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Abstract

Background: It has been proposed that secondary structure information can be used to classify
(to some extend) protein folds. Since this method utilizes very limited information about the
protein structure, it is not surprising that it has a higher error rate than the approaches that use
full 3D fold description. On the other hand, the comparing of 3D protein structures is computing
intensive. This raises the question to what extend the error rate can be decreased with each new
source of information, especially if the new information can still be used with simple alignment
algorithms.

We consider the question whether the information about closed loops can improve the accuracy
of this approach. While the answer appears to be obvious, we had to overcome two challenges.
First, how to code and to compare topological information in such a way that local alignment of
strings will properly identify similar structures. Second, how to properly measure the effect of new
information in a large data sample.

We investigate alternative ways of computing and presenting this information.

Results: We used the set of beta proteins with at most 30% pairwise identity to test the approach;
local alignment scores were used to build a tree of clusters which was evaluated using a new log-
odd cluster scoring function. In particular, we derive a closed formula for the probability of
obtaining a given score by chance.Parameters of local alignment function were optimized using a
genetic algorithm.

Of 81 folds that had more than one representative in our data set, log-odds scores registered
significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in
the remaining cases. Various notions of the significant change or average change were considered
and tried, and the results were all pointing in the same direction.

Conclusion: We found that, on average, properly presented information about the loop topology
improves noticeably the accuracy of the method but the benefits vary between fold families as
measured by log-odds cluster score.
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Background

The problem of structure comparison and protein fold
classification is important but also computationally chal-
lenging. The structure comparison and structure align-
ment is inherently more difficult than sequence
alignment. In last years, significant progress has been
made towards designing algorithms to carry out this task
and currently a number of fold comparison methods are
known [1-11] and several reviews on these methods have
appeared [12-14]. Fold comparison methods can be
roughly divided into two groups: slow methods that
attempt to compute 3-dimensional alignment with
atomic precision and fast screening methods that quickly
assess fold similarity without attempting precise align-
ment. Increasingly hybrid algorithms are applied which
use a fast but not accurate method as a preprocessing step
which is subsequently followed by a slower but more
accurate algorithm that is applied only to the structures
selected in the first step. Such two-phase methods become
more important as the number of protein structures
deposited in PDB [15] approaches 3 x 104 and steadily
increases.

There are two basic approaches that are used in the fast
structure similarity scoring methods: indexing/hashing
methods [7,8,16,17] and linearization/dynamic program-
ming methods [11,18-21]. These two approaches are
quite different in nature. Typically indexing/hashing
methods are looking for spatial features of the protein
structures that can be easily extracted and compared. Sim-
ilarity between two structures can be then measured in a
number of ways, for example by counting the number of

Table I: Clustering scores of various methods.
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common features. In contrast, linearization methods rep-
resent 3D structure as a sequence of segments (for exam-
ple secondary structures) listed in the order of their
appearance in the polypeptide chain. Such linear
sequences can be aligned using dynamic programming.
An obvious shortcoming of this approach is that there is
no guarantee that such alignment is consistent with a
structural alignment. However, a number of studies indi-
cate that even secondary structure information alone pro-
vides a valuable similarity scoring function [18,19,22,23].
Additional attraction of this method is that while it is
likely to produce false positive (proteins with similar sec-
ondary structure composition that have significant differ-
ences in 3D structure) it is rather unlikely to give false
negative (proteins with the same 3D structure that have
significantly different secondary structure composition).
This makes it a good candidate for a screening method in
a hybrid approach discussed above. Another advantage of
the linearization method is its applicability to alignment
of predicted structural segments [24]. Currently there is a
number of algorithms that predict secondary structure
segments and the accuracy of these algorithms is quite
high [25].

Although these algorithms cannot predict orientations of
such secondary structure segments in space, several
research groups have begun addressing prediction of
supersecondary structures [26-29]. Of important super-
secondary structures, one that has attracted most attention
is a hairpin which is ubiquitous among the beta folds. It
would be expected that adding information about hairpin

Sample Size averaging SSEA DSSP Ours
method

NCL CL NCL CL

ALL 1183 U 2.30 227 249 236 2.50
R 2.08 2.07 227 2.09 226

L 1.71 1.70 1.84 1.68 1.85

MEDIUM 631 U 1.82 1.87 1.98 1.81 2.04
R 1.62 1.66 1.77 1.59 1.78

L 1.18 1.18 1.27 1.1l 1.26

LONG 475 U 1.96 2.03 2.05 1.92 2.00
R 1.81 1.85 1.90 1.76 1.86

L 1.64 1.68 1.73 1.61 1.71

RANDOM 591 U 1.76 1.77 1.87 1.88 1.98
R 1.64 1.63 1.73 1.71 1.81

L 1.42 1.37 1.47 1.43 1.53

Average log-odds score of various clustering functions. Sample MEDIUM consists of those protein domains in ALL that have between 70 and 140
residues, and LONG are those that are longer. RANDOM is the average of 40 samples obtained by splitting ALL in a random fashion into equal
parts (on the average). Averaging methods: U is unweighted, R is weighted with the root of fold size and L is weighted with the fold size (in a
sample); in each case folds that have fewer than 2 representatives in a sample are excluded. SSEA is the score computed by SSEA program from
DSSP output, DSSP is the score obtained from DSSP output and our alignment program, "ours" uses our structure determination and our alignment
programs. Our annotations of closed loops were transferred to DSSP output to obtain CL version of that score.
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positionwould significantly increase the power of linear
methods at least for S-fold class.

With this motivation in mind we extend the linear struc-
ture similarity method based on secondary structure [18]
by indicating which loops form parts of hairpins (these
are short loops that connect the two strands of an anti-par-
allel S-sheet, we refer to them as closed loops).

Given a protein structure we represent it as a sequence of
letters from alphabet {E, H, L} denoting respectively
strand, helix, and loop. Each residue has assigned one let-
ter according to the secondary structure in which it is
located and thus the length of the sequence is equal to the
length of the protein. Additionally, we add "annotations"
that indicate the length and the position of closed loops.
We use the term secondary structure sequence to refer to
those annotated sequences.

We developed a new algorithm for secondary structure
recognition based on graph theoretical representation of
protein structure.

The annotated secondary structure sequences are then
compared by computing maximum score local align-
ments and subsequently clustered by structural similarity.
However, rather than using a specificclustering method,
we constructed a tree using weighted pair group method
and used tree cluster evaluation method based on [18].
We complement the scoring method proposed in [18]
(and used byothers, e.g., [30]) by providing a closed math-
ematical formula for statistical relevance of the scores
andprovide a rigorous log-odds score.

The alignment parameters are optimized using a genetic
algorithm. On average, we observe a noticeable improve-
ment over the method that does not distinguish between
loop types, but the benefits vary between fold families.
This suggests that fold or family specific approaches

http://www.biomedcentral.com/1472-6807/6/3

should be more accurate than one size-fit-all alignment
method.

Results

Our results are summarized in Tables 2 and 1. The test set
consists of 1183 non-redundant (at most 30% identity)
beta proteins where each protein was identified by fold
number as assigned by SCOP (see Methods). The test pro-
tein belonged to 123 different folds. The pairwise similar-
ity has been computed based on secondary structure and
loop information using two scoring functions: CL and
NCL. CL scores are computed taking into account loop
annotation while NCL scores without them. The precise
description of the scoring function designed to obtain an
accurate alignment is provided in the Methods section.

Table 2 summarizes the improvement obtained by includ-
ing loop topology information. This table shows also the
contribution of the individual folds to the overall aver-
ages. To evaluate this improvement we introduce average
log-odds cluster score. This way the scoring method intro-
duced in [18] is complemented with a measure of score
significance. The complete mathematical derivation of the
formula used to obtain the score significance is provided
in Additional file 1.

In Table 1, we compare the impact of the secondary struc-
ture definition on the results produced by CL and NCL.
Here we additionally use our CL and NCL alignments
methods in conjunction with the DSSP secondary struc-
ture annotation [31]. The results obtained are consistent.
Adding loop annotation in each case leads to the same
level of improvement. In both tables we also include
results from a related algorithm, SSEA [32,33]. In this
algorithm, DSSP secondary structure definition is used
and no loop topology information is included. Thus it is
expected to have a performance closely related NCL
results. This indeed is observed, although each method
fails for some folds.

43 /7/\%_
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4.0
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Figure |

Sums of average unweighted log-odds scores with weighted log-odds scores for different values of L. The value for L = 0 corre-

sponds to NCL.
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Table 2: Raw scores and log-odds scores for individual folds.
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fold fold size score Log-odds score impact on the average
number
ours ours

SSEA NCL CL SSEA NCL CL U R L
| 242 0.462 0.461 0.493 0.748 0.751 0.813 2
2 27 0.054 0.089 0.077 0.293 0.832 0.659
3 I 0.096 0.087 0.096 1.276 1.238 1.274
4 2 1.000 1.000 1.000 3.952 4.030 3.945
6 40 0.199 0.303 0.257 1.366 1.815 1.619 -1 -1
7 15 0.299 0.378 0.315 2.300 2.583 2.345
8 3 0.333 0.334 0.334 2811 2.888 2.804
I 9 0.112 0.221 0.377 1.494 2.238 2.706 | |
12 4 0.505 0.334 0.151 3.186 2.843 1.975 -2 -1
15 3 0.062 0.378 1.000 1.137 3.010 3.903 2 |
17 3 0.521 0.833 0.833 3.257 3.802 3.720
18 29 0.140 0.126 0.169 1.215 1.142 1.399 | |
19 6 0.152 0.167 0.177 1.907 2.069 2.056
21 3 0.339 0.333 0.333 2.827 2.886 2.804
22 7 1.000 0.717 0.719 3.756 3.487 3.420
23 6 0.304 0.276 0.677 2.601 2.571 3.396 2 |
24 5 0.183 0.473 0.850 2.131 3.149 3.661 |
26 5 0.104 0.104 0.150 1.569 1.633 1.929
29 33 0.361 0.258 0.581 2.084 1.779 2.557 | 3 4
30 17 0.286 0.299 0.456 2.200 2.292 2.663 | |
31 2 0.035 0.016 0.009 0.604 0.000 0.000
33 7 0.404 0.303 0.839 2.850 2.627 3.574 2 2 |
34 63 0.340 0.160 0.271 1.582 0.846 1.354 | 3 5
35 3 0.104 0.043 0.021 1.648 0.837 0.063 -1 -1
36 20 0.638 0.492 0.680 2.927 2.709 2.986 |
37 2 0.008 0.004 0.000 0.000 0.000 0.000
38 I 0.610 0.228 0.418 3.129 2.201 2.745 | | |
39 2 1.000 1.000 1.000 3.952 4.030 3.945
40 90 0.244 0.277 0.301 0.973 1112 1.182 |
41 2 1.000 1.000 1.000 3.952 4.030 3.945
42 24 0.389 0.309 0.447 2.340 2.149 2.475 | |
43 27 0.300 0.244 0.246 2016 1.844 1.813
44 3 0.833 0.418 0.333 3.727 3112 2.804
45 4 0.376 1.000 1.000 2.890 3.941 3.862
46 2 0.001 0.039 0.000 0.000 0.787 0.000 -1
47 32 0.753 0.424 0.395 2.838 2.296 2.189
49 2 1.000 1.000 1.000 3.952 4.030 3.945
50 I 0.382 0.352 0.331 2.662 2.635 2513
51 4 0.199 0.502 0.531 2.254 3.251 3.230
52 10 0.353 0.256 0.308 2,615 2.351 2.471
53 3 0.003 0.064 0.500 0.000 1.235 3.210 4 2 |
55 30 0.531 0.492 0.607 2.526 2483 2.656
56 2 1.000 1.000 1.000 3.952 4.030 3.945
57 3 1.000 1.000 1.000 3910 3.984 3.903
58 3 0.335 1.000 1.000 2.815 3.984 3.903
60 22 0.489 0.488 0.478 2613 2.652 2.587
6l 9 0.127 0.084 0.352 1.623 1.264 2.637 3 3 2
62 2 1.000 1.000 1.000 3.952 4.030 3.945
63 2 1.000 1.000 1.000 3.952 4.030 3.945
64 2 0.016 1.000 1.000 0.000 4.030 3.945
65 2 0.126 0.001 0.063 1.877 0.000 1.174 2 |
66 5 1.000 0.900 1.000 3.830 3.793 3.824
67 2 0.002 0.016 0.000 0.000 0.000 0.000
68 13 0.550 0.382 0.552 2.966 2.653 2.964

Page 4 of 10

(page number not for citation purposes)



BMC Structural Biology 2006, 6:3

http://www.biomedcentral.com/1472-6807/6/3

Table 2: Raw scores and log-odds scores for individual folds. (Continued)

69 23 0.747 0.711 0.750 3.014 3.005 3.015
70 5 0.475 0.368 0.591 3.086 2.900 3.297
71 24 0.342 0.148 0.281 2212 1.412 2.010 | 2 2
72 10 0.602 0.454 0.533 3.148 2.922 3.021
74 4 1.000 1.000 1.000 3.869 3.941 3.862
76 2 0.000 0.531 0.000 0.000 3.397 0.000 -8 -3 -1
77 5 0.331 0.259 0.303 2.725 2.549 2.629
80 18 0.302 0.305 0.431 2.228 2.282 2.582 |
8l 9 0.559 0.643 0.591 3.106 3.304 3.156
82 35 0.173 0.205 0.399 1.512 2.143 | 3 3
83 2 0.258 0.031 0.012 2.597 0.565 0.000 -1
84 14 0.165 0.143 0.225 1.735 1.638 2.038 |
85 14 0.076 0.070 0.141 0.959 0.924 1.571 | | |
86 3 0.355 1.000 1.000 2.874 3.984 3.903
87 4 0.167 0.208 0.501 2.080 2.373 3171 | |
88 3 0.089 0.011 0.048 1.489 0.000 0.870 2 |
9l 2 0.750 1.000 1.000 3.664 4.030 3.945
92 2 0.009 0.008 0.062 0.000 0.000 1.172 2 |
93 2 1.000 1.000 1.000 3.952 4.030 3.945
104 2 0.094 0.125 0.500 1.585 1.951 3.252 3 |
106 3 0.006 0.009 0.003 0.000 0.000 0.000
108 2 0.250 0.002 0.000 2.566 0.000 0.000
113 4 1.000 0.875 1.000 3.869 3.807 3.862
118 2 1.000 1.000 1.000 3.952 4.030 3.945
121 49 0.211 0.246 0.305 1.287 |.465 1.654 | |
122 5 0.157 0.120 0.188 1.978 1.779 2.153
125 2 1.000 1.000 1.000 3.952 4.030 3.945
Unweighted avg. 0417 0.434 0.501 2.300 2.368 2.500
\/.— ) 0.389 0.378 0.453 2.080 2.088 2.263
S1ze weighted avg.
weighted avg. 0.376 0.351 0.421 1.705 1.675 1.853

Raw scores and log-odds scores for 81 folds that had more than one representative in our data. SSEA score was obtained by taking structure
determinations of DSSP and computing the scores using the publically available binary code of SSEA program. Our scores were computed using our
alignment program and using our structure determinations, which were similar but not identical to DSSP. Averages are: unweighted (U), root

weighted (R) — fold with k proteins get weight \/E and weighted (L), where the weight is k. "Impact on the average" shows how the respective

average would change if all other folds had identical scores; we multiply this change by 200 and round toward 0; zeroes are not shown.

The scores obtained with the information about closed
loops depend on the limit on the allowed size of closed
loops (longer loops are somewhat artificially regarded as
open). As demonstrated in Fig. 1, while the best length
threshold was 24, we got a marked improvement already
for the threshold as low as 4.

Discussion

We used a large non-redundant set of proteins to create a
difficult case for the clustering of folds. While folds repre-
sented in the test data by one protein only must have the
maximum clustering score, we kept them because they
make it more difficult to group other folds in the separate
clusters. We used the set of beta proteins because the
information about loops in beta hairpins is most relevant
for these proteins. The improvement in the clustering
accuracy upon adding loop information is independent
on the secondary structure recognition algorithm used.

It was not obvious how to score the additional loop infor-
mation. Incorrect scoring may actually worsen the align-
ment relative to what can be obtained without the loop
annotation. Therefore, we used a hybrid, piecewise linear
formula, that that gives "full credit" to closed loop up to a
certain length threshold and gradually decreases the score
for longer loops. Then a genetic algorithm was used to
select parameters for this alignment algorithm. Usually in
such a case, there is a concern of overfitting. There are sev-
eral reasons for which this is not a potential problem in
our parameters adjustment. First, we have a very small
number of parameters relatively to the number of proteins
and number of folds. Second, we used only about half of
the proteins in the set for the training purpose. Finally, for
the fairness of the comparison between CL and NCL we
optimized also the parameters for the NCL version of the
program. This allowed us also to compare the results of so
optimized NCL alignment with the alternative alignment
method implemented in the program SSEA [32,33]. SSEA
uses DSSP to recognize secondary structures and has no
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information about loop topology. The results of SSEA, our
alignment program with DSSP structure determination
and our alignment program with our own structure deter-
minations were almost identical - on the average. We also
cross-validated the results using randomly selected pro-
tein sets.

Conclusion

We studied the question how much secondary structure
based fold recognition can be improved by adding the
information about the loop topology. Here by the loop
topology we understood simple classification of loops
between closed loops (loops of length at most L which
connect two antiparallel strands) and open loops (a broad
class containing all other loops). The information about
loop length was also included. We observed noticeable
improvement over an algorithm that only uses secondary
structure types and lengths for L as small as four. In prac-
tice, this corresponds to including hairpin information.
The full improvement is obtained when we take into
account only the loops of length up to 24, which means
that only the loops of length up to 12 get "full credit". It
appears that the improvement was dominated by hair-
pins, but considering loops of larger length does not
decrease the improvement.

The improvements resulting from including loop topol-
ogy information did not distribute uniformly among pro-
tein folds. Indeed, large improvements were experienced
by ca. 20% of the folds, while ca. 3% of them got worse.
Furthermore, different families responded best to a differ-
ent set of parameters (e.g. different values of L). This sug-
gests that fold specific approach is more accurate than
one-size-fit all approach. To perform the study, we devel-
oped a number of new algorithms including a new graph
theory based secondary structure recognition algorithm,
genetic algorithm for parameter optimization and, most
importantly, complemented existing cluster evaluation
method with more rigorous scoring.

In a future work, we plan to extend this approach to add
other supersecondary structure elements like beta-alpha-
beta motif, Greek key motif etc.

Methods

Our general procedure is as follows. We first collect the set
of proteins from PDB that were identified in ASTRAL file
for the beta class that has at most 30% aligned pairwise
identity [34]. Initially only a set of 631 proteins of length
between 70 to 140 was used for the training purpose.
Once parameters have been adjusted, we performed the
clustering on the full file.

For each protein, our secondary structure recognition pro-
gram read the coordinates of the atoms on the protein

http://www.biomedcentral.com/1472-6807/6/3

backbone and produces the file of secondary structure
sequences. In the recognition of the secondary structure
segments, we tried to be as close to standard textbook
descriptions as possible, and thus our primary criterion
was the topology of the hydrogen bonds between back-
bone atoms (see subsection Secondary structure identifi-
cation). For comparison, we also performed the
experiment with DSSP secondary structure annotation.

A closed loop is a loop that starts and ends at one of the
ends of an anti-parallel beta sheet. This intuitive defini-
tion has to be relaxed, because part of that loop can be
included in a strand of the adjacent sheet, so a "closed
loop" may include residues that are not classified as L. We
defined closed loops in terms of the "innermost" hydro-
gen bonds of anti-parallel S-sheets; such loops may con-
tain residues that participate in other secondary structures,
but not other closed loops. For example, if the innermost
hydrogen bond is between residues 52 and 70, we alter
the symbol at position (52 + 70)/2 = 61 by giving it sub-
script 70 - 52 = 18.

Next, (see subsection Alignment scores) given a file of sec-
ondary structure sequences, we compute the pairwise sim-
ilarity score and produces the matrix of alignment scores.
Alignment score is defined with a number of parameters.
To separate the improvement that comes from the choice
of parameters and an improvement that comes from the
choice of the method (CL versus NCL) we separately opti-
mized these parameters. In other words, the most fair
comparison between CL and NCL requires that each is at
its best.

Next, (see subsection Clustering and cluster scoring) we
build the tree of clusters using the weighted pair group
method and measure the quality of the prediction by giv-
ing the comparison scores between a cluster in our tree
and the fold class in SCOP. SCOP is the structural classifi-
cation of proteins of all known protein structures. It cate-
gorizes protein domains at the level of class, fold,
superfamily and family based on homologous sequences,
three dimensional structure, information about evolu-
tion, and human judgment.

Here we consider only fold class for our benchmarking
because it is exclusively based on three dimensional struc-
ture. We compute comparison scores of fold sets and the
scores of random sets of the same size, and thus we obtain
the log-odds score. Finally, we compute the raw score and
log-odds score for each fold in the data set.

This process was repeated by our genetic algorithm and
the average log-odds score was used as the feedback infor-
mation when different parameters vectors were com-
pared. We also used more exhaustive search near among
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vectors that were close to the best ones found by the
genetic algorithm. We have altogether 9 parameters, and
to avoid overfitting, we restricted their values to small sets
(e.g., integers from the list 4, 8, 12, ..., 28). In the training
process only a subset of proteins (about 50%) and protein
folds was used.

Secondary structure identification

We developed a method of secondary structure classifica-
tion and automatic recognition of closed loops. We also
performed the same experiment using the DSSP [31] sec-
ondary structure assignment where using the loop anno-
tation transferred from our recognition algorithm. While
there is no benefit in replacing the DSSP approach with
our algorithm for secondary structure recognition alone, it
opens the door for modifications that allow capturing
other structural motifs. Recognition of closed loops is the
first step in this direction. Our method of secondary struc-
ture identification can be described as follows. We first
compute the hydrogen bonds between atoms on the pro-
tein backbone. For each hydrogen bond, we store bond
pair (a, b), where a and b are the numbers of residues it is
connecting; we will always have a <b. Next, we define a
graph in which vertices are the bond pairs and the edges
form the set

{l(a, b), (c,d)] : la-c| <2 and |b-d| <2}.

Then, the alpha helices and beta sheets are identified as
certain connected components of this graph. Compo-
nents representing a particular kind of the secondary
structures are identified using an appropriate rule. The
rule of an alpha helix is that for each bond pair (a, b) we
have b - a = 4. If the bond satisfies this rule, we give 1, if
not, we give -1. A connected component passes the alpha-
helix test if the total score is at least O (the majority rule).

Rules for beta sheets compare bond pairs that are adjacent
in the graph we have described. Therefore we start by sort-
ing the bond pairs of a connected component by the lower
residue number, tie-breaking with the higher number -
adjacent bonds become consecutive in this order. This
gives a sequence (a;, by), ..., (a,, b,). We convert it to a
sequence of differences, d, ..., d, where d; = b; - a;. Subse-
quently we convert it to the second sequence of differ-
encese, ..., e, ; wheree;=e,,; - ¢;. As illustrated in Fig. 2 the
second sequence of differences of a perfect anti-parallel
beta sheetis 0, -4, 0, -4, ...0r-4, 0, -4, 0, ... and for a perfect
parallel beta sheet it is 2, -2, 2, -2, ... or -2, 2, -2, 2, ...
When a term of the second sequence follows the rule (e.g.,
0 after -4 or -4 after 0 in an anti-parallel sheet) we score 1,
if it does not follow the rule but belongs to allowed range
(e.g., {0, -4} for an anti-parallel sheet) we score 0, other-
wise we score -1. Again, the condition to pass the test is to
score at least 0.

http://www.biomedcentral.com/1472-6807/6/3

One concern with the above definition may be whether it
is possible to accumulate lots of violations and still have
positive score or whether it is possible that negative scores
accumulate on one or both endpoints of the component
so that the sum is negative while the components con-
tained a perfectly correct secondary structure as a subcom-
ponent. In practice, it is hardly possible to combine many
"violations" with positive scores. The only major excep-
tion we have encountered is a bacteriophage parallel beta
helix, in which hydrogen bonds of all the strands in the
beta helix, as well as the hydrogen bonds of the beta turns
coalesced into one large connected components. Because
all structures from that fold were affected very similarly,
this anomaly was not detrimental in our application.

The second apparent anomaly of this method would
occur for the tightest possible hairpin loops: the inner-
most hydrogen bond connects adjacent residues; these
residues should be excluded from the adjacent anti-paral-
lel beta sheet because they fail the dihedral angle condi-
tion. As a result, this definition would not inform NL
method about that loop. This anomaly was eliminated by
applying the dihedral angle test at the ends of computed
strands; when the test failed, the pairs of the bonds adja-
cent to such a residue were removed from the respective
component and the test was applied again.

Alignment scores

To define the alignment score, we assign scores to substi-
tution and gaps. Below we define the parameters that we
were using, and the selected values of those parameters are
given at the end of this subsection.

We used a fixed positive score E for an equal substitution,
a negative difference cost D for L/H and L/E substitutions
and a prohibitively low score of E/H replacement.

The score of a gap of length € is min(¢L,, L, + €L,), where
L, is the price of extending a short gap, L, is the price of
opening a long gap, and L, is the price of extending a long
gap. This piecewise linear gap penalty is easy to compute.

We have chosen this hybrid formula because we expected

that @ the lengths of loops and the secondary structures
have some small variability when we compare homolo-

gous structures from the same fold, and @ some loops
may be replaced with quite a long sequence that contains
one or more secondary structures.

Short gap pricing is appropriate for ® and long gap pric-
ing (high opening cost, small extension cost) is appropri-

ate for @ .
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Figure 2

Ideal cases of a parallel and anti-parallel beta sheets. Residue
numbers are surrounded by the backbone atoms of the
respective residue, differences of hydrogen bonds are posi-
tioned next to the respective bonds and second differences
are placed in boxes.

The highest scoring local alignment for two secondary
structure sequences can be efficiently computed using the
dynamic programming method that is essentially the
same as the one used by Gotoh ([35]). In particular, given
two sequences (ay, ..., 4,,) and (by, ..., b,) we define sub-
problems of the form S(i, j, s) where 0 <i<m, 0 <j<nand
0 <5< 1; 8(i, j, s) is the highest local alignment score of
sequences (a;, ..., 4;) and (by, ..., bj), either without any
restriction (state s = 0) or under the assumption that the
alignment ends with a block of gaps that are priced
according to the long gap penalty method (states = 1). We
can define S recursively: if i < 0 or j < 0 we have S(i, j, s) =
-0 and

0

S(@i, j,1) S(i,j,0) + L,
8(i, j,0) = max{ S(i, j =1,0) +$ (i, j,1) = max{ S(i, j —1,1) + L,

S(i-1,j,0)+S S(i-1,j,1)+L,

S(i—1,j—1,0) + Subst(a;,b;)

We conveyed the information about the closed loops as
follows. First, we defined intervals of hydrogen bonds: a
bond between residue i and residue j defines integer inter-
val {i+1,i+2,..,j-1}. We considered the family of inter-
vals of the hydrogen bonds from anti-parallel S-sheets,
and we removed those that overlap shorter intervals from
that family and those that exceed a length threshold. The
remaining intervals were assumed to be closed loops.

A closed loop with interval {i + 1, ..., j - 1} is represented
as an annotation j - i at position J(i + j)/2i. Almost always
that position is indeed in a loop, so instead of symbol L
we have symbol Li; sometimes it is Fi — a single turn of
an o-helix may be a part of a hairpin loop.

http://www.biomedcentral.com/1472-6807/6/3

A homologous pair of closed loops is flanked by pairs of
S-strands that are also homologous to each other,so we
expected the annotations of these loops to align.

Therefore we can alter the formula for scoring of substitu-
tions to score the alignments of closed loops, as aresult we
do not have to change the dynamic programming that cal-
culates the local alignment score. The only modification is
hidden in the definition of Subst(a, b).

More precisely, if a is an annotated symbol X*, we define
s(a) = X and €(a) =k, if a is not an annotated symbol, we
have €(a) = L (undefined). If €(a) = L or €(b) = L then
Subst(a, b) = Subst(s(a), s(b)).

Otherwise,
Subst(a, b) = Subst(s(a), s(b)) + Premium(€(a), €(b)).

In turn, Premium(i, j) is defined with three parameters: M,
the maximum premium, P, the penalty for difference in
length and L, the largest length of a loop that may get a
premium.

We decided to decrease the premium for alignment of
closed loops with length penalty defined as

LengthPen(i, j) = max(i +j - L, 0) x M/L.

Homologous loops should have similar lengths, so we
used a penalty for the difference in lengths, |i - j| x P. The
overall formula for the premium is

Premium(i, j) = max{0, M - LengthPen(i, j) - |i - j|D}.

Finally, we had to adjust the scores for the length of the
compared proteins. Note that a short protein may find a
highly similar fragment in a long protein purely by coin-
cidence, especially that our sequences have low informa-
tion content: only 3 symbols that have long series of
repetitions. Consequently, we should decrease the weight
for such a score. Suppose that the score in question is s, the
length of the shorter protein is € and the length of the
longer protein is L. Obvious methods of computing the

adjusted score, like s/L, s/¢ and s/~//L yielded inferior
results, so we decided to use formula s€-8L-" where g and h
were additional parameters of the similarity function.

To find optimum values for the parameters, we rather
arbitrarily fixed E to be 16, and then we search for the best
values of D, S, L,and L,, and in the case when loop infor-
mation is considered, the values of M, L and P.
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For each of the parameters we gave 3 widely dispersed val-
ues and this created an initial population of 34=27 (or 37
= 243) parameter vectors. For each vector we computed
the resulting average log-odds score - on the sample of
631 medium length domains a single computation was
taking about a minute. Next we designed a genetic algo-
rithm, in which we were selecting randomly two vectors,
with the bias for the top scoring vectors, and computed a
random linear combination for each of the parameters,
with the bias for the arithmetic average. This process
increased the value of the best average log-odds score. We
finish by taking the best vector and trying 3-4 closely
spaced values for each of the parameters.

To avoid over-fitting (and save time) we restricted the val-
ues as follows: E = 16, D and S were multiples of 5, L,as a
multiple of 10, L, was a multiple of 2, 4, b were multiples
of 1/5.

Our best parameter vector for the case without loop anno-
tations was

(E,D,S, L, L, g h)=(16,-35,-25,-170, -2, 0, 0.6),
and in the case with the annotation it was

(E,D,S,L,L,M,P, L g h)=(16,-35,-25,-170, -2, 120,
16, 24, 0.0, 0.8).

Clustering and cluster-scoring

We used the weighted pair group method for clustering
which is applied to the matrix of alignment scores (see for
example [36]). In this method we start with 1-element
clusters and then we keep merging a pair of clusters A, B
with the maximum average of "similarity score of a from
A and b from B" (where score is given by a method that we
are testing). This rule defines a rooted binary tree where
each internal node defines a cluster.

Given this tree we can calculate first the raw score of a set
S (e.g., proteins from some fold).

Following [18], the raw score of a set S, o(S) in the tree is
computed as follows. For each node v of the tree T define
the weight of S in the cluster C, w,(C) as follows: if C is a
subset of S, w,(C) = 1, if C is disjoint with S, w,(C) = 0 and
in other cases C is formed as a union of smaller clusters,
C,and C, and its weight is the average (w,(C,) + w,(C,))/
2. Then, for a pair of elements of S we define the weight of
this pair in the cluster as the weight of least common
ancestor of the two elements of the pair. Finally, the score
of set S is the average of the weights of all pairs of elements
from S.

http://www.biomedcentral.com/1472-6807/6/3

If the raw score of a set S is high (close to one) then it indi-
cates that S forms in the tree T in a good cluster independ-
ently on the shape of the tree T. However if the score of S
close to 0.5 or less, then the fact whether or not such a
score indicates a reasonable clustering depends on the
topology of the tree. For example, consider two trees with
1024 nodes. In the first one the average distance of leaves
to the root is maximal, i.e. it equals ca. 512, while in the
second one it is minimal, i.e. it equals 10. One can show
that the expected score of a random set of 3 nodes is 0.502
in the first tree and 0.011 in the second tree.

Therefore we use a log-odd type scoring function where
the clustering score of a set S in a tree T is compared to a
score of a random set of the same size and in the same
tree. In Additional file 1 we prove the following theorem:

Theorem: If F is a random set of leaves with k elements,
then the expected score of F on a tree T is equal to:

k-2 n—k

S(T,k) =E[o(F)] = n_2 + (n—l)(n—2)a

(T)

where n = | £ (T)| is the number of leaves of T and «(T) is
the average distance of leaves from the root. For a k ele-
ment set S define log-score of a set S, as

o(S)

log— S)=1
og—score(S) OgS(T,k)

where o(S) is the raw score of the set S as defined above.
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