n

’1VII.pdb’ 596 77 0.129195

’1HIP.pdb’ 617 37 0.059968

’1ULR.pdb’ 677 36 0.053176

’1BOM.pdb’ 700 69 0.098571

’1AIK.pdb’ 729 49 0.067215

’1CEU.pdb’ 854 65 0.076112

’1KVX.pdb’ 954 38 0.039832

’1VMP.pdb’ 1166 74 0.063465

’1HSM.pdb’ 1251 73 0.058353

’1HAA.pdb’ 1310 69 0.052672

Figure 3 The outline of the revised updated geometric build-up algorithm (RUGB) for solving the molecular distance geometry problem with
sparse exact distances
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successful selection of the initial four metric base atoms.
There is no guarantee that choosing any arbitrarily
selected metric base for initialization, will result in the
algorithm completely determining a protein structure. In
such a case we can start over by selecting a different set
of atoms for initialization. The following theorem ana-
lyzes the upper bound of computational complexity no
matter whether a protein structure can be determined
or a graph can be realized, using a revised geometric
build-up algorithm.
Theorem 3.2 Given a sparse set of distance data for a

protein, then it takes at most O(n3dmax
6) to determine

whether a protein structure can be solved using a
revised geometric build-up algorithm.
Proof. In a protein structure, there are at most O

(ndmax
3) many four atoms that are non co-planar and

have distances among them. Any of these sets of four
atoms can be considered an initial metric base. How-
ever, the worst case is all of them fail until the last one
works or none of them work at all. Therefore, the upper
bound of running time is O(ndmax

3) O(n2dmax
3)= O

(n3dmax
6).

Results
We tested the RUGB algorithm on a set of proteins. We
also compared the results with results generated by the
GB algorithm and the UGB algorithm. The testing data
was prepared in the following way. A set of proteins
with their structures were downloaded from the protein

structure database PDB [14]. For each protein, a struc-
ture file contains the (x,y,z) coordinates corresponding
to each atom in the structure and then a distance matrix
of all pair wise distances can be generated. In practice,
especially in NMR experiments, only distances between
two protons less than 5Å are typically available. In our
testing we used a cut-off distance of 5 Å and deleted all
distances that were larger (if there were any). This
resulted in sparse distance data that only contains dis-
tances less than 5Å. However, due to the poor perfor-
mance of general GB algorithm on sparse distance data,
we also generated a second matrix using a different cut-
off distance of 8Å. For each test case of a protein, we
applied the GB, the UGB and the RUGB algorithms. We
analyzed results by comparing numerical error and run-
ning time for the three algorithms.
The Table 2 lists numerical results of a set of proteins

tested on the RUGB algorithm and a regular UGB algo-
rithm. The first column contains PDB IDs of tested pro-
teins; the second column contains the number of atoms
in each protein; the third column shows the running
time using RUGB (in seconds); the fourth column
shows the running time of using UGB (in seconds); the
fifth column shows the RUGB RMSD error between the
determined structure and the real structure; the six col-
umn shows the UGB RMSD error between the deter-
mined structure the real structure.
In Table 2 the RUGB algorithm shows a decreased

runtime in all of tested proteins when compared to the

Table 2 The numerical results of RUGB and UGB

PDB Name # Atoms RUGB time (s) UGB time (s) RUGB error (Å) UGB error (Å)

’2DX2.pdb’ 174 3.5803 4.2447 2.31E-11 1.71E-08

’1ID7.pdb’ 189 3.0529 4.4187 8.62E-14 2.87E-12

’1B5N.pdb’ 332 8.1185 10.1274 1.93E-10 8.67E-08

’1FW5.pdb’ 332 6.9327 9.6053 1.65E-12 6.29E-08

’1SOL.pdb’ 353 8.318 13.5202 7.33E-13 5.72E-11

’1JAV.pdb’ 360 7.9572 11.4536 2.78E-12 1.50E-08

’1meq.pdb’ 405 8.7641 14.076 2.43E-12 1.20E-10

’1AMB.pdb’ 438 13.966 16.9998 7.11E-12 4.35E-07

’1R7C.pdb’ 532 13.3252 26.2002 8.62E-10 5.50E-08

’1HLL.pdb’ 540 13.0888 28.5319 2.83E-12 5.41E-07

’1VII.pdb’ 596 13.0338 24.7907 3.56E-10 2.28E-07

’1HIP.pdb’ 617 15.9565 35.5588 4.80E-10 5.45E-07

’1ULR.pdb’ 677 19.9154 127.6762 3.84E-10 5.43E-11

’1BOM.pdb’ 700 15.6276 37.5214 1.36E-09 3.16E-09

’1AIK.pdb’ 729 17.302 39.4843 9.19E-09 7.89E-09

’1CEU.pdb’ 854 21.3126 49.3975 3.15E-10 2.43E-09

’1KVX.pdb’ 954 27.6469 83.2725 7.21E-04 6.61E-04

’1VMP.pdb’ 1166 32.7741 95.3844 1.01E-06 5.57E-06

’1HSM.pdb’ 1251 37.8582 108.2448 5.88E-07 3.22E-07

’1HAA.pdb’ 1310 35.6037 129.6353 4.49E-10 8.25E-07

E-5 means 10-5 and E+5 means 105; others follow similarly
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regular UGB algorithm. In particular, for some large
proteins such as 1HSM and 1HAA having 1251 and
1310 atoms respectively, the RUGB algorithm can deter-
mine each protein structure about 3 times faster. In
addtion, the RUGB algorithm results in less RMSD
error for most proteins when compared with the UGB
algorithm. Figure 4 shows that our determined protein
structure of 1HAA (on the left) is practically identical to
the original structure of 1HAA deposited in PDB (on
the right). Both structures are displayed in Rasmol [15].
This is surprising since the up-date regimes are very

similar. The main reason could be the following: The
RUGB algorithm uses only three base atoms to numeri-
cally determine an unpositioned atom with two solu-
tions and one additional atom to fix the real solution.
This up-dating procedure involves less numerical calcu-
lation when compared with the 4 atom up-dating rou-
tine of the UGB algorithm. So it could be that the
RUGB up-dating produces a smaller numerical error.
The theoretical analysis (Theorems 3.1 and 3.2) dis-

cuss the upper bound of run-time of RUGB. Clearly the
numerical data shows that the algorithm runs much fas-
ter than the theoretical worst-case analysis using the
proteins in our data set. The run-time data is plotted in
Figure 5. Since all proteins selected in our example can
be determined with any initial four atoms, our results
should show a much better run-time than Theorem 3.2.
However, the numerical results also show a runtime
that is better than Theorem 3.1. Recall that the theoreti-
cal result in Theorem 3.1 only shows an upper bound
on the run-time of the RUGB algorithm. In addition, in
the way we constructed our data sets the algorithm may
not require O(n) steps in the while-loop to find an

unpositioned atom whose coordinates can be deter-
mined. Therefore, the results show a lower than quadra-
tic runtime behavior in our tests. Our data compares

nicely with the linear fit, y x  2 626 030. . r2 974 .
(see dashed line in Figure 5). However, the non-linear fit

y x r  0 348 0068 9761 2 2. . , .. (see solid line in Figure 5)

produces a slightly higher correlation coefficient. (A log-
log computation using least square shows that r2 is
maximal for the power n1.2.)
In Table 2, the structural determination of 1KVX

shows unusually larger numerical errors, compared with
several other selected proteins that have a similar num-
ber of amino acids, such as 1CEU and 1VMP. One rea-
son might be that a triangle selected in the RUGB
algorithm leads to a very flat tetrahedron. In this case
the positions of four atoms are almost co-planar, and
the determination of position of the unknown atom pro-
duces a solution of coordinates with a larger error then
the error produced by a tetrahedron that is not consist-
ing of four almost coplanar points.
The Table 3 compares the results of the RUGB algo-

rithm and the regular GB algorithm for the same pro-
teins as Table 2. The first three columns are identical to
the corresponding columns in Table 2. The fourth col-
umn shows the RMSD error between the structure
determined by GB and the real structure with the dis-
tance matrix using the 8Å cut-off distance; the fifth col-
umn shows the same as the fourth column but using a
distance matrix with a 5Å cut-off distance.
In Table 3, it is easy to see that the updating procedure

plays a very important role in controlling numerical errors,
see also similar results in [9]. Using a 8Å cut-off distance,

Figure 4 Protein 3D structure determined by RUGB and the original protein 3Dstructure of 1HAA. The left picture is for protein 3D
structure of 1HAA determined by RUGB and the right picture is for protein the original protein 3Dstructure of 1HAA
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the GB algorithm can determine the structure all tested
proteins in some sense, however the rounding errors are
so large that these structures are no longer useful.
Using a 5Å cut-off distance, the GB algorithm fails in

producing a complete protein structure in some
instances due to a round-off error that gets out of con-
trol. For the 8Å cut-off distance the given set of pair
wise distances is much denser. This work verifies that
the importance of updating that is used in both the
RUGB and the UGB algorithms. Both algorithms indeed
can determine a protein structure with a high accuracy.

Conclusions
A very accurate protein structure is essential to under-
stand the function and dynamics of the protein in biolo-
gical systems and activities. Applications of distance
geometry in protein structures determination arise from
the fact that pair wise distances of atoms in a protein
can often be obtained from experiments or our knowl-
edge of chemistry. Hence a protein structure can be
determined if there exists a solution to the distance geo-
metry problem. However, the problem is proved to be
NP-complete. GB algorithms do not solve all distance
geometry problems. In the cases where they do give a
solution, GB algorithms can determine protein structure
efficiently and accurately. In the GB algorithm, the posi-
tions of atoms are determined iteratively and rely on
other already determined positions of atoms, which
cause the accumulation of numerical errors. The strat-
egy of updating allows us to control the size of numeri-
cal errors. However, in the UBG algorithm updating
requires implementing an expensive step that contri-
butes up to O(n4) in the running time and the condition
that the four base atoms to be updated must have all

their distances known is quite strong. In this paper, the
RUGB algorithm relaxes the condition for updating and
incorporates the data structure for accessing neighbours

Figure 5 Plot of run-time of the UGB algorithm with the two best-fit functions

Table 3 Numerical results of using RUGB and GB
methods in protein structure determination

PDB Name Atoms RUGB error* GB error1** GB error2*

2DX2 174 2.31E-11 7.81E-12 4.80E-05

1ID7 189 8.62E-14 1.94E-13 8.48E-08

1B5N 332 1.93E-10 1.87E-07 4.31E+07

1FW5 332 1.65E-12 2.31E-08 1.55E+00

1SOL 353 7.33E-13 1.58E-05 1.70E+04

1JAV 360 2.78E-12 3.33E-03 4.97E+01

1MEQ 405 2.43E-12 4.54E-08 2.21E+04

1AMB 438 7.11E-12 3.01E-09 1.11E+00

1R7C 532 8.62E-10 1.54E-2 6.07E+12

1HLL 540 2.83E-12 2.04 1.83E+09

1VII 596 3.56E-10 0.373 1.52E+05

1HIP 617 4.80E-10 1.25E+5 N.A.

1ULR 677 3.84E-10 3.20E+3 7.33E+09

1BOM 700 1.36E-09 2.7E-2 1.68E+12

1AIK 729 9.19E-09 26.9 N.A.

1CEU 854 3.15E-10 5E-5 9.35E+09

1KVX’ 954 7.21E-04 977.49 7.45E+30

1VMP 1166 1.01E-06 2.78071E+13 N.A.

1HSM 1251 5.88E-07 1857.809626 1.37E+15

1HAA 1310 4.49E-10 83.15 6.62E+09

All errors are in Å.

N.A. means such protein can not be determined due to a large numerical
error

E-5 means 10-5 and E+5 means 105; others follow similarly

* for each tested protein, a given set of distances are prepared with a cut-off
distance 5Å

** for each tested protein, a given set of distances are prepared with a cut-off
distance 8Å
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of an atom. This results in an improvement of both the
overall runtime and the numeric error over the UGB
algorithm.
The RUGB algorithm has shown important properties

of controlling numerical errors and effectiveness. How-
ever, this paper provides only theoretical studies of the
method. The practical problems generally have distance
ranges in a data set, such as NMR structure determina-
tion and protein structure prediction. In the future, we
will address the application of RUGB methods in these
cases. Also the theoretical results provide the upper
bound of run-time when a sparse set of distances is
given. More advanced methods should also be Applica-
tions of knowledge in graph theory or other advanced
data structures may improve the algorithm further and
will be a topic of future research.
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