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Abstract

Background: Eluted natural peptides from major histocompatibility molecules show patterns of
conserved residues. Crystallographic structures show that the bound peptide in class Il major
histocompatibility complex adopts a near uniform polyproline ll-like conformation. This way allele-
specific favoured residues are able to anchor into pockets in the binding groove leaving other
peptide side chains exposed for recognition by T cells. The anchor residues form a motif. This
sequence pattern can be used to screen large sequences for potential epitopes. Quantitative
matrices extend the motif idea to include the contribution of non-anchor peptide residues. This
report examines two new matrices that extend the binding register to incorporate the
polymorphic p10 pocket of human leukocyte antigen DRI. Their performance is quantified against
experimental binding measurements and against the canonical nine-residue register matrix.

Results: One new matrix shows significant improvement over the base matrix; the other does not.
The new matrices differ in the sequence of the peptide library.

Conclusion: One of the extended quantitative matrices showed significant improvement in
prediction over the original nine residue matrix and over the other extended matrix. Proline in the
sequence of the peptide library of the better performing matrix presumably stabilizes the peptide
conformation through neighbour interactions. Such interactions may influence epitope prediction
in this test of quantitative matrices. This calls into question the assumption of the independent
contribution of individual binding pockets.

Background

It is essential to understand the host immune response in
order to boost or modulate the immune system in infec-
tious diseases, autoimmune diseases, allergies or cancer.
This requires knowledge of the peptides selected and pre-
sented by class II major histocompatibility complex
(MHC) molecules and the rules governing their binding
and presentation to CD4+ T cells. Molecules of the MHC

are surface receptors on immune cells that bind and
present selected antigen as short peptides or epitopes to T
cells with matching receptors. The peptides are produced
by the proteolytic machinery of the antigen presenting
cell. Class I epitopes are generated from intracellular pro-
teins [1] and class II epitopes are processed from vesicular,
endocytosed and cytosolic proteins through the exoge-
nous pathway [2]. Processed peptides are loaded in intra-
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cellular compartments and transported to the cell surface
where they are displayed for recognition by T cells. The
unique design of the peptide binding region of the MHC
and the vast polymorphism, through duplication, gene
conversion and other genetic mechanisms, combine to
generate hundreds of molecular variants at class I HLA-A,
-B, -C and class 11 HLA-D loci [3]. Through these mecha-
nisms MHC molecules are able to recognize and bind a
vast array of peptides with fine distinction. Each allele has
a different peptide binding specificity.

The MHC receptor comprises a membrane distal peptide
binding domain sitting on a scaffold or platform formed
by two immunoglobulin domains juxtaposed in a charac-
teristic fashion. The peptide binding domain consists of
eight anti-parallel beta strands on top of which lie two
anti-parallel alpha helices. This is a unique fold and the
two alpha helices form the walls of the peptide binding
cleft [4]. Polymorphic residues in the beta sheet floor and
in the alpha helical walls of the MHC form pockets that
enforce genetic restriction and allele specificity [5-7]. Pep-
tides that bind to class I molecules have a restricted length,
about eight to eleven residues. The bound peptide forms
hydrogen bonds with conserved residues at either end of
the cleft effectively sealing them. Class II molecules, on
the other hand, are open at either end and allow peptides
of nearly unrestricted length to extend over the termini of
the binding groove.

The register of the peptide cleft or binding groove in both
class I and class Il MHC molecules is nine residues [8]. The
positions are labelled p1, p2, ..., p9, relative to the large N-
terminal pocket in class II. Pockets p1, p4, p6 and p9 are
prominent pockets in class II molecules; p3 and p7 are
shallow shelves or minor pockets. Bound peptides in class
II molecules adopt a polyproline type II-like conforma-
tion [9]. This near helical conformation allows the bound
peptide to engage the major polymorphic pockets with
anchor residues lodged in p1, p4, p6 and p9 leaving pep-
tide side chains at p2, p3, p5, p7 and p8 simultaneously
available for inspection by T cells. Peptide binding energy
derives from the engagement of the peptide anchor resi-
dues in the MHC binding pockets with additional contri-
bution from hydrogen bonds from the peptide backbone
to conserved residues within the class II MHC molecule.

Methods to identify peptides that are immunogenic are
important in basic and applied research - for fundamen-
tal understanding and for designing new drugs and vac-
cines to treat disease. Traditionally, this has meant
synthesizing overlapping peptides covering the entire
sequence followed by purification and direct or indirect
assays of peptide binding to MHC molecules. This is time
consuming and expensive. Reliable computational screen-
ing followed by experimental validation provides a more
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rapid and less expensive alternative. This may be carried
out for several alleles to cover a wide segment of the pop-
ulation.

The restricting MHC molecule imposes structural con-
straints on the peptide anchors through polymorphic res-
idues within the pockets [6,7]. This defines the peptide
binding motif [10,11] for an allele. Related alleles have
overlapping peptide repertoire and share a similar motif
or core sequence [12,13]. Anchor motifs such as obtained
through eluted natural ligands and phage display libraries
have been useful in epitope prediction [12,14,15]. Quan-
titative matrices are extended motifs. They are an
improvement over simple motifs and provide more infor-
mational content. Their coefficients describe the likeli-
hood of an amino acid at a given location in a peptide to
contribute to binding to an MHC allele [16-18]. They give
high specificity, are fast, intuitive and easy to use.

Quantitative matrices are typically 20 x 9 in dimension
reflecting the twenty natural amino acids and the nine res-
idue register of the binding cleft of MHC molecules [16-
18] as has been determined by X-ray crystallography [8].
The overall binding energy of the peptide is assumed to be
the linear sum of the contribution of individual side
chains. The peptide backbone hydrogen bonding contri-
bution is ignored. This scheme is the independent bind-
ing of side chains approximation [16]. Equivalent
matrices have been derived from the relative abundance
of an amino acid at a given position from the sequence
alignment profile of a library of known binders to an
MHC allele [19]. Epitope prediction by quantitative
matrices has been useful in identifying antigens in aller-
gens [20], infectious agents such as Mycobacterium tuber-
culosis [21], and tumours [22]. Reviews by Korber and
colleagues and by Tsurui and Takahashi give a current sur-
vey of the field [23,24].

Most prediction programs, whether they use quantitative
matrices or machine learning methods, employ the
canonical nine pocket binding register. There is growing
appreciation that flanking residues influence peptide
binding [25]. Flanking residues at the C-terminus of the
binding groove of class I MHC molecules are polymor-
phic. The shelf formed at flanking position p10 makes
potential sequence dependent contribution toward pep-
tide binding energy. The equivalent flanking position at
the N-terminus of the peptide groove is conserved; there-
fore the contribution of the position preceding pocket p1
(p-1) is ignored.

Results from structural and binding studies using the pep-
tide AWCSDEALPLGSPRCD in complex with HLA-
DRB3*0101 (HLA-DR52a) show a contribution from
position p10. 24-AWCSDEALPLGSPRCD-39, from the N-
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terminus of human integrin a2pIlla is a major ligand of
DR52a. A natural variant of the epitope widely distributed
in the population is 24-AWCSDEALPPGSPRCD-39. The
Leu33/Pro33 dimorphism is the basis of the unidirec-
tional alloimmune posttransfusion thrombocytopenia
purpura (PTP) and fetal-maternal alloimmune thrombo-
cytopenia (FMAIT), severe blood disorders in some
DR52a subjects homozygous in Pro33 [26-28]. While
AWCSDEALPPGS, or the second epitope 24-AWCS-
DEALPPGSPRCD-39 (Pro33), does not bind to DR52a
AWCSDEALPPLS (leucine replacing glycine at position
10) has been demonstrated to bind. This has been con-
firmed by crystallographic studies (CSP, unpublished).
These point to the contribution of leucine as an auxiliary
anchor and the importance of position p10. Other studies
of peptide-class II MHC complexes show a sequence
dependent role for p10 [29].

In this study, we examine whether adding the contribu-
tion of position p10 improves prediction accuracy over a
common 9-pocket matrix [17]. We construct two new
quantitative scoring matrices for HLA-DR1 extended to
include the contribution of flanking position p10. Coeffi-
cients for position 10 were constructed from the peptide
library AAYSDQATPLLXSPR, where X at position p10 is
one of the twenty natural amino acids. Canonical anchor
residues are in bold. The base peptide was derived from
the N-terminal human integrin a2pIlla peptide used for
DR52a studies and has been designed to bind in a specific
frame to HLA-DR1 by substituting well known anchor res-
idues from the DR1 peptide binding motif and crystallo-
graphic studies [30,31]. A second peptide library was
based on AAYSDQATLLLXSPR where a proline has been
replaced with leucine in order to avoid conformational
effects due to proline. We find that the new matrix based
on AAYSDQATPLLXSPR (called PP10, from the role of
position 10 and the extra proline) shows significant
improvement over the original nine residue register
matrix, P9. The matrix based on AAYSDQATLLLXSPR
(P10, from the role of position 10) does not show such
improvement. The peptide libraries for the extended
matrices differ in sequence at one position: proline versus
leucine.

Results

Bioinformatic analysis

We have used IC;, values, obtained from binding assays of
a variety of test peptides to DR1, to construct coefficients
to extend the Hammer 9-register matrix [17] (P9) to posi-
tion 10 of the peptide binding cleft. The protocol is
described under Methods. The new extended matrices,
P10 and PP10, are validated in regression analysis of pre-
dicted values against experimental binding measurements
of peptides from glutamic acid decarboxylase (GADG65),
islet cell antigens (ICA69) [32] and Varicella-zoster virus
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(VZV) (unpublished data). We compare these with results
using the canonical 9-register matrix for DR1 [17]. The
TEPITOPE virtual matrices for DR1 and other alleles [33]
are based on this published matrix according to similarity
in the pocket sequence profile. Logarithm of IC, values
are plotted against predicted values and a function is fit to
the data. A fitting function is chosen whose coefficients
minimize the residuals.

The best fit was found to be a straight line. Higher order
polynomial functions were tried but gave worse results.
Low ICs, values correspond to good binding and high
ICs, values correspond to poor binding, and negative pre-
dicted values. A flat fit has no predictive use. Plots for
GADGS5, ICA69 and VZV are shown in Figures 1 and 2. In
all three scoring methods, there are both false positives
(upper right quadrant) and false negatives (bottom left
quadrant, Figures 1 and 2). False positives can be screened
out in validation tests but false negatives are problematic.
With these data sets, the scoring matrices show few false
negatives. This is a useful property and the matrices can be
used to screen large sequences without missing potential
epitopes. A high threshold may be set to eliminate falsely
predicted peptides.

In all three data sets, GADG65, ICA69 and VZV, for the
three matrices tested there is correlation between binding
(measured ICs,) and predicted values (Figure 1). This
indicates predictive value in all three matrices, the two
new extended basis matrices P10 and PP10 and the con-
trol matrix P9. For GADG5 (Figure 1a), matrices of the
original nine-residue matrix (P9) and the extended matri-
ces (P10 and PP10) perform about equally from the fits.
Using the slope m as a surrogate measure, PP10 is better
than P9 (0.383 vs. 0.352, in absolute values) and P9 is in
turn better than matrix P10 (0.352 vs. 0.341). The analysis
is summarized in Table 1. For ICA69 (Figure 1b), PP10
and P9 have nearly the same slope (0.327 vs. 0.338) and
better predictive power than P10 (0.275). The difference
between the respective slopes of P9 and PP10 is not signif-
icant but the deviation between 0.327 and 0.338 (PP10
and P9) and 0.275 for P10 appears significant. Using the
coarse criterion of slope m for VZV (Figure 1c), P9 is better
than P10 (0.252 vs. 0.225). Visual inspection of the
graphs supports these assertions (Figure 1). Interestingly,
from Table 1, the difference in the absolute slope values
between P9 and P10 for GAD65 and ICAG9 data sets is
0.011. Difference in peptide-HLA-DR binding assay sensi-
tivity between different antigenic proteins, data sets, indi-
vidual experiments and the nature of competition assays
makes it difficult to establish absolute numbers, and com-
parison between different data sets is difficult. Compari-
son within a data set is more valid as revealed by the plots.

Page 3 of 11

(page number not for citation purposes)



http://www.biomedcentral.com/1472-6807/8/44

BMC Structural Biology 2008, 8:44

Glutamic acid decarboxylase, GAD65 Varicella-zoster virus
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Figure |

Plots of binding measurements versus prediction values. Half maximal inhibitory concentration (IC50) values of peptide sequences are plotted as a function of
their predicted values for each of the three matrices, P9 (open circles, blue), P10 (cross, red) and PP10 (stars, green). A line is fitted to the plotted values in the respective
colors. This is done for data sets A. Glutamic acid decarboxylase, GAD65; B. Islet cell antigen protein, ICA69; and C. Varicella zoster virus, VZV.
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Figure 2

Plots of edited binding measurements versus prediction values. Binding measurements are again plotted against predicted values. Poor binders have been removed,
and half maximal inhibitory concentration (IC50) values of peptide sequences are plotted for each of the three matrices, P9 (open circles, blue), P10 (cross, red) and PP/0
(stars, green). A line is fitted to the plotted values in the respective colors for the respective data sets, A. Glutamic acid decarbolase, GAD65; B. Islet cell antigen, ICA69,
and C. Varicella zoster virus, VZV.
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Table I: Summary of analysis

A. Full data

Data set method -m J r2

GADé65 P9 0.352 30.22 0.373
PIO 0.341 26.75 0.445
PPIO 0.383 2237 0.536

ICA69 P9 0.338 2991 0.325
PIO 0.275 33.24 0.250
PPIO 0.327 29.27 0.340

vzv P9 0.252 8.16 0.386
PIO 0.225 8.99 0.324

B. Data edited to remove poor binders

Data set method -m ] r2
GADG65 P9 0.324 25.44 0.279
PIO 0.368 20.12 0.429
PPIO 0410 16.12 0.543
ICA69 P9 0.308 24.27 0.251
PIO 0.244 25.47 0.214
PPIO 0.308 21.22 0.345
vZV P9 0.334 1.92 0.573
PIO 0.324 2.56 0.431

The fit of prediction to binding has been calculated for each
prediction method using measures of slope (-m), sum of the square
terms of the residual error (J) and r-square value (r2) for peptide
sequences from GAD65, ICA69 and VZV. Table | A shows the
statistics for the unedited data, and Table |B shows the equivalent
statistics for the data edited to remove poor binding measurements.

ures 1a, b and 1c show that low binding peptides (IC;, =
100 uM for GAD65 and ICA69 and 10 uM for VZV) are
poorly predicted. This marks the limit of sensitivity of the
experimental measurement. The analysis is repeated with-
out these points: Figures 2a, b and 2c show the same plots
when data points representing poor ICs, values are
ignored. It is not clear how significant the difference
between P9 and P10 slopes is for GAD65. Nevertheless,
the conclusion that PP10 is superior is not changed. The
VZV data set further reveals the difference in performance
between P9 and P10. The magnitude of the slope used this
way calibrates closely the "structure" or "informational
potential" within the data; a flat fit signifies random data
and has neither "structure” nor predictive potential.

The predictive potential is more accurately captured in
terms of variance ("bandwidth") and residuals ("noise").
Residuals for the three data sets were calculated. A typical
plot is shown in Figure 3 for GADG65 data set. The sum of
the square of the residual values is calculated for each pre-
diction matrix P9, P10 or PP10. Finally, the quality of the
fit is assessed through the r-square value:
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r2:(1-§) (1)

J is the sum of the square terms of the residual error and S
is the variance of the data. The analyses incorporating the
slope m of the fitting function, residuals J, and 72 are
shown in Table 1. r2values range from 0.25 to 0.54 for the
full data and 0.21 to 0.57 for the pruned set. The corre-
sponding range for the magnitude of the slope is 0.22 to
0.38 for the full set and 0.24 to 0.41 for the edited set. The
slopes shadow closely the respective 12 values (Table 1).

From r2 values, prediction method PP10 again works the
best in both GAD65 and ICA69 data sets: PP10 performs
better than the control matrix P9 and is superior to the
other extended basis matrix P10. P10 is better than the
control P9 matrix in GADG5 (12 of 0.45 versus 0.37) but
not in ICA69 (0.25 versus 0.33). The ordering and conclu-
sions are unchanged with filtered data. PP10 matrix has
superior discrimination potential in terms of the slope m
and also in terms of 2. PP10 shows marked improvement
over matrix P9 and PP10 is also better than P10. While
extended matrix P10 makes better prediction than P9 in
GADGS5 it is worse than P9 in the edited ICAGY data set. In
VZV, matrix P10 shows no improvement over P9 in either
the filtered or unfiltered data sets, according to r2. Overall,
average 2 values of the raw data sets (Table 1) are 0.36,
0.34 and 0.44 respectively for P9, P10 and PP10. For com-
parison, reported average 2 value of a large-scale evalua-
tion of class II molecules using similar quantitative
matrices is 0.25[34].

Structural analysis

To gain structural insight into epitope prediction, and
why matrix PP10 performs better than P9, we examined
peptides that bind well according to ICs, binding meas-
urements. The best experimental binding measurement is
for peptide 54 from GADG5 (GDKVNFFRMVISN-
PAATHQD, pICs,=2.15; Supplementary table, Additional
file 1). The same register FRMVISNPA(A) is predicted as a
strong binder for both matrices, P9 (predicted score =
3.05) and PP10 (predicted score = 3.58). Anchor residues
at dominant pockets p1, p4, p6 and p9 are as expected for
DR1 [12]. Ala at position p10 is also predicted to contrib-
ute to favourable binding. Incidentally, matrix P10 is in
agreement: the same binding frame is predicted and Ala at
the extended position is also predicted to interact with the
shallow shelf at position p10 for enhanced binding. The
added contribution of Ala is given greater weight in matrix
P10 (1.05 units) than in PP10 (0.53 units). Competition
binding assay of the peptides used for the libraries shows
that Ala is a preferred residue at p10 for HLA-DR1.
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GADG65: Plot of GAD65 IC50 values against prediction
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Figure 3

Distribution of residuals for GADé5. Values of half maximal inhibitory concentration are plotted for glutamic acid decar-
boxylase (GAD®65) together with calculated residuals. The top panel is the plot of IC50 against prediction for GAD®65; the bot-

tom panel shows the distribution of the residuals.

A unanimous binding frame (in bold letters) is also pre-
dicted from peptide 9 (Supplementary table, Additional
file 1) SCSKVDVNYAFLHATDLLPA, another strong
binder. Leucine at position p10 is predicted to contribute
to greater binding affinity, in agreement with experiment.
Matrices P9 and PP10 predict the same frame (in bold let-
ters) in peptide 4, QVAQKFTGGIGNKLCALLYG (Supple-
mentary table, Additional file 1). Strong peptide anchor
residues at p1 and p9 (F and L, respectively) compensate
for poor anchors (G) at p4 and p6, and the contribution
of cysteine at position p10 is predicted to enhance bind-

ing from matrix PP10. The predicted binding frame in
matrix P10, however, differs - IGNKLCALLY.

Another example shows how the extended position
changes the predicted binding frame between matrices P9
and PP10: in SHFSLKKGAAALGIGTDSVI (peptide 28),
LKKGAAALG is predicted to bind best by matrix P9 while
FSLKKGAAAL is predicted by the two extended basis
matrices. LKKGAAALG (predicted by P9) has a good leu-
cine anchor at p1 but three poor anchors at p4, p6 and p9.
For matrices P10 and PP10, a strong phenylalanine anchor
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at position p1l in the peptide predicted combines with
lysine at p4 and the auxiliary leucine anchor at position
10 to improve the score.

The peptide VETFRHRAISDTWLTVNRME from ICA69 is
another example where the extended matrix PP10 predicts
a frame (FRHRAISDTW, score = 0.27) different from that
predicted by P9 (VETFRHRAI, score = -1.15). The better
score predicted by PP10 may arise from an aromatic
hydrophobic anchor in pocket 1 versus a relatively small
aliphatic p1 anchor, valine, predicted by matrix P9. In the
latter, phenylalanine is disfavoured in pocket 4, and like-
wise histidine in pocket 6, in the frame predicted by
matrix P9. The other extended matrix P10 predicts the
same frame as PP10 but with a much worse score (-1.75).
This implies a predicted negative contribution of tryp-
tophan at position p10 for matrix P10 but a positive con-
tribution of tryptophan for PP10. Experimental binding
measurements support a positive contribution of tryp-
tophan at pocket 10. The binding frame predicted by
matrix PP10 is structurally consistent with the measured
binding affinity.

In peptide 117, the ICA69 peptide QCRTEYRGALLWMK-
DVSQEL (Supplementary table, Additional file 1) is pre-
dicted to bind in a different frame (CRTEYRGAL, score = -
0.52) than that predicted for PP10 (YRGALLWMKD, score
=-1.15). Non-ideal anchors (Cys at p1 and Glu at p4) pre-
dicted by matrix P9 are compensated by good anchors
(Arg at p6 and Leu at p9). The frame predicted by PP10
possesses a large and favourable hydrophobic anchor
(Tyr) at p1, a favoured small residue (Ala) at p4 but Leu
and Lys at pockets p6 and p9, respectively. Leu and Lys are
disfavoured in these positions. The contribution at posi-
tion p10 does not overcome these hindrances.

AIHESFKGYQPYEFITLKSL and RKESSSFKTEDGKSIL-
SALD (peptides 126 and 132; Supplementary table, Addi-
tional file 1) are predicted as strong binders, in agreement
with experimental data, and in the expected registers,
FKGYQPYEF(T) and FKTEDGKSI(L), for all three matri-
ces. In peptide 126, polar threonine is not favoured at
position pl0; this reduces the score slightly in both
extended matrices. On the other hand, in peptide 132,
hydrophobic leucine anchor at p10 in the predicted frag-
ment enhances the interaction between DR1 and the pep-
tide ligand to give a slightly higher score for both extended
matrices P10 and PP10.

And in another example, the predicted register is shifted
one position between matrices P9 and PP10 for peptide
SVVNKMQQRYWETKQAFIKA (peptide 103; Supplemen-
tary table, Additional file 1): VNKMQQRYW and VVNK-
MQQRYW (p1, p4, p6 and p9 anchors are in bold). The

http://www.biomedcentral.com/1472-6807/8/44

added basis in PP10, the increased number of parameters,
has allowed better prediction accuracy.

Finally, all three matrices unanimously select the same
best frame YGAFDPLLA(V) from overlapping peptides 33
and 34 (Supplementary table, Additional file 1). The
experimental pIC50 values are 0.05 (peptide 33) and -
0.70 (peptide 34) compared to predicted scores of 0.68,
0.33 and 0.45 for P9, P10 and PP10, respectively. Simi-
larly, the same frame FRKVQTQVRL is unanimously
selected by the three matrices for peptides 119 and 120
(Supplementary table, Additional file 1). pIC50 values are
0.22 (peptide 119) and 0.00 (peptide 120). Predicted
scores are 0.15, 0.90 and 1.42 for P9, P10 and PP10,
respectively, for the unanimously predicted best frame for
the two peptides. In the former pair of peptides, the exper-
imental values are far apart while the computational
scores are relatively close. In the latter set, the experimen-
tal values are close but the predicted scores show a big
spread.

Statistics for predicted scores are easy to obtain but similar
statistics for binding measurements are difficult to obtain
as little statistical data is given along with the experimen-
tal data. As is typical of such measurements, baseline val-
ues are determined on a case by case basis.

Discussion

An important contribution to the binding affinity of pep-
tide to class II MHC is the aggregate of the interaction of
individual peptide side chains with the polymorphic
pockets. The contribution of backbone atoms is ignored
as is formalized in the independent binding of pockets
hypothesis [16] that underlies epitope prediction algo-
rithms based on quantitative matrices. Methods of
epitope prediction, including quantitative matrices, typi-
cally consider only the nine positions or pockets within
the binding groove. There are reports that show, however,
that sequences flanking the binding cleft affect peptide
binding affinity [25]. This contribution when accounted
for may therefore improve epitope prediction accuracy for
class I MHC alleles. The termini of the binding groove of
class I molecules are sealed.

We constructed two matrices P10 and PP10 that incorpo-
rate flanking position p10 and tested them against exper-
imental binding data. Extended matrix PP10 showed
significant improvement over the canonical 9-mer matrix,
P9. In validation tests of two typical data sets extended
matrix PP10 showed superior performance (average 2 =
0.440) over the original P9 matrix (average 12 = 0.350).
On the same test sets, extended matrix P10 performed no
better (average 12 = 0.350) than P9 (Table 1).
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The superior performance of prediction matrix PP10 is
best explained in terms of additional position p10 in the
binding register. This explicitly increases the number of
parameters. A major conclusion therefore is that incorpo-
rating the flanking position may improve class I MHC
epitope prediction. Extended matrix PP10 also selects a
more plausible binding register than what is predicted by
matrix P9. The relative poor performance of matrix P10 is
best explained in terms of the difference in sequence of
the peptide library it was based on. It is not clear the effect
of the -LLL- subsequence (in P10) on the peptide confor-
mation. Conversely, it is conceivable that the better per-
formance of matrix PP10 derives from greater
stabilization of the peptide polyproline II-like conforma-
tion by the extra proline in the sequence of the peptide
library.

The left handed polyproline II helical conformation is
found in structural proteins, in signalling molecules and
as ligands in MHC complexes [9]. Proline is unusual
among natural amino acids. In a polypeptide, its ¢ torsion
angle is restricted to -63°. The & carbon of the proline ring
interacts with the backbone N and constrains the preced-
ing residue [35]. Such influence of proline on the adjacent
residue is contrary to the assumption of independent
binding of peptide side chains and needs accounting in
quantitative scoring matrices.

Many lines of structural studies of peptide-MHC com-
plexes suggest cooperative interactions between pockets
[36]. Peptide selection and binding may be compared to
sampling the conformational space available to the com-
plex of peptide and MHC. The path followed and the final
structure adopted by the complex depend on sequence,
and these involve cooperative interactions. The accompa-
nying conformational changes are not accounted for in
quantitative matrices. A related issue is the stability of the
bound complex.

Hydrogen bonds from the peptide backbone are a major
contribution to peptide-class II MHC binding. Experi-
mental structures show 12-16 such bonds from the pep-
tide backbone to usually conserved residues in the class I1
molecule. Fach such hydrogen bond is important for
binding affinity and stability [37]. While, in principle,
these backbone hydrogen bonds enable peptide binding
regardless of sequence the number of such bonds may
vary depending on the peptide sequence. Proline residues
in a peptide sequence can alter the pattern and number of
such backbone hydrogen bonds. Neither quantitative
matrices nor the assumption of independent binding
takes backbone hydrogen bonding into account.

Further, a given peptide-class I complex is best repre-
sented as a heterogeneous set of conformations of varying

http://www.biomedcentral.com/1472-6807/8/44

stability. These conformational dynamics are a function of
the particular peptide in the MHC and reflect sequence,
near neighbour and long range pocket interactions. This is
another limiting factor in epitope prediction. Already,
sequence dependence is assumed in functional work and
sequence sensitivity to selectivity and stability of class 1I
ligands has been demonstrated in the catalysis of peptide
loading down to the level of hydrogen bonds [36,38,39].

Peters and colleagues have proposed the method of stabi-
lized matrices [40] to account for near neighbour and
cooperative interactions between pockets. Their calcu-
lated coefficients are used to augment the well known
quantitative matrices used in TEPITOPE [33]. The added
terms are small, about a factor of 10 smaller than the
entries of the original quantitative matrices. However, sta-
bilized matrices improved prediction performance over
the original quantitative matrix, and to a level equalling or
exceeding that of general (machine learning) methods.

This report does not address questions about peptides that
are poorly predicted. Experimental limitations are a factor
in poor predictions but are difficult to quantify. Measured
IC;, values are relative to a reference peptide, and sensitiv-
ity may vary from assay to assay. It is also not always clear
what is binding. If bound peptide is what is being meas-
ured, other questions arise such as in what frame. An
examination of crystallographic structures of peptide-class
II MHC complexes shows that peptide anchors are not
always fully engaged in binding pockets especially after
pocket p6; in the collagen peptide complex with
DRB5*0101 [41] the peptide side chain at p9 is out of
pocket and extends rather to the shelf at position 10. In
general, not all pockets need to be fully engaged for good
peptide binding [42]. Short of experimentally derived
structures exactly how peptides bind in each complex, or
whether they bind at all in the binding site, as measured
in assays, has to be assumed. These issues are intimately
linked with the biology of the system.

The biology and the experimental restriction of the system
are important limiting factors in T cell epitope prediction
accuracy. Immunoassays need to become reliably quanti-
tative in order to ensure accuracy in prediction. Heteroge-
neity of peptide conformations also needs to be
addressed. These are difficult issues but they must be
taken into account in interpreting results from epitope
prediction.

Conclusion

This study set out to find whether the contribution of
flanking pocket 10 improves prediction accuracy. Two
matrices incorporating position p10 were constructed.
Tests showed that the contribution of the added basis
describing position p10 may lead to improved prediction
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over the usual nine residue register matrix. The added
dimension explicitly increases the parameters. The study
also revealed the importance of sequence context.

The aim of modern biology is to explain physiological
phenomena not only at the level of cells and tissues but
also at the molecular level. This requires full knowledge of
the coding sequence and the atomic structure of the mol-
ecules. Nevertheless, the three dimensional representa-
tion of molecules of itself is inadequate. Near neighbour
interactions between residues, long range cooperative
effects between domains and other tempo-spatial effects
are just as important, hence a need for representations
that capture these.

Quantitative matrices used in epitope prediction are actu-
ally an example of such parameterization. A matrix coeffi-
cient contains parameterization of the physical chemical
properties of pocket shape, peptide side chain to pocket
interactions and electrostatics without explicit descrip-
tion. Sequence dependence is considered on the basis of
individual pockets. The approach followed here similarly
aims at increasing the parameters of the scoring matrix by
explicitly increasing the basis through flanking position
p10. The method of stabilized matrices has demonstrated
a way of introducing small additional terms describing
cooperative effects [40].

Comparing the performance of the two extended matrices
described here has made evident implicit sequence bias in
the matrices. Proper accounting of sequence effect will
further contribute to prediction accuracy. Peptide libraries
are implicitly optimized through the incorporation of
favourable residues at anchor positions; these capture sali-
ent nonlinear features of peptide conformations. Fuller
understanding may lead to a judicious choice of basis,
parameters or peptide library to construct scoring matrices
that capture more of these cooperative interactions to
improve prediction accuracy.

Methods

Generating coefficients

Matrix coefficients to extend the binding register to posi-
tion p10 are derived following the method described pre-
viously [17]. A designed peptide carrying the test amino
acid residue at position p10 is used in competitive human
leukocyte antigen binding assays with purified DR1 allele.
The peptide library was designed after the human integrin
B3 peptide AWCSDEALPLGSPRC, a natural ligand of
HLA-DR52a (DRA/DRB3*0101), and altered to incorpo-
rate anchor residues favourable to HLA-DR1, Y, Q, T and
L, as deduced from the known peptide binding motif [30].
The first series called PP10 is AAYSDQATPLLXSPR; anchor
residues, at positions 1, 4, 6 and 9 (p1, p4, p6 and p9) in
bold, and X represents one of the twenty natural L amino

http://www.biomedcentral.com/1472-6807/8/44

acids. In order to obtain coefficients for a residue X at p10,
the amino acid at that position within the peptide is var-
ied and the IC;, value is measured (described below). The
IC;, value is normalized with the IC;, value of the Ala-
substitution at position p10 for each residue X. The loga-
rithm of the reciprocal value of normalization is obtained

as:

log( IC50 A1, )
IC50x
Another peptide library is constructed based on the pep-
tide AAYSDQATLLLXSPR, P10. Proline has been replaced
with leucine to avoid the backbone restriction and confor-
mational heterogeneity of the pyrrolidine ring that are
associated with proline. The extended matrix coefficients
are calculated independently for pocket 10 with no
assumption of neighbouring pockets or peptide positions.
The free energy of binding of a peptide is approximated by
the sum of individual side chain contribution within the
binding register, the Independent Binding of Side Chains
[16].

Peptide binding experiments

The affinity of test peptides of the peptide library to HLA-
DR1 was determined in standard competition binding
experiments. 25 nM of the unliganded class II molecule
was incubated with an equimolar amount of the probe,
biotinylated influenza virus HA [306-318] peptide and
unlabelled competitor peptide; the amount of the com-
petitor peptide used is varied for each assay. The assay
mixture is incubated in 50 mM NaCl, 100 mM Na;PO,,
pH = 5.5, a cocktail giving final concentration 1 mg/ml
PMSEFE, 37 ug/ml iodoacetamide, 10 mM EDTA, 0.02%
NaNj; and 0.5 mg/ml octylglucoside at 37 °C until equilib-
rium is reached after 3 days. This was followed by immu-
noassay using the anti-HLA-DR1 antibody LB3.1 in
streptavidin to detect the bound biotinylated HA [306-
318] peptide. IC;, values are deduced for each peptide
from fluorescence values with respect to a range of con-
centration of the competitor peptide [31].

Test set

The performance of the extended matrices was evaluated
in prediction against experimental binding measurements
of peptides derived from 65 kDa glutamic acid decarbox-
ylase (GADG65) [32], 69 kDa islet cell antigens (ICAG9)
[32] and Varicella-zoster virus (VZV) (unpublished data).
GADG65 and ICA69 data consist of 20-mer peptides over-
lapping by 10 amino acids and covering the complete
sequence of the proteins. VZV peptides contain a variety of
15-mer through 27-mer peptides also overlapping by 10
amino acids and covering the entire range of the sequence.
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Validation

For each data set, a dependent variable was derived from
experimental IC;, values through a logarithmic transform.
This is correlated with predicted peptide scores through a
fitted function by regression. Linear and nonlinear func-
tions are used and evaluated based on the residual. The
predicted scores are further evaluated through the 2 (R-
square) function. Regression analysis was carried out
using MATLAB http://www.mathworks.com. Predictions
were carried out within the in-house MHC epitope predic-
tion tool PREDICT (CSP, unpublished).
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