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Abstract

Background: The PD-(D/E)xK superfamily, containing a wide variety of other exo- and
endonucleases, is a notable example of general function conservation in the face of extreme
sequence and structural variation. Almost all members employ a small number of shared conserved
residues to bind catalytically essential metal ions and thereby effect DNA cleavage. The crystal
structure of the RecBCD prokaryotic DNA repair machinery shows that RecB contains such a
nuclease domain at its C-terminus. The RecC C-terminal region was reported as having a novel
fold.

Results: The RecC C-terminal region can be divided into an alpha/beta domain and a smaller alpha-
helical bundle domain. Here we show that the alpha/beta domain is homologous to the RecB
nuclease domain but lacks the features necessary for catalysis. Instead, the domain has a novel
function within the nuclease superfamily — providing a hoop through which single-stranded DNA
passes. Comparison with other structures of nuclease domains bound to DNA reveals strikingly
different modes of ligand binding. The alpha-helical bundle domain contributes the pin which splits
the DNA duplex.

Conclusion: The demonstrated homology of RecB and RecC shows how evolution acted to
produce the present RecBCD complex through aggregation of new domains as well as functional
divergence and structural redeployment of existing domains. Distantly homologous nuclease(-like)
domains bind DNA in highly diverse manners.

Background homology (reviewed in [1]). Since then structures have

The largest evolutionary superfamilies of proteins cover
such a large range of sequence space that the relationships
shared by members may not be apparent by standard
means of sequence comparison, and hence are often only
recognized after structural determinations. Such has fre-
quently been the case for the PD-(D/E)xK superfamily of
nucleases. Within the superfamily, structures were first
obtained for four restriction enzymes, of such diverse
sequences that they were initially assumed not to share

confirmed distant and often unexpected homologies of
those four with many other restriction enzymes, as well as
exo- and endo-nucleases involved in such diverse cellular
processes as DNA repair [2], transposition [3], Holliday
junction resolution [4] and recombination [5].

The unifying catalytic site characteristic of the superfamily
is the presence of one or more catalytically essential diva-
lent cations [6,7]. The conserved acidic residues of the PD-
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(D/E)xK motif, which can be separated by any number of
residues, bind one metal cation while the conserved lysine
residue is involved in positioning water suitably to attack
the DNA backbone. In some lineages of the superfamily
variation on this classical motif is apparent in the substi-
tution of the second acidic residue by a catalytically essen-
tial His residue (2), or in the migration of the second
acidic residue [8] or the lysine residue [9] to other parts of
the fold. Irrespective of this variation, the catalytic site is
placed at one edge of the core four or five-stranded B-sheet
at the heart of the o /B domain structure [1,6,7]. While an
overwhelming majority of the superfamily contain one of
these catalytic site variants some interesting exceptions
have been noticed. Thus, while clearly containing a PD-
(D/E)xK superfamily-like domain structure [ 10], the tRNA
splicing endoribonuclease EndA, has evolved an unre-
lated catalytic site on the opposite side of the fold to the
conventional site [11]. A catalytically inactive version of
the fold has also been seen in the N-terminal domain of
S. cerevisiae RPB5, an RNA polymerase subunit, where evi-
dence suggests that it functions in protein-protein interac-
tions [12].

Although extremely diverse in structure and sequence,
modern sequence comparison methods have played their
part in elucidating the full range of PD-(D/E)xK super-
family members [9,13-15]. Nevertheless, structure deter-
minations and structure-informed bioinformatics [16]
will continue to be crucial in this most diverse of super-
families. Some five years ago it was predicted that the
nuclease activity associated with the C-terminus of RecB
[17] resulted from the presence of a domain homologous
to that of A-exonuclease, despite RecB not possessing a
PD-(D/E)xK motif [13,14]. This prediction has been
recently confirmed with the crystal structure determina-
tion of the structure of the RecBCD heterotrimer [18]. This
remarkable complex (see [18] and references therein)
which functions to process double-stranded breaks in
DNA, contains two distinct helicase activities, contributed
by RecB and RecD. Also present is a catalytically inactive
subunit, RecC. Among its proposed roles is recognition of
the Chi DNA sequence [18]. Remarkably, twin helicase(-
like) motor domains (canonically named 1A and 2A) are
present in all three subunits, although those in RecC are
inactivated and only those in RecB and RecC contain o-
helical insert domains in each motor domain (named 1B
and 2B, respectively). As mentioned, the helicase domains
of RecB are followed by a PD-(D/E)xK superfamily nucle-
ase domain 3. In contrast, the C-terminal 'domain 3' of
RecC was reported as being of novel fold [18].

Here we show that the C-terminal region (‘domain 3') of
RecC can actually be dissected into two domains, the first
of which is clearly related to PD-(D/E)xK superfamily
nuclease domains (hereafter called simply nuclease

http://www.biomedcentral.com/1472-6807/5/9

domains) and particularly to the corresponding domain
of RecB. The nuclease-like domain of RecC is inactivated
and therefore possesses not even the metal-ligating resi-
dues of the PD-(D/E)xK motif. Instead, it carries out a
function not hitherto observed in the superfamily, provid-
ing an aperture through which one strand of newly split
DNA duplex is fed. Comparisons show that nuclease(-
like) domains are extraordinarily versatile in their mode
of interaction with duplex DNA. Characteristics of the
RecC nuclease-like domain show that RecB and RecC
share a common ancestor and reveal how evolution has
progressed by sequential addition of domains to the C-
terminus, as well as by altering function of, and reposi-
tioning of, existing domains.

Results and discussion

An unsuspected nuclease-like domain in RecC

Domain 3 of RecC has been described as being of novel
fold [18]. Structural examination suggested that it could,
in fact, be divided into two domains, an o/ domain and
a C-terminal all a-helical domain. Although the division
was made by eye initially, analysis with Protein Domain
Parser [19] produced a result that differed by just two res-
idues. When the o/p domain (comprising residues 828-
1033) was submitted to DALI [20], the most closely
related structure in the database was reported as phospho-
serine phosphatase but in second place was A-exonuclease
(PDB code 1avq; [5]). A root mean squared (rms) devia-
tion between the third RecC domain and A-exonuclease of
4.2A for 121 Cot atoms was obtained (yielding a DALI Z
score of 4.1). A-exonuclease is the nearest structural neigh-
bour to the nuclease domain of RecB [18]. For that pair,
131 Co atoms can be superimposed with an rms devia-
tion of 3.5 A (Z score of 6.2). From these data and visual
inspection (later additionally supported by PSI-BLAST
results — see below), it is clear that the third RecC domain
is a relative of the nuclease domain common to RecB and
A-exonuclease (Figures 1 and 2). Notably, the further divi-
sion of the C-terminal RecC 'domain 3' into two domains
was essential for this relationship to become apparent. In
contrast, the fourth, o-helical bundle domain of RecC has
no close neighbours in the present database.

The nuclease fold common to A-exonuclease, RecB and
now RecC is found in a wide variety of exo- and endonu-
cleases, from restriction enzymes to Holliday junction
resolvases, and enzymes of DNA repair [14]. Within the
superfamily, conserved motifs vary with family, but all
centre on acidic residues involved in binding the divalent
metal cation typically required for catalysis [6,7]. These
residues are the sole residues conserved across almost the
whole superfamily. A calcium ion bound to RecB in the
crystal structure [18] marks the binding site for the essen-
tial metal while in A-exonuclease, soaking in manganese
has revealed the corresponding site [5]. A metal-binding
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Figure |
Stereo structural superposition of the nuclease(-like) domains of RecB and RecC produced with LSQMAN
[29]. RecB is coloured grey while RecC, is coloured in a spectrum from blue (N-terminus) to red (C-terminus). Structurally
superposed regions are shown in cartoon representation (rms deviation of 2.19A for 7| Co. atoms), other parts as a Co trace.
The calcium ion bound to RecB is shown as a magenta sphere.

site, like those shown in Figure 1, is not present in RecC
(Figure 3). Indeed, the overall sequence identity between
the RecB and RecC sequence segments shown in Figure 3
is just 2-11 %. Thus, just as domains 1 and 2 of RecC are
inactivated helicase domains [18], so its domain 3 is an
inactivated nuclease.

Interestingly, comparison of the nuclease domains of
RecB, RecC and A-exonuclease shows that the Rec subu-
nits clearly share a more recent ancestor than the common
ancestor of all three structures. As Figures 1 and 2 show, a
single helix present in A-exonuclease is replaced in both
RecB and RecC by a three-helix o-helical bundle. This
bundle is not present in the more distant relatives of A-
exonuclease highlighted by the CE server [21] such as
archaeal Holliday junction resolvase, tRNA endonuclease
and the Pvull restriction enzyme. Curiously, the degree of
structural superposition that can be achieved between the
RecB and RecC nuclease domains and A-exonuclease sug-
gests no closer relationship between the former pair. For
example, 71 Co atoms of RecB nuclease domain may be
superimposed on their equivalents in RecC to produce an
rms deviation of 2.19 A. In comparison, 82 Co atoms of
RecB superimpose on equivalents of A-exonuclease with a
lower rms deviation of 1.71A. However, the superimpos-
able three-helix a-helical bundle shared only by RecB and
RecC (Figures 1 and 2) show that they are more closely
evolutionarily related to each other than to other homol-
ogous structures. The closer structural superposition of
RecB and A-exonuclease seems likely to arise from their
shared nuclease activity, while RecC has evolved a differ-
ent function.

Novel function of the nuclease-like domain in RecC

As mentioned, nuclease domains as represented in the
present PDB are extremely diverse in sequence but share
conserved residues that bind essential metal ions and are
almost invariably catalytically active. The recognition of
the third domain of RecC as an inactivated nuclease
domain highlights a wholly unexpected new function for
a non-catalytic but clearly nuclease-like domain. As
shown in Fig 2e, the nuclease-like domain of RecC pro-
vides a hoop through which a single strand of the newly
separated DNA duplex is passed. The hoop is the entrance
to the 5' channel leading to RecD in the RecBCD complex
[18]. The pin responsible for separating the two DNA
strands consists of a loop extending out of the a-helical
bundle domain 4 of RecC.

Structural comparisons show that a series of three struc-
tural adaptations have been required in RecC in order to
achieve this novel ssDNA-hoop function. These involve
three regions of sequence marked on Figures 2 and 3.
Region 1 comprises a long linker sequence between the
extended structure that starts the domain and the three
helix a-helical bundle subdomain. This linker region is
very poor in regular secondary structure and adopts dra-
matically different conformations in the two domains.
Significant sequence identity between RecB and RecC
seems absent in the region. In RecB this linker lies along
the surface of the remainder of the domain. In dramatic
contrast, region 1 in RecC has few contacts with the rest of
the domain (although it contacts other parts of RecC - see
below) and forms most of the rim of the hoop through
which ssDNA is passed. Region 2 is the connection
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Figure 2

Comparisons of structurally aligned nuclease(-like) domains in A-exonuclease, RecB and RecC. The comparison
in a)-c) shows how a single helix in A-exonuclease (PDB code lavq; [5]) (2) has been replaced by superimposable o-helical bun-
dles in RecB (b) and RecC (c) (PDB code Iw36; [18]), indicating a more recent shared ancestor of the latter pair. The regions
in question are shown as light grey. The remainders of the molecules are coloured in a spectrum from blue (N-terminus) to
red (C-terminus). In a) and b), two acidic, metal-ligating residues drawn as sticks mark respective catalytic sites. RecB and RecC
are compared in more detail in d) and e), respectively, again coloured from blue to red with the exception of labelled key
regions | (black), 2 (dark grey) and 3 (grey). Bound metal is shown in b) and d) as spheres while e) additionally shows DNA
(shades of pink) and the domain 4 of RecC, coloured uniformly lime green with its pin structure labelled. The DNA strand that
penetrates the hoop provided by RecC is shown as a broader cartoon. The RecC "hoop" region (see text for details) is labelled

in ¢) and e) and DNA strand termini are labelled in e).

between the two strands forming an antiparallel -sheet.
In E. coli RecC the connection is a minimal B-turn and
connections in other RecC sequences are also very short
(Figure 3). In contrast, Region 2 in RecB is usually much
larger, tracing out, in the E. coli RecB structure, an 11-resi-
due o-helix and a substantial stretch lacking regular sec-
ondary structure. Structure comparison shows the reason

for the short connectors in RecC (Figure 2); larger connec-
tors occupy the same space as the fourth domain of RecC.
Thus, a larger connector would be incompatible with a
RecC-style pin domain. Region 3, providing the connector
between a B-strand and an o-helix, is again larger in RecB
than in RecC and again contains an o-helix in RecB. Here
the reason for the shorter connector in RecC is even more
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15618648_Cp 869 .LLOQDTEYLMSTI.MRFIKHTH...... LEGFEETI .LKLLSKTFFSPLTFS.SQTFSLSQVLPNK.IFRETSFLF.LE.|.......
8134453 _Mt 848 ..APDLARELEAQV.RRHAPWWTVDVD..HAQLAPEL.ARALLPMHDTPLGPA.AAALTLRQIGVRD.RLRELDFEM.PLAGGDLRGR
15837025_X£ 996 ANAPVPATERAVLL.HALRGSGYVAED...... VEAG.VALLTPLVGHTLTSVLPEGVRLCDVPTTE.RRPEIEFQF.VV.[. ... ...
2 15837024 _Xf 882 ........ EADDTLYPQLRARALLPSGPLGRQQLHER.IEHLRPYAQAFAHW. .. ... ... .. .. RGTAPPQSQYLEVMI.[.......
15840032 Mt 857 HPDDAAHSEWRR. .. .GTLPPGRLGVRRAKEI .RNRARDLAAAALAH. .. ... ... .... RD.GHGQAHDVDVDL
15618647 _Cp 793 .FTYYREKTILLRNGLDKDPKHSPYIVTFSSSIFEERPYHESYLFPPL .SLSFQGNPVQIHGTI.|..
15594979_Bb 788 .SVIEIIYRLIKNSTLLHEYIMGKK..DDV.RKAIEIIKNHIRYE .IQ.QGSIPFNIDQK. .|..
1W36C_Ec 890 ..... EQDDAERLF RRFRAAGDLPYGAFGEIFWETQ CQEMQQLADRVIAC .QPGQSMEIDLAC
..... 4 eooeo0.0b0000 0000000005.000000000000 —
Region 2 ...coooeen —_——— Region 3........
1 1W36B_Ec 1030 PLIASQLDTLIRQFDPLSAGCPPLEFMQVRGMLK.GFIDLVFRHEG. . .RYYLLDYKSNWLGEDSSAYTQQAMAAAM
8134451_Bb 1021 NPEFQKQKYLFDKHFEDLHIKLSDGYLK.GIVDLIFKANN. . .KIYILDYKTNYLGKNKEDYNITNLENTI
15618648_Cp 936 L e e e e e e e NQELWQ.GVIDLFFEHEG. . .KYYIIDWKTSFLGETNSDYSKSNLSIYI
8134453 _Mt 927 SPDVSLADVGELLASHLPGDDPLSPYADRLGSAGLGDQPLRGYLA.GSIDVVLRLPGQ..RYLVVDYKTNHLGDTAADYGFERLTEAM
15837025_Xf 1066 .......... QATAVDALLALLHDHGLLQQRQSFGMRRRLEGLMT.GMIDLIYRHAG. .. .RWYVLDYKSNRLPD. .YTPAHLSVAM
2 15837024_Xf 940 . L e i DGIRLHA.HIQDL. .YP...HGIARLR[. .. .LG......... PPN.
15840032 Mt 2 GDGRRLSG.TVTPV..FG...GRTVSVT,...¥S......... KLA.
15618647_Cp 2= HGVICNEGLYLCSI..DPRDSLKKTTRT|. .. .LG......... SLPETS
15594979_Bb BAZ L e TTVNE . ILKKI..NK........ LK]|. JYNL Lo AAE .
1W36C_Ec 948 L . ... e e e e e e e e e e e e e e e e e e e e . NGVIQITG.WLPQV..QP DGLLRWR|. -PS......... LLS
—_ — 000000000000
1 1W36B_Ec 1103 QAHRYDLOQYQLYTLALHRYLRHRIAD.YDYEHHFGGVIYL..FLRGVDKEHP...... QQGIYTTR....PNAGLIALMDEMFAG
8134451_Bb 1088 KKE[YYDLQYKIYALGIKKILFKNKKE .YNQKFGGIIYL. .FTRAFEDNIECLKSKFENGIYFNL....PKFNDVDLDRKIILEL
15618648_Cp 981 KQEKLDYQGRIYVKAVRKFLNQFEID...... DDVELGVI..FIRGIDTQ........ GNGFFALN....SSEDIPNFNPKAIQK
8134453 Mt 1012 LHS|DYPLQALLYVVVLHRFLRWRQRD.YAPARHLGGVLYL..FVRGMCGAATPVTAGHPAGVFTWN. ...PPTALVVALSDLLDR
15837025_Xf 1136 TNSEYDLQALIYTVALHRWLRFRLRDAYDYARDMGGIRYL FCRGMDATRP..... DAAGVYTQS....FAPALIAAVDAMFSG
2 15837024 _Xf 966 GPAVLRHGLDWLLASAA..GHP......... WPLVRFEDAGV. ... ... .. ... AGLGPHLQPSLPSSQAQTALS LLL
15840032_Mt 940 PKHVLPAWIGLVTLAAQEPGRE . ... ... .. WSALCIG..RS.. ... i KTRNHIARRLFVPPPDPVAVLRELV
15618647 Cp 888 SEQKQLLERYVALAVLOMSQHLSS......... DSALIKLTSFN................ TKENHH. .PPF..SDPEGYLR.KVL
15594979_Bb 861 SLKKLSAMTKSKIKFCKKIKLNF......... QNKNIEFELKK................ DIENVY..... KVENNYFYLN.FVK
1W36C_Ec 974 AQGMQLWLEHLV‘.{CAS LGGN. ..ol GESRLFL..RK................ DGEWRF . PPLAAEQALHYLS QLI
h . > —- 0000 _ﬂ.ﬁj‘qm?
Figure 3

Structure-based sequence alignment of the nuclease(-like) domains of RecB and RecC. Nuclease(-like) domain
sequences of RecB (above, group |) and RecC (below, group 2) were chosen from diverse representative species and
extracted from complete alignments of COG database [31] entries for RecB or RecC. Purple indicates the E. coli sequences
crystallized as the RecBCD complex (PDB code Iw36; [18]). Other sequences are labelled with Genbank numbers and
sequence codes Bb, Borrelia burgdorferi; Cp, Chlamydophila pneumoniae; Mt, Mycobacterium tuberculosis; Xf, Xylella fastidiosa. Red
colouring indicates conservation within each group while green is used for three important catalytic residues of RecB — H956,
D 1067 and D1080 [18]. Elements of regular secondary structure are shown above (RecB) and below (RecC) the alignment,
where spirals represent a-helices and arrows [3-strands. The three key regions (numbered |-3) involved in adaptation of the
RecC nuclease-like domain to its new function, as discussed in the text (see also Fig 2), are boxed and labelled. Purple under-
lining indicates zones that can be simultaneously structurally aligned (rms deviation of 2.19A for 71 Co. atoms).

fundamental; were it to have the longer connector of
RecB, the aperture whereby ssDNA passes through the
RecC nuclease-like domain would be sterically obstructed.

DNA interactions with nuclease and nuclease-like domains
Unfortunately, no structure of A-exonuclease in complex
with DNA is yet available. However, other enzymes shar-

ing the same fold, including many type II restriction
enzymes, have been crystallized in complex with DNA.
Therefore, DNA-bound structures were sought for the
enzymes identified as closest structural neighbours for A-
exonuclease by the CE server [21]. This analysis pin-
pointed the restriction enzyme Pvull (PDB code 1pvi;
[22]) and the vsr exonuclease (PDB code lodg; [23])

Page 5 of 9

(page number not for citation purposes)



BMC Structural Biology 2005, 5:9

http://www.biomedcentral.com/1472-6807/5/9

Figure 4
Comparison of modes of DNA binding to superimposed nuclease(-like) domains. The domain structures are those
of a) Pvull (PDB code |pvi; [22] b) vsr exonuclease (PDB code | odg; [23]) and c) RecC (PDB code Iw36; [18]). Protein chains
are coloured in a spectrum from blue (N-terminus) to red (C-terminus) while DNA is coloured uniformly pink. In order to
illustrate the approximate locations of the catalytic sites, selected catalytic residues are shown for Pvull (D58 and E58) and vsr
exonuclease (D51 and H69). DNA termini are labelled, as is the "hoop" in RecC.

involved in repair of bacterial G:T mismatches. Further
analysis (not shown) showed that the mode of binding of
DNA to Pvu II was, in fact, typical of many restriction
enzymes, irrespective of dimeric vs tetrameric quaternary
state and of differing modes of dimerization.

Remarkably, as shown in Figure 4, the axes of duplex DNA
binding to Pvull and to vsr exonuclease are almost orthog-
onal, a difference that seems to have escaped notice. The
catalytic sites of both enzymes, although differing in
detail, are similarly placed at one edge of the B-sheet,
defining the 'front' of catalytic nucleases. Most unexpect-
edly, the inactivated nuclease-like domain of RecC which
also, in the context of RecBCD, binds duplex DNA, prior
to strand splitting by the fourth domain, does so in a com-
pletely novel manner. First, the axis of the bound duplex
DNA is approximately orthogonal to both Pvull and vsr
exonuclease modes. Secondly, the binding involves the
'‘back' of the domain; only a single strand of the DNA
arrives at the 'front' side after passing through the aperture
(Figure 4). These results make clear that few assumptions
can be made regarding modes of DNA binding by nucle-
ase(-like) domains in the absence of experimental data
such as structures in complex with DNA.

Homology of RecB and RecC
The observation of inactivated helicase-like domains in
RecC was not considered reason enough to propose the

existence of homology between RecB and RecC extending
over their whole length [18]. Indeed, both sequence and
structural comparisons at first suggest that RecB more
closely resembles other helicases than it does RecC. For
example, in the results of PSI-BLAST [24] starting with E.
coli RecB, PcrA, another helicase that contains large heli-
cal-insert domains in each helicase domain [25], appears
as a significant hit (e = 6 x 10-) in the results of the first
iteration. In contrast, using an e-value cut-off of 0.0001
four iterations are required before RecC sequences,
including that of E. coli RecC, appear among the signifi-
cant hits. While the BLAST alignments centred on the hel-
icase(-like) domains the C-terminal nuclease(-like)
domains were sometimes matched, although PSI-BLAST
runs of the nuclease domain of RecB failed to hit the
nuclease-like domain of RecC, and vice versa. Similarly,
structural comparisons show that both helicase domains
and both o-helical insert domains of RecB are more simi-
lar to their counterparts in PcrA than to the corresponding
RecC domains (not shown). Nevertheless, the clear
homology of the RecB and RecC nuclease(-like) domains,
evident in their common three o-helical bundle (see
above) strongly suggests that RecB and RecC share a more
recent common ancestor than they have in common with
other extant helicases. How then to explain the apparently
closer relationship of RecB with PcrA than with RecC? As
was proposed for the nuclease(-like) domains (see above)
it seems like the dramatic functional differences between

Page 6 of 9

(page number not for citation purposes)



BMC Structural Biology 2005, 5:9 http://www.biomedcentral.com/1472-6807/5/9

[#4

d)

PcrA

RecB

RecC

Figure 5

Domain comparison of PcrA, RecB and RecC. The structures of a) substrate-complexed PcrA (PDB code 3pjr; [38]), b)
RecB and c) RecC (PDB code Iw36; [18]), are superimposed using domain 2A. The domains | A are coloured red, while orange
is used for |IB, blue for 2A, cyan for 2B, green for 3 and yellow for 4. The same colours are used in the schematic diagram d)
which illustrates how evolution progressed through addition of domains. The "pin" and "hoop" in RecC (see text for details)
are labelled. In PcrA the residues defining the starts of the various (sub-)domains are |B, 92; | A continuation, 218; 2A, 287; 2B,
385; 2A continuation, 553. In RecB the corresponding residue numbers are IB, 151; | A continuation, 349; 2A, 446; 2B, 583; 2A
continuation, 729; linker, 870; 3, 900. In RecC they are IB, 79; | A continuation, 208; 2A, 329; 2B, 443; 2A continuation, 649;
linker, 784; 3, 828; 4, 1034.

corresponding RecB and RecC domains are responsible.  tenance of helicase activity by the helicase domains of
As discussed above, the RecC nuclease-like domain is sig-  PcrA and RecB is responsible for their apparently closer
nificantly shorter than the RecB nuclease domain in two  relationship, the structural changes accompanying evolu-
key regions, each associated with its new role as provider  tion of the helicase-like domains in RecC for new roles
of an ssDNA hoop. Thus, it seems plausible that the main-
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having obscured their more recent shared ancestry with
RecB.

The recognition of homology between RecB and RecC,
and the dissection of their domains leads to an interesting
comparison with PcrA. In PcrA, a duplication of an ances-
tral RecA-like domain, already containing an all o-helical
insert domain, is evident [25]. In RecB a long linker region
and following nuclease domain have been added to the
PcrA template (Figure 5). A further domain addition has
occurred in RecC, that of the small C-terminal o-helical
bundle domain that contributes the duplex-splitting pin.
This picture of aggregation of novel functionality through
domain addition is complemented by alterations in func-
tion of homologous domains. Thus, as described, the
nuclease-like domain of RecC continues to bind duplex
DNA, but using a different surface of the domain, as well
as providing the entrance to the 5' ssDNA channel leading
to RecD. This modification is paralleled in the helicase-
like domains by a change from catalytic helicase activity to
Chi sequence recognition ([18] and references therein).
The a-helical inserts into the helicase(-like) domains also
have different functions in RecB and RecC [18], including,
in the case of the RecC domain 1B binding to the RecC
nuclease-like domain and the rim of its ssDNA aperture
(Figure 5). Although homologous, the structural compar-
ison of complete RecB and RecC subunits shows large dif-
ferences in relative domain orientations and positions,
most dramatically with regard to the position of the nucle-
ase(-like) domains relative to the helicase(-like) domain
cores (Figure 5).

There is an interesting parallel to be drawn between
RecBCD and AddAB (also known as RexAB), a different
DNA repair system found in Gram positive bacteria where
RecBCD is lacking (see [26] for a review). AddA and AddB
also appear homologous and each possesses helicase and
nuclease motifs. Within AddAB, it is AddB that recognises
the Chi sequence and therefore is the counterpart of RecC
in RecBCD. Most interestingly, however, both the nucle-
ase domains of AddA and AddB appear to be active [27].
The AddAB system may therefore resemble an evolution-
arily intermediate stage, through which the RecBCD
machine passed before inactivation of the RecC nuclease
domain and recruitment of RecD.

In summary, the improved domain dissection of RecC
presented here and its ramifications enhance our under-
standing of the evolutionary processes responsible for the
remarkable DNA processing machinery that is the
RecBCD complex [18]. It is now even more apparent that
relatively straightforward addition of modular functional-
ity has been accompanied by quite dramatic functional
evolution of homologous domains.

http://www.biomedcentral.com/1472-6807/5/9

Methods

Protein structures were retrieved from the Protein Data-
bank (PDB; [28]). Protein structural superpositions were
obtained at the CE [21] and DALI [20] servers and by
using the program LSQMAN [29]. Structural relationships
were also explored in the SCOP database [30]. Protein
structure visualization employed O [31] and PyMOL [32],
the latter also being used for production of figures. Itera-
tive database searches were carried out using PSI-BLAST
[24]. Sequences were retrieved from the COG [32] entries
for RecB (COG1074) and RecC (COG1330). Maximally
diverse representatives were chosen using JALVIEW [34]
which was also used for general sequence manipulation.
Protein sequence alignment was carried out using MUS-
CLE [35] and T-COFFEE [36]. Formatting of sequence
alignments was done with ESPRIPT [37] using default
options for colouring of sequence conservation.
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