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Abstract
Background: Comparative, or homology, modelling of protein structures is the most widely used
prediction method when the target protein has homologues of known structure. Given that the
quality of a model may vary greatly, several studies have been devoted to identifying the factors that
influence modelling results. These studies usually consider the protein as a whole, and only a few
provide a separate discussion of the behaviour of biologically relevant features of the protein. Given
the value of the latter for many applications, here we extended previous work by analysing the
preservation of native protein clefts in homology models. We chose to examine clefts because of
their role in protein function/structure, as they are usually the locus of protein-protein interactions,
host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-
domain interactions that lead to the structure of the whole protein.

Results: We studied how the largest cleft of a protein varies in comparative models. To this end,
we analysed a set of 53507 homology models that cover the whole sequence identity range, with
a special emphasis on medium and low similarities. More precisely we examined how cleft quality
– measured using six complementary parameters related to both global shape and local atomic
environment, depends on the sequence identity between target and template proteins. In addition
to this general analysis, we also explored the impact of a number of factors on cleft quality, and
found that the relationship between quality and sequence identity varies depending on cleft rank
amongst the set of protein clefts (when ordered according to size), and number of aligned residues.

Conclusion: We have examined cleft quality in homology models at a range of seq.id. levels. Our
results provide a detailed view of how quality is affected by distinct parameters and thus may help
the user of comparative modelling to determine the final quality and applicability of his/her cleft
models. In addition, the large variability in model quality that we observed within each sequence
bin, with good models present even at low sequence identities (between 20% and 30%), indicates
that properly developed identification methods could be used to recover good cleft models in this
sequence range.

Background
In order to make full use of the growing amount of
sequence information, in terms of increasing our knowl-

edge of protein function, engineering new variants of
known proteins, developing biomedical applications, etc,
structural information is clearly required [1-6]. Indeed,
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one of the most important challenges in the post-genom-
ics era is to fill the gap between the large number of
known protein sequences and the still relatively small
number of known structures [6-9]. Structural genomics
projects have addressed this challenge and have led to the
design and development of high-throughput production
pipelines for structure determination [2,10-15]. This con-
siderable research effort is starting to give results and
recent reports show a clear increase in the number of
known structures, and particularly of structures showing
new folds, solved in structural genomics projects [16-20].

Providing experimental structures for all possible proteins
clearly exceeds our present capacity. Therefore, the yield of
structural genomics projects is increased by the use of
comparative/homology modelling tools
[1,2,6,9,10,13,16,21]. Indeed, the latter are of great
importance as they allow the extension of the knowledge
provided by structural genomics projects by at least one
order of magnitude [6,7,22]. However, the usefulness of
homology models varies and is determined by their qual-
ity [1,23,24]. Drug design (probably the most demanding
application of homology models) requires high quality
models that are usually obtained for sequence identity
(seq.id.) levels above 70% between the target and tem-
plate [23,24]. Useful designs of pseudo-molecules fitting
the active site of an enzyme, which can be employed for
screening small-compound databases, can be obtained at
seq.id. of around 30% [25]; medium to high-accuracy
models can be applied to interpret the damaging effect of
point mutations [2,24], etc. A series of independent stud-
ies [24,26-29], as well as the results of CASP experiments
[30-41], give the user of comparative modelling a good
idea of the model's overall performance, and how the lat-
ter can be estimated from the seq.id. between the target
and template sequences.

Most of these studies address quality issues regarding the
model as a whole; however, because many applications of
homology models depend on the quality of the biologi-
cally crucial parts of the protein [1,21,23,24], more recent
work either includes specific analyses of these sub-struc-
tures[26,27,30,40] or is completely devoted to the same
[34]. Among the points addressed is the hypothesis that
some functional regions are better modelled than others
because of their higher sequence and structure conserva-
tion [42]. Analyses of CASP experiments provide contra-
dictory evidence either supporting [30] or rejecting [40]
this hypothesis. Along another line, De-Weese and Moult
[34] used CASP data to explore how ligand binding infor-
mation can be obtained from comparative models. These
authors analyzed the errors in protein-ligand contacts as
well as the source of these errors (e.g. alignment prob-
lems, incorrect side-chain rotamers, etc). They found that
when there are no alignment errors, comparative models

provide a useful understanding of the interaction between
the protein and its ligand, even at seq. id. levels of around
30%. Complementary to these CASP-based studies, recent
large-scale studies of comparative models have also con-
sidered the quality of protein functional regions [26,27].
In these two studies, the authors describe the behaviour of
several global, structure-dependent properties, such as
accessible surface area and electrostatic potential, in com-
parative models [26,27]. In addition to examining these
global properties, the authors also analysed the degree of
conservation of protein clefts in terms of location and
boundary residues. They reported that: (i) spurious clefts
appear as seq.id. decreases; (ii) the more similar the target
and template sequences, the more conserved the clefts;
and (iii) clefts in models have a more rugged surface than
in the experimental structure.

The work by De-Weese and Moult [34] and by Sanchez's
group [26,27] provides a valuable, but still incomplete,
picture of how the quality of functional cavities is pre-
served in comparative models. In the case of De-Weese
and Moult's work [34], the reach of their results is limited
by the following: the reduced number of proteins and
models studied, 10 and 207, respectively; the considera-
tion of only small molecule binding; and the fact that the
analysis is based on the use of essentially one variable, dis-
tance root-mean-square deviation. Sanchez's group
[26,27] studied a series of structure-based properties,
including clefts. More precisely, in the case of clefts, their
work was restricted mainly to the issue of the degree of
their preservation between the experimental structure and
the model. However, apart from the ruggedness study, no
shape descriptors were used to specifically define cleft
quality in protein models. In summary, and to the extent
of our knowledge, there is no exhaustive study entirely
devoted to assess how cleft structure varies in comparative
models. Here we address this issue and examine the qual-
ity of clefts in protein models obtained at a range of target-
template seq.id. levels, using six variables that cover vari-
ous features of cleft structure. Although we provide data
for the entire seq.id. range, we focused on the behaviour
of comparative models in the medium (30% – 60%) and
low (< 30%) ranges for the following reasons: (i) the qual-
ity of homology models above 60% seq.id. is usually high
[1,23]; (ii) biochemical function above 60% seq.id. is
usually conserved [43-45]; (iii) target selection protocols
in structural genomics projects usually rely on a 30%
seq.id. threshold to obtain a maximal coverage [6,46];
and (iv) comparative modelling is possible below 30%
seq.id. because the protein structure is preserved below
this threshold [43,47,48]. The study was carried out using
53507 comparative models (built with the standard mod-
elling software MODELLER [49]) for 3802 protein CATH
domains [50]. Our results provide a detailed and quanti-
tative view of how cleft quality varies in comparative mod-
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els and constitute a valuable guide for users of this
structure prediction technique. More precisely, we (i)
quantitatively show the dependence between several
descriptors of cleft quality and seq.id. between target and
template sequences; (ii) demonstrate that a certain
number of good quality models up to 20% seq.id. can be
found; and (iii) indicate that above 30% seq.id. cleft qual-
ity approaches that obtained when using the best possible
alignments (structural alignments).

Results and discussion
In Table 1 we show the range of seq.id. levels between tar-
get and template sequences for the models examined.
While the whole sequence range was covered, the vast
majority of the models clustered in the 0% – 60% interval,
which constitutes the main focus of this study. Sequence
alignments within this range showed a considerable
number of non-aligned residues, which, in general,
resulted in poorly modelled regions [23,24,51]. For this
reason, we restricted our analysis to those clefts for which
all contouring residues were aligned to a template residue.

The domains chosen were distributed over the four CATH
[50] classes (mainly-alpha: 24%; mainly-beta: 29%;
alpha-beta: 45%; low secondary structure content: 2%),
sampling 33 architectures and 390 topologies, thus giving
a good coverage of the structure space of protein domains.

Clefts were computed for each experimental protein struc-
ture using SURFNET [52], which provides a list of clefts.
We chose the largest cleft from this list because it is the
one that is most likely to play a relevant functional/struc-
tural role. Furthermore, in whole proteins this cleft is usu-
ally associated with the biochemical function of the
protein, by either participating in protein-protein interac-
tions, or hosting the enzymes' active site [53,54]. In our
case, in addition, because we considered protein domains,
the largest cleft may also correspond to the locus of

domain-domain interactions that determine the structure
of the whole protein, thus playing an equally important
structural role. However, given that smaller clefts may
have a functional role in some cases, we also provide
results for the top-five clefts.

Shape changes
To explore how well clefts were reproduced in the models,
we used six variables (see Materials and Methods): root-
mean-square deviation (rmsd), normalized root-mean-
square deviation (rmsd100), global distance test (GDT),
protrusion index (cx), variation in accessible surface area
(ΔASA) and contact number (ΔCN). Rmsd is widely
applied in many areas of structural analysis, and in partic-
ular has been successfully used in the characterization of
shape variations in binding sites [55,56], a problem for-
mally analogous to that addressed in the present study.
Rmsd100 [57] is a transformation of rmsd that eliminates
the size dependence present in the latter and its use
allowed us to exclude size biases from our results. GDT,
developed within the context of CASP experiments [58], is
a quality measure that helps to detect the presence of well
preserved sub-structures in otherwise bad models, thereby
helping to prevent the sensitivity of rmsd to outliers. Cx is
a simple measure of the protrusion degree of protein
atoms, related to the atomic environment, that can be
used to characterise binding sites, cleavage sites, etc [59].
ASA [60] is a shape descriptor that has been extensively
employed in protein structural analysis to describe,
amongst others, energetic and functional features, such as
atom-atom interactions [61,62], protein solvation
[63,64], protein-protein interactions [65], etc. Finally,
ΔCN, which is directly derived from ΔASA [66], provides
an approximate idea of how comparative models preserve
the capacity of cleft atoms to establish functional interac-
tions.

Rmsd
Rmsd between the observed structure of the protein and
the homology model was computed considering only the
set of atoms defining the cleft in the former (see Materials
and Methods). As a control, and to assess the limits intro-
duced by the model building procedure itself, we
employed the results of the auto-modeling process in
which a model for the target protein was produced using
its own experimental structure as template. Our results
provide a basal line that corresponds to the limits of the
modelling software – MODELLER [49] in our case- and
includes the impact of the distinct approximations
implicit in the different steps of the structure building
process – e.g. the force field employed, the minimization
protocol, the internal protein representation, etc.

Cleft rmsd varied depending on the seq.id. between the
target and the template sequences (Note that seq.id. was

Table 1: Sequence identity distribution for the target-template 
pairs.

IDENTITY ABSOLUTE
FREQUENCY

RELATIVE
FREQUENCY

0–10 12650 23.64
10–20 28382 53.04
20–30 4868 9.10
30–40 1830 3.42
40–50 1069 2.00
50–60 650 1.21
60–70 172 0.32
70–80 16 0.03
80–90 12 0.02
90–100 25 0.05
= 100 3833 7.16
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computed for whole sequences, it was not restrained to
the cleft residues) (Figure 1). As expected, we observed
that as the latter increased, cleft rmsd decreased, asymp-
totically approaching auto-modelling values. Most of the
cleft models that showed poor conservation were found at
seq.id. levels of less than 20%, where rmsd values were, in
general, very high (more than 75% of the cases had rmsds
over 7.6 Å). The number of good models increased with
seq.id., and even in the 20% – 40% range well over 50%
of the models showed clefts with rmsds below 5 Å. This
observation indicates that even within this seq.id. range
there are clefts that could be used for applications such as
low-resolution compound screening, function identifica-
tion, etc, as long as they can be singled-out from the back-
ground of low-quality cases. Over 40% seq.id., a plateau
was reached, with ~50% of the cases clustering between
1.7 Å and 2.8 Å. These results indicate that even at very
good seq.id. levels it may be difficult to reach the limits of
the modelling method because of the effect of small
sequence changes, the presence of bound ligands, crystal
contacts, etc [24,26,27]. Thus even above 40% seq.id.,
standard modelling protocols may not be good enough
for applications that require accurate models of the pro-
tein clefts of the target protein. A greater modelling effort
– e.g. using molecular dynamics simulations [67], or con-
formational searches of the non-aligned regions, using de
novo procedures like Rosetta [51], or modeling of the
active site using specific templates [25], or, eventually,
experimental determination of the target structure, may
be required in these cases. Our results are partly consistent
with the picture arising from the work of DeWeese and
Moult [34], and show that in some cases good cleft mod-

els can be found even below the 30% threshold proposed
for target selection protocols for structural genomics
projects [6]. However, the sharp quality decrease observed
for seq.id. levels lower than 20% indicates that below this
threshold conventional sequence alignment methods in
most cases will result in very poor models. Similar results
were obtained when plotting rmsd as a function of cleft
seq.id. instead of whole-protein seq.id. [see Additional
file 1].

To illustrate the rmsd results with specific examples, Fig-
ure 2 shows three cases where the first cleft observed in the
target's experimental structure is highlighted in models
obtained at distinct seq.id. levels. While the global shape
and location of the cleft were preserved above 30%
seq.id., this was not the case for seq.id. below this thresh-
old. The impact that shape changes may have on the mod-
elling of protein-ligand interactions is exemplified in
Figure 3, where the ligand (trifluoroperazine) is shown
with the same orientation it has in the experimental struc-
ture of the complex. Even at high seq.id., the structure of
the cleft may not be of sufficient quality to properly repro-
duce the protein-ligand interaction pattern.

To complete the previous view, we explored the relation-
ship between cleft and backbone quality. This is an impor-
tant point, particularly when considering further
refinement of the models with techniques such as molec-
ular dynamics, which, a priori, treat all protein atoms
equally. When sufficiently large and in absence of specific
restraints, the poorly modelled parts may prevail over the
better parts, thus resulting in an effective degradation of
the latter. This may occur when attempting to refine com-
parative models in which functional clefts are better mod-
elled than the rest of the protein because of functional
constraints [30,68]. In our analysis we divided the previ-
ous cleft rmsd data in three classes, on the basis of back-
bone quality (measured using Cα rmsd): high (0 Å – 3 Å),
medium (3 Å – 6 Å) and low (≥ 6 Å). We found (Figure 4)
that above 30% – 40% seq.id. a considerable proportion
of the clefts showed an rmsd lower than the correspond-
ing backbone rmsd, particularly for high and medium
quality backbones. Two main opposing factors are likely
to contribute to this trend: the existence of functional con-
straints acting on the first cleft and the presence of poorly
modelled parts in the rest of the structure. The former
would result in better cleft rmsd and the latter in poorer
backbone rmsd. Regardless of the case, our results suggest
that subsequent refinement of initial models obtained
within the 40% – 100% seq.id. range may require the
application of several restraints to the cleft contouring
atoms, at least in the first steps, in order to preserve the
initial cleft quality. For lower seq.id. levels, overall model
refinement could eventually result in an improvement in
cleft quality.

Relationship between rmsd and seq.idFigure 1
Relationship between rmsd and seq.id. This boxplot 
shows how cleft rmsd, computed (see Materials and Methods) 
after optimal superimposition between the experimental and 
modelled cleft structures of the target proteins, varies with 
target-template seq.id.. The dashed line represents the auto-
model control (see Materials and Methods).
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Rmsd100
The meaning of rmsd as a quality measure depends on the
size of the elements compared [57,69-71], that is to say,
while 4 Å rmsd may indicate high similarity when com-
paring 1000 residue proteins, it may suggest poor resem-

blance if small active sites are compared. Because the clefts
considered in this study were of distinct sizes, we used
rmsd100 [57], a normalized rmsd which is independent of
size. The behaviour observed for rmsd100 (Figure 5) was
comparable to that found for raw rmsd (Figure 1), show-

Examples of the relationship between rmsd and seq.idFigure 2
Examples of the relationship between rmsd and seq.id. For three cases (PDB codes: 1GOZ – S. aureus enterotoxin, 
1LAT – R. norvegicus DNA binding domain of the glucocorticoid receptor, 1WRK – H. sapiens N-terminal domain of cardiac 
troponin C) we show how the quality of the largest cleft in the experimental structure decreases with seq.id. The atoms of the 
largest cleft in the experimental structures are shown in orange (structures in the left), while the same atoms are shown in red 
in the various homology models. Cleft quality becomes very poor at seq.id. below 30%, although even at higher seq.id. level 
some shape details are clearly lost. The distinct templates, as well as the target protein, are identified by their CATH [50] 
domain identifier, which comprises the four letters of the PDB code, a chain symbol, plus two digits indicating the domain.
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ing the same asymptotical trend towards auto-modelling
values and the large variability within seq.id. bins. In
addition, we also found the quality transition between
10% and 30% seq.id. present in the rmsd data (Figure 1).
This confirms the independence of our main results from
cleft size.

GDT
GDT is a summary measure directly related to the pres-
ence of quality/well-preserved sub-structures within the
model, and works by identifying the percent of atoms
modelled below a given distance threshold [58]. Applica-
tion of a range of distance thresholds provides a complete
view of how quality varies within the predicted structure;
in our case we used four commonly used thresholds [58],
1 Å, 2 Å, 4 Å and 8 Å, which result in four GDT values,
GDT_1, GDT_2, GDT_4 and GDT_8. Smaller thresholds
were discarded as we focused mainly on seq.id. below
60%, where models tend to be of poor quality. After con-
sidering the results for the four thresholds (Figure 6)
together, cleft models were divided into two classes on the
basis of seq.id.. Above 30% seq.id, a considerable propor-
tion of the clefts showed large GDT_1 and GDT_2 values,
indicating the presence of high-quality sub-structures.
Because of the a priori value of these parts, this result sup-
ports the use of post-modelling analysis for their identifi-
cation (e.g. using specific energy functions, residue
conservation or literature analysis), as they may provide a
good starting point for further refinement of the cleft
model. In contrast, models below 30% seq.id. showed few
or no high quality sub-structures (Figures 6A and 6B). In
the medium quality threshold (Figure 6C), corresponding
to GDT_4 values, a non-negligible fraction of cleft models
below 30% seq.id. showed sub-structures of such quality.

These sub-structures may not be useful for highly
demanding applications, such as drug design, but may be
a reasonable starting point for further refinement of the
model, or provide a coarse-grained view of some aspects
of protein function, e.g. rough shape of the binding site
[1].

Side-chain atoms constitute a large fraction of the set of
cleft contouring atoms. Because side-chains are usually
hard to model [21], we studied their contribution to cleft
quality. To this end, for each cleft we computed the ratio,
which we called R, between two percentages: the percent-
age of side-chain atoms in the list of atoms contributing
to a given GDT (GDT_1, GDT_2, etc) and the percentage
of side-chain atoms in the cleft's set of contouring atoms.
If, side-chain and main-chain atoms are modelled with
equal accuracy R will be equal to one. However, if side-
chains are poorly modelled than main-chain atoms R will
be lower than one (the opposite is true when side-chain
atoms are better modelled than main-chain atoms). We
focused our analysis on GDT_1 and GDT_2 values
because these identify high-quality modelled sub-struc-
tures. The results for GDT_3 and GDT_4 are provided as
additional file [see Additional file 2]. When we plotted the
distribution of R values (Figure 7), we observed that auto-
modelling R values were slightly lower than 1, indicating
that even in this ideal situation the modelling of side-
chain atoms is poorer than main-chain atoms. If we now
consider our set of models, in general, R values were
below 1, but approached asymptotically auto-modelling
values as target-template seq.id. increased. This observa-
tion indicates that main-chain atoms make a stronger con-
tribution to the best-modelled parts of clefts; however, as
seq.id. increased side-chain building improved and their

Ligand binding in models at a range of seq.idFigure 3
Ligand binding in models at a range of seq.id. levels Binding of trifluoroperazine to the N-terminal domain of cardiac 
troponin C (PDB code: 1WRK). The experimental structure of the complex is shown on the left, with the two trifluoropera-
zine molecules shown in green and the cleft atoms highlighted in orange. The latter are shown in red in different models of the 
protein, while the trifluoroperazine molecules (green colour) are kept in the same orientation as in the experimental structure. 
We can see that in this case, even for good seq.id., protein-ligand contacts are poorly reproduced.
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contribution almost reached the limits imposed by the
modelling software. The large fluctuations in R observed
in the 0% – 30% seq.id. range (Figure 7), in particular for
GDT_1, were probably a consequence of inaccurate main-
chain modelling, which in turn resulted in an almost ran-
dom building of side-chains. As alignment quality
improved so did backbone accuracy, thereby leading to
better built side-chains, which in turn resulted in better R
values for seq.id. above 30%, an improvement that was
particularly notable for GDT_1. On the basis of these

results, an increase in cleft quality could be expected after
improving the side-chain modelling, for example using
the SCRWL package [72]. However, results from Sanchez's
group [27] indicate that surface properties are not partic-
ularly sensitive to better side-chain modelling, and cannot
be improved by the single use of SCRWL [72]. Instead,
these authors report that improvements in the force field,
e.g. better solvation term, may be required to correctly
model surface properties [27]. An alternative option to
extract more information from available cleft models, or
at least to explore the cleft's conformational space, would
be the use of restrained molecular dynamics [25]. In this
approach all model atoms are frozen except those defin-
ing the protein's active site, which are allowed to move
freely, subject to covalent restraints with the rest of the
structure. The resulting trajectory gives an approximate
view of correlations between residues, cleft volume, etc,
which may be useful in the design of coarse-grained
probes to screen small molecule 3D databases [25].

Cx
cx is a volume ratio (see Materials and Methods) that gives
a local measure of the atomic environment that can be
related to function [59]. We computed the percentage of
cleft atoms for which the cx value varied between the
observed and the model structures and examined how
this number varied with target-template seq.id.. To
exclude noise corresponding to small experimental fluctu-
ations, we followed a simple protocol (see Materials and
Methods). We first obtained a set of 223 structure pairs
with each pair member corresponding to a different exper-
imental version of the same structure. We then computed
the difference in cx for all pairs of equivalent atoms and

Relationship between rmsd100 and seq.idFigure 5
Relationship between rmsd100 and seq.id. Boxplot of 
the rmsd100 distribution relative to seq.id. We used rmsd100 
[57] instead of rmsd to eliminate the effect of cleft size on 
our analyses. The dashed line represents the auto-model 
control (see Materials and Methods).
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Cleft vs. backbone rmsdFigure 4
Cleft vs. backbone rmsd. The three boxplots correspond 
to the distributions of cleft rmsd relative to target-template 
seq.id. for models with (A) high (0 Å – 3 Å), (B) medium (3 Å 
– 6 Å) and (C) low (≥ 6 Å) backbone accuracy (computed as 
the rmsd of the Cα trace between experimental and mod-
elled structures of the target). Please note the scale change 
between figures. In all three cases the dashed line represents 
the auto-model control (see Materials and Methods).

A

0

1

2

3

4

5

6

0-10 10-20 20-30 30-40 40-50 50-60 60-100

Sequence Identity (%)

R
M

S
D

 (Å
)

B

0

1

2

3

4

5

6

7

8

9

10

0-10 10-20 20-30 30-40 40-50 50-60 60-100

Sequence Identity (%)

R
M

S
D

 (
Å

)

C

0

5

10

15

20

25

0-10 10-20 20-30 30-40 40-50 50-60 60-100

Sequence Identity (%)

R
M

S
D

 (
Å

)

Page 7 of 16
(page number not for citation purposes)



BMC Structural Biology 2008, 8:2 http://www.biomedcentral.com/1472-6807/8/2
plotted the resulting distribution (data not shown). For
over 99% of the cases, the difference in cx was between -1
and 1. On this basis we considered that: for any given
atom cx had varied between the experimental and the
model structures when the difference in cx was larger than
1 in absolute value.

The atomic local structure of cleft models obtained at
seq.id. above 30% – 40% was almost equally well pre-
served along the whole seq.id. range (Figure 8). In con-
trast, for seq.id. below 20% – 30% the percentage of
atoms with cx values varying between observed and
model structures increased substantially, showing a tran-
sition similar to that found for rmsd data (Figure 1). This
finding indicates that cleft structures for models obtained
at low seq.id levels show large changes in both their glo-
bal (rmsd data, Figure 1) and local (cx data, Figure 8) fea-
tures. The cx result was also consistent with the lack of
common sub-structures observed in GDT_1 and GDT_2
(Figure 6) analyses. Taken together, these results indicate
that model refinement at this seq.id. requires large confor-
mational searches, or introduction of external restraints
(taken either from the literature, or from additional exper-
iments) in order to obtain true improvements.

ΔASA and ΔCN
To complete the picture, we explored the changes in
atomic ASA experienced by clefts in comparative models.
This analysis complements previous analyses as changes
in ASA are related to protein energetics, e.g. solvation free
energy [63] or free energy of atom-atom interactions
[61,62]. This analysis provides an approximate idea of
how well we can model native interactions of the target
protein with other molecules [65] – either quaternary
structure partners, small substrates or designed drugs. To
this end, we divided our set of models in three quality
groups: low (< 30% seq.id.), medium (30% – 60%
seq.id.) and high (≥ 60% seq.id.). For each of these quality
bins, we computed the change in ASA for all atoms of the
largest cleft (Figure 9). In accordance with our previous
results, ASA changes (i) tended towards the auto-model-
ling values as seq.id. increased; (ii) were larger the lower
the quality of the model; and (iii) the distributions for
medium and high quality models differed substantially
from that of low quality models. The latter was more
spread over the ΔASA range, a result that completes cx
results (Figure 8), thereby confirming the presence of sig-
nificant local changes in the atomic environment. We also
observed that changes in ASA values were evenly distrib-

GDT analysisFigure 6
GDT analysis. The four boxplots show the distributions of (A) GDT_1, (B) GDT_2, (C) GDT_4 and (D) GDT_8, respec-
tively, relative to target-template seq.id.. GDT values are related to the presence of sub-structures modelled below a certain 
distance threshold (see Materials and Methods). In all four cases the dashed line represents the auto-model control (see Materi-
als and Methods).
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uted around zero, indicating that the modelling protocol
introduces no substantial biases towards exposing or bur-
ying cleft atoms.

As mentioned previously, a number of applications of
comparative modelling, like drug design or study of
enzyme-substrate interactions, require accurate modelling
of native atomic interactions between the target protein
and another molecule (either a small substrate or a mac-
romolecule). To provide an estimate of how modelling of
these interactions may vary in comparative models, we
used an additional parameter, ΔCN (changes in contact
number), which is computed from ΔASA using an approx-
imated relationship proposed by Colonna-Cesari and
Sander [66]: ΔCN ~ 0.31ΔASA. ΔCN gives a rough idea of
how changes in solvent accessibility can modify the abil-
ity of cleft atoms to establish interactions with other mol-
ecules.

We found (Figure 9) that even for high-quality models
almost 25% of cleft atoms had ΔCN values around three.
This indicates that these atoms had either gained (ΔCN E
3) the ability to establish three non-native interactions or
lost (ΔCN E-3) their ability to establish three native inter-
actions, on average. Furthermore, while this situation was
comparable for medium-quality models, for low-quality
models the figure rose to over 40% of the cases.

Factors affecting cleft quality
Finally, we studied the effect of several factors contribut-
ing to cleft quality, focusing on two related issues: (i) the
effect of non-aligned cleft contouring residues; and (ii)
the maximal improvement we could obtain when optimal

ASA conservation in comparative modelsFigure 9
ASA conservation in comparative models. The figure 
shows the distribution of atomic ΔASA (ΔASA = ASAexperi-

mental – ASAmodel) for cleft atoms and four cases: low- (< 30% 
seq.id, white), medium- (30% ≤ seq.id. < 60%, light grey) and 
high-quality (> 60% seq.id., dark grey) models, and auto-mod-
els (dashed). On the top x-axis we display the number of 
atom-atom contacts equivalent to the ΔASA value in the bot-
tom x-axis, estimated using [66]: ΔCN ~ 0.31ΔASA. Vertical 
dashed lines are used to separate the ΔASA bins.
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Side-chain contribution to cleft qualityFigure 7
Side-chain contribution to cleft quality. The boxplot 
shows the distribution of R values relative to target-template 
seq.id.. R is the ratio between the percentage of side-chain 
atoms in the list of atoms contributing to a given GDT and 
the percentage of side-chain atoms in the cleft's set of con-
touring atoms.. The figure shows the distributions corre-
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boxes) values. The dashed lines correspond to the respective 
auto-model controls: dark grey for GDT_1 and light grey for 
GDT_2. Vertical dashed lines are used to separate the seq.id. 
bins.
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target-template alignments were available. We also exam-
ined whether cleft quality was affected by differences in
protein fold, or cleft rank (using the five largest clefts of a
protein, instead of the largest one), although these results
are provided separately as additional files [see Additional
files 3 and 4]. To take into account the size effect, we used
rmsd100 in all cases.

Non-aligned residues lead to poorly modelled regions
[23,24,51]. We therefore focused on clefts in which all res-
idues were aligned. However, in some cases when the
number of non-aligned residues is relatively small, the
restraints imposed by the rest of the structure [73] may
result in acceptable models for this structural region. To
explore this idea, our analysis included all models with a
small fraction (≤ 25%) of non-aligned residues affected.
Figure 10 shows a comparison of cleft models with 100%
or at least 75% of residues aligned to the template, respec-
tively. The latter tended to show poorer rmsd100 values in
the medium (30% – 60%) and high seq.id. (> 60%)
range. However, the differences were not so large as to
exclude the usefulness of these models. In the low identity
range (0% – 30%), alignment quality was too low to
result in reasonable cleft models, even when all residues
were aligned.

Within this context we attempted to establish the maxi-
mal quality that can be reached by improving sequence
alignment. This point is of particular relevance since it
may help the user of comparative modelling to determine
whether it is worth investing time and effort in ameliorat-
ing the target-template alignment. To this end, instead of

sequence alignments we used structure-based alignments
as input to MODELLER. These alignments were obtained,
for all target-template pairs, using the MAMMOTH suite
[74,75] and correspond a priori to the best alignment
obtained between two sequences. When comparing the
rmsd100 distributions for models obtained using either
sequence or structure alignments (Figure 11) we distin-
guished two scenarios. Below 30% seq.id., cleft models
derived from structural alignments were clearly better that
those obtained from sequence alignments. This finding
shows that, in this case, improving sequence alignments is
beneficial. However, above 30% seq.id., sequence-
sequence alignments improved and cleft quality started to
depend more on having all cleft residues aligned (Figure
10), or on factors related to the template structure, such as
crystal contacts, presence of bound ligands, etc, men-
tioned in previous sections [24,26,27].

Conclusion
Here we provide a quantitative view of how the quality of
protein clefts varies in comparative models, depending on
the seq.id. between the target and template sequences.
Our results show how cleft quality – measured using
rmsd, rmsd100, GDT, cx, ASA and contact number- is
related to target-template seq.id.. When considered
together, these analyses consistently show that below
20% seq.id. cleft quality undergoes a clear decrease, both
from a global (Figure 1) as well as from a local point of
view (Figures 6, 8 and 9). This finding suggests that even
between 20% and 30% seq.id., useful models of protein
clefts can be obtained, although the use of quality assess-

Sequence vs. structure alignmentsFigure 11
Sequence vs. structure alignments. Boxplot for the dis-
tribution of rmsd100 values relative to target-template seq.id. 
for models obtained from sequence (grey boxes) and struc-
ture (dashed boxes) alignments, respectively. The dashed line 
represents the auto-model control (see Materials and Meth-
ods). Vertical dashed lines are used to separate the seq.id. 
bins.
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Effect of non-aligned residuesFigure 10
Effect of non-aligned residues. Boxplot for the distribu-
tion of rmsd100 values for clefts with 100% (grey boxes) or 
more than 75% (dashed boxes) of their residues aligned, 
respectively. The dashed line represents the auto-model con-
trol (see Materials and Methods). Vertical dashed lines are 
used to separate the seq.id. bins.
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ment tools is strongly advised, due to the important pro-
portion of poor models within this seq.id. range. Once
identified, the cleft model may be subject to subsequent
refinement steps aimed at improving quality, e.g. using
global model refinement (taking advantage of the better
backbone quality, Figure 7), although the greatest
improvement is likely to result from the use of good align-
ments (Figure 11). Above 30% – 40% seq.id., the main
restriction to model quality is determined by the template
selected (Figure 1). Within this seq.id. range, overall back-
bone structure tends to deteriorate more than cleft struc-
ture, probably because of functional restraints on the
latter. Therefore, further model refinement should proba-
bly freeze, at least partly, the structure of the cleft, to pre-
vent degradation. Overall, our work goes beyond previous
studies [26,27,34] presenting a complete view of how the
structure of protein clefts varies in comparative models,
which constitutes a useful guide for researchers interested
in the study of protein function using comparative mod-
elling methods.

Methods
Here we explored the level of preservation of protein clefts
in comparative models. While the latter can be obtained
using templates with varying degrees of sequence similar-
ity from the target, our interest focused mainly on com-
plete coverage of the seq.id. range below 60%, for the
reasons mentioned above. This decision determined our
selection strategy of targets and templates, which was
designed to provide a large number of models within this
seq.id. range. Nonetheless, models were also obtained at
higher seq.id. to confirm the consistency of the trends
observed.

The target-template pairs
Homology, or comparative, modelling methods have the
capacity to produce a 3D structure for any target protein
provided that structural information is already available
for at least one of its family members [1,23,24], usually
called the template(s). Thus the starting point of our study
was to build a list of target-template protein pairs that cov-
ered the desired seq.id. range. The difference, in our case,
was that the structure of the target protein had to be
known in order to allow the assessment of protein clefts
variation among comparative models of distinct quality.
To this end, we used the CATH database [50], version
3.0.0.. This database is a domain database in which whole
protein structures have been previously separated into
their constituting domains. While the use of protein
domains did not affect the results of our analysis, it
slightly affected the functional/structural meaning of the
cavities considered. As explained above, the largest cleft
was selected for our analysis because it usually coincides
with the protein functional locus [53,54]. However,
because we are dealing with domains, some of these clefts

may appear only after separating interacting domains
from the same protein. Their value, for the purpose of our
research, is similar to that of other functional clefts, as
they play a vital role when docking independently mod-
elled domains to build the structure of multi-domain pro-
teins [76].

CATH provides a hierarchical classification of protein
domains [50] with a range of levels that go from very
broad – like the Class level- to very fine, sequence family
levels. Among the latter is the O-level, in which domains
with seq.id. higher than 60% are grouped, and which was
used as a starting point in our study. Indeed, our set of tar-
get-template pairs corresponded to all possible pairs of O-
level representatives belonging to a given H-level (Homol-
ogous Superfamily level), for all H-levels. The list of O-
level representatives was obtained from the CATH server
[50], and was subsequently filtered: we excluded all dis-
continuous CATH domains, structures not considered as
true folds in SCOP [77] (version 1.67), and all protein
domains with missing atoms, or main-chain discontinui-
ties. The resulting number of structures was 3802 and the
list of target-template pairs had 90948 pairs. The latter
were used as input to the program MODELLER and
resulted in 88410 models, as there was a small fraction of
target-template pairs for which no alignment could be
produced. A final filter was implemented to leave only
those cases for which all residues from the target's largest
cleft (see below) were aligned to template residues. The
final number of target-template pairs was 53507 (A list
with the pdb codes for all these pairs is provided target-
template pairs is provided as additional file [see Addi-
tional file 5].

The homology modelling protocol
The homology models were obtained with the standard
program MODELLER [49], using the sequence alignment
between the target and template sequences as input. The
latter were extracted directly from the CATH [50] file
CathDomainDescriptionFile.v3.0.0, and aligned using
the ALIGN option from MODELLER [49] which imple-
ments a global dynamic programming algorithm with
afine gap penalties [78]. The models were built using
MODELLER's default parameters.

To assess the quality limits imposed by the comparative
modelling software, we used a set of models obtained
using the experimental structure of the target protein as
template, which amounted to a total of 3797 models (five
less than the 3802 due to small discrepancies between the
PDB sequence and that given in the file CathDomainDe-
scriptionFile.v3.0.0). This auto-model control gives a
good idea of how the bias introduced in the distinct struc-
tural features (e.g. side-chain torsional angles, atom-atom
contacts, etc) by the explicit and implicit approximations
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in the modelling package affect the final quality of the
model.

Alignment accuracy is one of the most important issues in
homology modelling [1,21,23,24], as it has a strong effect
on the final quality of the model (e.g. alignment errors are
essentially unrecoverable). In our study, where the goal
was to assess the impact of conventional modelling on
cleft quality, we generated sequence alignments with the
ALIGN option from the MODELLER package [49], as
done by Sanchez's group [27] in their work on the impact
of comparative models on structure-derived properties. It
must be noted, however, that the performance of dynamic
programming algorithms, such as that implemented in
ALIGN, decreases for seq.id. below 20% – 30% [79]. For
this reason, the results shown in our study for seq.id.
below 30% constitute a lower bound estimate of cleft
quality. There are currently several alternatives to conven-
tional dynamic programming [80] to obtain sequence
alignments within this seq.id. range. However, it is
unclear which is the best [80], and proper assessment of
these alternatives is a difficult task to which much research
effort is devoted and beyond the scope of the present
study. Instead, following Sanchez's approach [27], we
used structure-based alignments to show how an increase
in alignment accuracy may improve cleft models. In our
case the structure alignments were obtained using the
MAMMOTH software suite [74,75]. The final number of
models derived from these alignments, 89563, was
slightly higher because MAMMOTH aligned some of the
target-template pairs that were too difficult to align using
sequence information alone. Again, for our analyses we
only considered those models for which all cleft residues
from the target were aligned to template residues.

Sequence identity
As a reference for the user of homology modelling meth-
ods, we related all our results to the similarity between the
target and template sequences, as provided by the MOD-
ELLER package, which is equal to: (number of identical
residues)/(number of residues of the shortest sequence).

Cleft computations
Clefts were obtained using the standard software SURF-
NET [52] which, for a given a protein, gives a list of clefts,
each defined by a set of contouring atoms. We used the
number of contouring atoms of a cleft as a measure of its
size. For all our analyses, we focused on the largest cleft,
except in one case [see Additional file 4] where we exam-
ined the five largest clefts.

Changes in protein clefts
We used 6 parameters to characterize changes in protein
clefts: root-mean-square deviation (rmsd), normalized
root-mean-square deviation (rmsd100), global distance

test (GDT), protrusion index (cx), variation in accessible
surface area (ΔASA) and contact number (ΔCN). Unless
otherwise stated, these parameters were computed using
only the subset of protein atoms defining the chosen cleft
in the target's experimental structure. For example, if for a
given protein this cleft was defined by atoms a12, a23, a34,
..., a332, the rmsd computation between the experimental
and the modelled structure was restricted to these.

Rmsd
We used the coordinates rmsd [81] as a quality measure of
the clefts resulting from the modelling process. This rmsd
is usually computed using all protein atoms, or main-
chain atoms, etc. However, in our case we used the list of
contouring atoms of the target's largest cleft. In some cases
(Figure 4) we also obtained the rmsd using all the protein
Cα atoms, to relate cleft and backbone qualities.

Rmsd100

The normalized rmsd, rmsd100, is obtained from conven-
tional rmsd using the following formula [57]: rmsd/[1 +
0.5ln(N/100)], where rmsd is the non-normalized value
(obtained as explained in the previous section), and N is
the number of aligned residue pairs. rmsd100 is independ-
ent of size [57] and therefore allows comparison of
changes observed for clefts of different sizes on the same
scale.

GDT
The global distance test is a measure used when compar-
ing two structures. It allows the identification of common
sub-structures between them. This measure corresponds
to the percentage of aligned atoms that are at a distance
lower than a given threshold. Here we used four thresh-
olds, 1 Å, 2 Å, 4 Å and 8 Å, which are typically applied to
assess structure predictions. GDT was computed for each
threshold following an iterative procedure [58]:

a- compute the optimal superimposition [81] between the
cleft atoms in the experimental and model structures, as
explained in the rmsd section

b- find all aligned atom pairs at a distance lower than the
threshold

c- obtain the optimal superimposition using only the
atom pairs obtained in step b.

d- repeat steps b and c until no changes are observed in the
pairs list during two iteration cycles.

Cx
cx [59] is a parameter that provides a fine-grained, local
view of atomic environment. It is equal to the ratio
between free and occupied volume within a sphere (10 Å
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radius) centered in each heavy atom. cx varies between 0
and 15, with large values corresponding to protruding
atoms that may either be involved in protein-protein
interactions, or correspond to proteolysis sites. cx was
computed with the program developed by Pintar and col-
leagues [59].

For a given atom, when comparing cx values between
structures, we may find small fluctuations that are proba-
bly meaningless. To establish a threshold beyond which
variation in cx values may be relevant, we compared a set
of pairs of replicas of the same structure, obtained under
different experimental conditions. This pairs list was
obtained by clustering all PDB [82] structures from the
version of May 25th, 2007. We implemented a series of fil-
ters to exclude: theoretical models, modified residues,
incomplete residues, missing and/or unknown residues,
extreme experimental conditions (e.g. high or low pres-
sure, etc), and mutants. After applying these filters, we
then clustered the accepted proteins with Cd-hit [83] and
eliminated those cases for which there were length differ-
ences between cluster members. The final list comprised
223 pairs of equivalent protein structures. For each pro-
tein atom we then computed, Δcx, the difference in cx
between replicas. We found (results not shown) that over
99% of Δcx values clustered between -1 and 1. On this
basis we imposed that only atoms with variations in cx
larger than 1 in absolute value between the experimental
and model structure would be taken into account.

ΔASA
The atom ASA was computed using the program NAC-
CESS [84] with probe radius equal to 1.4 Å. It is a shape
descriptor related to the capacity of atoms and residues to
interact with their environment.

ΔCN
Change in contact number is derived from ΔASA follow-
ing the study of Colonna-Cesari and Sander [66]: ΔCN ~
0.31ΔASA. ΔCN provides a coarse-grained view of how
the interaction capacity of a given atom varies as a result
of changes in the model.

Graphical representation
To plot the large number of data resulting from our anal-
yses we mostly used boxplots instead of dotplots to avoid
the overplotting problem that affects the latter [85]. Box-
plots are usually employed to represent continuous varia-
bles and facilitate comparison between distributions [85].
Apart from the median, which is represented as an inde-
pendent point with a special symbol (a triangle in our
case), there are three main features in the boxplots: the
central box, the "whiskers" and the outliers. The central
box goes from the first (25th percentile) to the third quar-
tile (75th percentile). One "whisker" starts at the first

quartile and goes down the graph; the other "whisker"
starts at the third quartile and goes to the top of the graph.
The length of these "whiskers" is equal to the minimum
between the respective extreme values and 1.5 times the
interquartile range (the difference between the 75th and
the 25th percentile values). Outliers are plotted as sepa-
rate points. For clarity, we omitted outliers, but no conclu-
sion was affected by their absence.

List of Abbreviations used
ASA: accessible surface area

CN: contact number

cx: protrusion index

GDT: global distance test

GDT_1, GDT_2, GDT_3 and GDT_4: global distance tests
computed for 1 Å, 2 Å, 4 Å and 8 Å distance thresholds,
respectively

rmsd: root-mean-square deviation

rmsd100: normalized root-mean-square deviation

seq.id.: sequence identity

R: ratio between number of cleft side-chain atoms contrib-
uting to a given GDT (e.g. GDT_1, GDT_2, etc) and total
number of cleft side-chain atoms.
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RMSD vs. CLEFT SEQUENCE IDENTITY. The boxplot shows how cleft 
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Additional file 2
SIDE-CHAIN CONTRIBUTION TO GDT_4 AND GDT_8 vs. 
SEQUENCE IDENTITY. To assess the contribution of side-chains to cleft 
models we computed R, the ratio between the percentage of side-chain 
atoms in the list of atoms contributing to a given GDT (GDT_1, GDT_2, 
etc) and the percentage of side-chain atoms in the cleft's set of contouring 
atoms. In the main body of the article we discuss the results for GDT_1 
and GDT_2. In this figure we show the boxplot for GDT_4 and GDT_8. 
For GDT_4, which is associated with medium quality sub-structures, we 
observe that most of the models have R values below 1, thereby reflecting 
that main-chain atoms are modelled with better accuracy than side-chain 
atoms. For GDT_8, we observe that most R values are between 0.8 and 1, 
indicating that at this low quality level, almost all cavity atoms are 
included in the cleft model. Vertical dashed lines are used to separate the 
seq.id. bins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-8-2-S2.pdf]

Additional file 3
Dependence of results on protein family. Several CATH[50] families are 
large and naturally contribute a larger number of models than smaller 
families to our results. To examine whether the latter show a specific 
behaviour, we reproduced the analysis of Figure 5 for families contributing 
less than 100 models each (dashed boxes). We subsequently compared the 
resulting rmsd100 distribution with that of the whole set of models (grey 
boxes). No substantial differences are observed between sets. Vertical 
dashed lines are used to separate the seq.id. bins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-8-2-S3.pdf]

Additional file 4
Dependence of results on cavity rank. In some cases it may occur that the 
protein function locus is located in a secondary cleft rather than in the 
largest cavity. To explore the quality with which smaller clefts are mod-
elled, we show the comparison between the rmsd100 distributions for the 
largest cleft (grey boxes) and the top five clefts (dashed boxes). The latter, 
particularly for seq.id. below 30%, tend to have poorer qualities thus sug-
gesting that secondary clefts are reproduced with lower quality in compar-
ative models. This poorer reproduction is probably because these cavities 
have a smaller number of matching residues in the target-template align-
ment. Vertical dashed lines are used to separate the seq.id. bins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-8-2-S4.pdf]

Additional file 5
List of target-template pairs used. The columns in the file correspond to 
the: first four CATH[50] numbers of the template and to the CATH[50] 
codes of the target and template, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-8-2-S5.GZ]
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