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Abstract
Background: Protein surfaces comprise only a fraction of the total residues but are the most
conserved functional features of proteins. Surfaces performing identical functions are found in
proteins absent of any sequence or fold similarity. While biochemical activity can be attributed to
a few key residues, the broader surrounding environment plays an equally important role.

Results: We describe a methodology that attempts to optimize two components, global shape and
local physicochemical texture, for evaluating the similarity between a pair of surfaces. Surface shape
similarity is assessed using a three-dimensional object recognition algorithm and physicochemical
texture similarity is assessed through a spatial alignment of conserved residues between the
surfaces. The comparisons are used in tandem to efficiently search the Global Protein Surface
Survey (GPSS), a library of annotated surfaces derived from structures in the PDB, for studying
evolutionary relationships and uncovering novel similarities between proteins.

Conclusion: We provide an assessment of our method using library retrieval experiments for
identifying functionally homologous surfaces binding different ligands, functionally diverse surfaces
binding the same ligand, and binding surfaces of ubiquitous and conformationally flexible ligands.
Results using surface similarity to predict function for proteins of unknown function are reported.
Additionally, an automated analysis of the ATP binding surface landscape is presented to provide
insight into the correlation between surface similarity and function for structures in the PDB and
for the subset of protein kinases.

Background
It has become apparent that surfaces, comprised of a frac-
tion of the total residues, are the most conserved func-
tional features of proteins. Proteins utilize common
surface motifs to create precise chemical environments
designed to perform specific functions. These motifs are
not restricted to a single protein scaffold but can be found
within different protein folds or at domain/domain and
subunits interfaces. While biochemical activity can be

attributed to a few key residues (e.g catalytic triads), the
broader surrounding environment (i.e. auxiliary residues
in spatial proximity) often plays an equally import role in
fine-tuning molecular recognition and/or catalysis.

Powerful evolutionary forces have allowed proteins to
govern ligand binding through seemingly subtle local sur-
face variability. These changes, which are not easily detect-
able by sequence analysis, may provide competitive
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advantage for optimization of co-factor specificity. In
some circumstances, surface diversity adversely affects
normal cell process by providing environments for unde-
sired binding events (e.g. drug side effects) or mutations
directly correlated to disease[1]. The conservation of func-
tional surfaces presents an opportunity to compare and
analyze proteins independent of sequence or fold. These
comparisons can be used to classify protein functions or
to infer biochemical activity for proteins with unknown
function, such as those targeted by structural genomics
programs.

Several methods have been developed detecting localized,
spatial protein similarities with applications for evolu-
tionary analysis, function prediction and drug discovery.
The use of graph theory has been widely applied to the
comparison of three-dimensional patterns. Artymiuk et al.
developed an algorithm based on subgraph isomorphism
detection to search residue patterns against the PDB[2].
Kinoshita et al. used clique detection algorithms to assign
protein biochemical functions using the similarity infor-
mation of molecular surface geometries and electrostatic
potentials[3]. Using a clique-detection algorithm, Schmitt
et al., compared generic pseudo-centers that code for pos-
sible ligand-protein interactions in protein cavities. Query
cavities are searched against Cavbase, a pre-computed
database of cavities extracted from the PDB[4]. The
method has been applied to identify surfaces in non-
homologous proteins as well as for the classification of
protein families[5]. Kleywegt searched for motifs of resi-
due pseudo-centers in a library of protein structures using
a depth-first search algorithm[6]. Russell also developed
an algorithm based on depth-first search that detects
atomic geometric patterns common in between side-
chains in proteins and presented new examples of conver-
gent evolution[7]. Parametric statistical evaluations of
Russell's atomic superposition method were extended by
Stark et al. [8].

Another widely used approach is geometric hashing,
which is an efficient method for matching features against
a database. Jackson and Gold used geometric hashing to
perform an all-against-all comparison of protein-ligand
binding sites in the SitesBase database [9-11]. Their
method was also applied for functional annotation and
building pharmacophore models for drug discovery[11].
Fischer et. al. developed an algorithm based on geometric
hashing that detects surface similarities of proteins using
spatial patterns of atoms[12,13]. A similar method, TESS,
has been applied for the derivation and matching of
annotated spatial templates[14]. JESS[15], a successor to
TESS, searches small groups of atoms under arbitrary con-
straints on geometry and chemistry and utilized statistics
to evaluate matches. It is used to query the Catalytic Site
Atlas (CSA)[16] a collection of annotated residues pat-

terns extracted from manual literature searches. JESS is
also used in the PROFUNC[17] suite of annotation tools
in the reverse template search, where a radius defined
perimeter extends a local residue pattern search for
improved search specificity.

A protein evolution based method, pvSOAR, was devel-
oped that used the unique approach of aligning sub-
sequences of surface residues to establish a residue corre-
spondence between surfaces[18,19]. The residues were
then superimposed on each other and statistical signifi-
cance was evaluated for the resulting RMSD. This method
was used to detect similar functional surfaces in non-
homologous proteins. Furthermore, in a recent study of
shape variation of ligand binding pockets, Kahraman et.
al., used a shape-only comparison metric based on spher-
ical harmonics[20]. It was shown that shape descriptors
could be used to classify ligand into their binding sites.

In this study, we describe a new method for the sequence
order independent comparison and alignment of protein
functional surfaces. Our method, SurfaceScreen, attempts
to optimize two components, global surface shape and
local physicochemical texture, for evaluating the similar-
ity between a pair of surfaces. Surface shape similarity is
assessed using a three-dimensional object recognition
algorithm and is used to rapidly pre-classify surfaces from
a large library of surfaces. Surfaces with sufficient shape
complimentarity are then aligned by combinatorially
identifying the best superimposition of common residues
between the two surfaces. We introduce several metrics for
scoring different properties of a surface alignment and an
overall scoring function used in library searches. Further-
more, we introduce the Global Protein Surface Survey
(GPSS), a library of annotated protein surfaces calculated
from all structures in the PDB. Querying surfaces from
proteins of unknown function against the GPSS library
allows SurfaceScreen to be utilized as predictive tool.

We describe three types of analysis to assess surface shape
comparisons and spatial alignments. First, we describe the
retrieval of surfaces from the GPSS library for surfaces,
from the same protein, that bind ligands of various size,
shape and pharmacophore properties. For this we use the
example of HIV-1 protease. Second, we use the example of
heme (iron-protoporphyrin IX) binding sites to describe
the retrieval of a functionally diverse binding surface that
binds the same ligand. We provide the example of using
our method as an annotation tool, identifying a new
member of the heme binding monooxygenase family.
Third, we describe how conformational diversity of
bound ligands impacts retrieval rate for ubiquitous nucle-
otide binding sites. We also present the example of a
nucleotide binding surface prediction and crystallo-
graphic validation for a structural genomics target with a
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new fold. We conclude with an analysis of the ATP bind-
ing surface landscape to provide insight on the correlation
between surface similarity and function for structures in
the PDB and for the subset of protein kinases.

Methods
Theory and Algorithms
While key conserved residues are localized within a sur-
face for function, additional residues contribute to the
overall size and shape of the functional surface environ-
ment. In some instances, these non-key residues play an
important, but non-obvious, functional role. This has
been shown for aminopeptidases, where the mouth open-
ing diameter filters peptide access into the active
sites[21,22], or for N-acetyltransferases, where the acetyl-
CoA and substrate binding surfaces are sub-pockets
within a larger cleft[23]. In other instances, these auxiliary
residues have no obvious relevance, being positioned sim-
ply as a result of folding and structural requirements,
codon pressure or unrelated functional specifications.
Therefore, a detachment exists between global and local
surface properties of functional sites, which can distort
comparison measures and mask similarities.

Our approach to identifying meaningful similarities
between two surfaces is accomplished by decomposing
surface comparisons into two components, global shape
and local physicochemical texture. Global shape compar-
isons can be a very powerful precursor of overall surface
similarity. They are computed very efficiently and can
help rapidly reject grossly dissimilar surfaces. This is fol-
lowed by a non-heuristic spatial residue alignment, which
assures the optimal superposition of conserved residues
between two surfaces.

Surface Shape Signatures for Rapid Global Surface Shape 
Comparison
Unlike protein folds, a common lexicon has not emerged
to precisely describe the shapes formed by surfaces yet
quantitative measures can be computed to empirically
describe shape. Here, we introduce a metric, the Surface-
ShapeSignature (SSS), which describes the global shape of
a protein surface that can be used for comparison.
Adapted from three-dimensional database object
retrieval, the method represents the signature of an object
as a probability distribution sampled from a shape func-
tion measuring global geometric properties[24]. The com-
plexity of shape matching is then reduced to the
comparison of two probability distributions. This
approach was used to quickly and successfully retrieve
and classify complex shapes from three-dimensional data-
bases.

After a protein's binding surfaces has been identified (see
Methods), the SSS is constructed by systematically meas-

uring the Euclidean distance between all unique atom
pairs for a given surface. This is seen for the nicotinamide-
adenine-dinucleotide phosphate (NADP) binding surface
from human pathogen S. pyogenes (PDB:2ahr) in Figure
1c. The inter-atomic distances are then sorted to form the
shape signatures. The SSS distributions for a selection of
heme, nicotinamide adenine dinucleotide (NAD) and
adenosine 5'-triphosphate (ATP) binding surfaces are
shown in Figure 1d. For reference, SSS distributions for a
selection of DNA and metal binding surfaces are also
shown. Once the shape distributions for two surfaces are
computed, we apply the Kolmogorov-Smirnov (KS)
test[25] to compare the probability distributions. The KS
test identifies the greatest distance between the observed
and expected cumulative frequencies and is bound
between zero (identical distributions) and 1 (different
distributions).

Advantages and Limitations of Surface Shape Signatures
The primary advantages of this approach are computa-
tional robustness and efficiency. In the original work of
Osada, the robustness of shape signatures was verified
against a variety of transformations including scale, rota-
tion and mirroring and were insensitive to model simpli-
fication. These properties are ideal for applications in
structural biology as minor conformational changes or
small surface perturbations should not mask overall
shape similarities. For example, we should be able to
detect the similarity between the apo and bound states of
a binding site, yet still discern between the two states.
Insensitivity to model simplification allows for meaning-
ful comparisons between surfaces comprised of non-triv-
ial atoms count differences. The implementation and
execution of this algorithm is computationally straightfor-
ward and allows a query surface to be searched against the
GPSS library in minutes.

Biochemical functions rely on a combination of shape
and chemical compatibility and therefore one should not
expect that shape alone could describe this complexity.
Figure 1 shows that NAD, ATP, and heme binding surfaces
share similar and, in some cases, overlapping distribu-
tions. The SSS comparison can convey gross shape simi-
larity but is void of chemical typing information and
cannot be used to infer specific functional information.
Instead, it provides a fast and robust comparison metric
utilized as the entry point into more comprehensive sur-
face shape matching methodology.

Surface Shape Signature Similarity Threshold
The choice of a shape similarity threshold has a significant
impact on the efficiency and specificity of surface library
searching. Operating under the pretense that ligands with
similar shape and molecular weight are more likely to
bind to similar pockets, we correlated these properties to
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SSS KS distances. Our training data is taken from querying
cAMP-dependent kinase (PDB:1atp) ATP binding surface
against the GPSS library. With a correlation coefficient of
0.458, we see that some degree of surface similarity can be
inferred simply by molecular weight (Figure 2a). We high-
light a region on the plot (yellow) that corresponds to +/-
100 D from the molecular weight of ATP and identify the
similarity distance of 0.22, along the x-axis, in which only
11% of surfaces exist as outliers. Next, ATP was compared
to ligands corresponding to the surfaces in our library
using the molecular shape matching application ROCS
(OpenEye Scientific Software, Inc). ROCS identifies the
best superposition of two molecules by optimizing their
overlapping volume and reports a normalized Tanimoto
score. Tanimoto values greater than 0.7 are generally
regarded as having similar shape and are highlighted on
our plot (cyan). The Tanimoto scores are correlated to the

SSS distance in Figure 2b. We identify a distance of 0.24,
in which only 10% are outliers. Since our assumptions
about molecular weight and ligand shape similarity are
simplistic and surface comparison hope to identify more
evolutionary distant relationships, we set our default
threshold distance at 0.3. In the benchmarking retrieval
experiments presented in Results section, our default
threshold excludes less than 1% of true-positive surfaces,
all of which can be justified by unique structural incident
(e.g. multiple binding pockets, mutation experiments,
low resolution structure, crystallographic error).

Local Spatial Surface Residue Alignments for Physicochemical 
Texture Similarity
The spatial arrangement of localized surface patterns and
orientation of side chains are used to assess our evalua-
tions of biochemical function complimentarity. An

Automated identification of protein binding surfaces and construction of SurfaceShapeSignatures (SSS)Figure 1
Automated identification of protein binding surfaces and construction of SurfaceShapeSignatures (SSS). The 
nicotinamide-adenine-dinucleotide phosphate (NADP) binding surface from human pathogen S. pyogenes (PDB:2ahr, a) is 
defined by measuring the change in solvent accessibility between the bound and apo structure (b, pink). The SSS of a binding 
surface is constructed by measuring the inter-atomic Euclidean distances between all unique surface atom pairs (c). The signa-
tures of select DNA, ligand and metal binding surfaces for proteins in the PDB.
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exhaustive enumeration and search algorithm, SurfaceA-
lign, is applied to detect groups of spatially conserved
amino acid residue sets. In this application, the term "con-
served" refers to the identical residues common to two
protein surfaces. Our three-dimensional representation of
a surface residue is represented by a single point located at
the center of mass of all atoms identified as contributing
to a particular surface.

The alignment of two surfaces is performed by combina-
torially identifying the best superposition of the maxi-
mum subset of conserved residues between surfaces. For
all conserved residues of each type, we enumerate all com-
binations and permutations to create unique coordinate
sets of common residues between the two surfaces. A vis-
ual depiction of an alignment between the heme binding
pockets of myoglobin from P. catodon (PDB:1mbn) and
structural genomics target hemoglobin alpha-1
(PDB:1xq5) is shown in Figure 3. The geometric dissimi-
larity of each coordinate combination is evaluated follow-
ing the methods of Umeyama[26], which is based on
singular value decomposition of the correlation matrix of
the coordinates to identify the least square rotational
matrix, translation vector and the root mean square dis-
tance (RMSD). We utilize two variants of the RMSD: the
coordinate root mean square distance (cRMSD), for
atomic coordinates as represented in our residue model,

and the orientation root mean square distance
(oRMSD)[18]. The oRMSD is a derivative dissimilarity
measure that reduces the effect of outliers on an RMSD
value and simulates the conformational flexibility of
amino acid side chains.

Statistical Significance of Aligned Surface Distances
RMSD calculations are sensitive to the number of data
points compared, making it necessary to assess the statis-
tical significance of raw distance measures. This is accom-
plished by converting calculated cRMSD and oRMSD
values to a probability value (P-value) measuring the like-
lihood of obtaining a specific RMSD value for a solution
with a given number of residues. This allows for the mean-
ingful comparisons between alignments with differing
number of common residues. Following the method
described by Binkowski et al[18], random surface align-
ments were performed for alignment solutions of Nres res-
idues, where 3 ≤ Nres ≤ 100. Calculations numbering 1010

were computed to construct lookup tables associating
cRMSD and oRMSD scores to P-values. To minimize the
inherent bias in the PDB toward particular protein fami-
lies, special consideration was employed to utilize a non-
redundant surface library consisting of proteins sharing
less than 90% whole-protein sequence similarity.

Identification of a threshold for SurfaceShapeSignaturesFigure 2
Identification of a threshold for SurfaceShapeSignatures. SSS distances obtained by querying the ATP binding site of 
cAMP-dependent kinase (PDB:1atp) against the GPSS ligand surface library are plotted against the molecular weight of the lig-
and corresponding to the library surface (a). Ligands with MW ± 100 D of ATP are highlighted in yellow. The molecular shape 
similarity Taniomoto score between ATP and the ligand corresponding to the library surface is plotted in (b). Tanimoto scores 
greater than 0.7 (blue) are generally regarded as similar. The correlation coefficients for molecular weight and shape similarity 
are 0.46 and 0.45, respectively, and the corresponding regression lines are shown in red. Our selected threshold distance of 
0.3 (green) for use in our SurfaceScreen methodology eliminates less than 1% of true-positive surfaces in our benchmarking 
exercises.
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Surface Volumes Overlap of Aligned Surfaces
While the alignment compares key residues important for
shared biochemical function, the volume overlap of an
alignment provides a comparison of all atoms belonging
to a surface. The overlap volume is defined as the volume
difference between the superimposed surfaces and is cal-
culated from the formula:

VAB = VA + VB - VA∪B

Where VA, VB, and VA∪B are the volumes of surface A, B and
the superimposed construct AB, respectively. Volumes are

calculated using the weighted Delauney triangulation and
alpha shape methods [27-29].

The overlap volume is then used to calculate a Tanimoto
coefficient, which is a normalized similarity meas-
ure[30,31]. By using the self overlap volumes (VAA, VBB),
we define the surface volume overlap Tanimoto (SVOT):

SVOT
VAB

VAA VBB VAB
AB =

+ −

The SurfaceAlign algorithm identifies the optimal alignment of spatially conserved residuesFigure 3
The SurfaceAlign algorithm identifies the optimal alignment of spatially conserved residues. 6,220,800 alignment 
combinations and permutations are required for the alignment of 25 conserved residues of the heme binding pockets of 
myoglobin from P. catodon (a) and structural genomics target hemoglobin alpha-1 from P. flavescens (c). 100 alignment solutions 
are shown in stick representations (b). An alignment series shows the superposition of the solutions calculated towards con-
verging to the optimal alignment (d). The myobglobin query surface is shaded in grayscale to represent the cRMSD values 
(black represents a large cRMSD and white represent small cRMSD) and the hemoglobin surface is colored by the shapely 
color scheme[77].
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A SVOT score is bounded between 0 (representing non-
overlapping surfaces) and 1.0 (representing identical sur-
faces). The SVOT values for the spatial alignment series
show in Figure 3d are 0.50, 0.52, 0.73, 0.62, 0.91, and
0.89 when viewed from left (black) to right (white). The
best spatial alignment, as judged by RMSD values, does
not guarantee the best SVOT score (i.e. SVOT scores are
not correlated to RMSD).

The interpretation of the SVOT score is not straightfor-
ward for surfaces that have a large volume disparity. Fig-
ure 4 shows a large surface pocket on F420-0:gamma-
glutamyl ligase homolog from A. fuldgidus (PDB:2g9i, a)

where a sub-surface (b, forest green) is highly conserved to
the GDP binding surface in GDP-binding protein from B.
taurus (PDB:1tad, c). The volume overlap of the superim-
posed surfaces has a calculated SVOT score of 0.37, sug-
gesting low similarity (Figure 4e, purple). In this case, the
SVOT score fails to account for strong sub-surface similar-
ity; hidden by the overall volume disparity.

To improve the alignment scoring, we compute two ver-
sions of the SVOT, the local and global surface overlap
volumes. In the global SVOT (gSVOT), we apply the rota-
tion matrix from the conserved residues to the entire sur-
face (Figure 4e). The local SVOT (lSVOT) is limited to the

Calculating volume overlap between aligned surfacesFigure 4
Calculating volume overlap between aligned surfaces. A surface on F420-0:gamma-glutamyl ligase homolog from A. 
fuldgidus (PDB:2g9i) (a) has a well conserved sub-surface (b, forest green) to the GDP binding surface in GDP-binding protein 
from B. taurus (c). A superposition of the surfaces from the alignment (d). When the volume overlap of the alignment is meas-
ured (e, purple), the large volume disparity between the surfaces masks the similarity with global surface volume overlap 
(gSVOT) score of 0.37. Using only the conserved residues of the alignment (f) to measure the local global volume overlap 
(lSVOT) reveals the similarity with lSVOT score of 0.71 (g, purple).
Page 7 of 23
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2g9i
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2g9i
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1tad


BMC Structural Biology 2008, 8:45 http://www.biomedcentral.com/1472-6807/8/45
subset of conserved residues from the alignment solution
(Figure 4f). The local and global SVOT are calculated as
follows:

Where Va and Vb are the volumes of the surfaces formed
only by the conserved residues used in the alignment solu-
tion. The lSVOT for the alignment in Figure 4g is 0.71,
conveying stronger similarity.

Finally, we introduce the ratio SVOT (rSVOT), to establish
a correspondence between the global and local surface
volumes:

The rSVOT is bounded between 0 and 1 and represents the
fraction of a surface utilized in the alignment solution. In
Figure 4, the rSVOT value of 0.52 confirms that it is a sub-
pocket match. The rSVOT score can be used to automati-
cally detect surfaces that do not have the desired proper-
ties for a particular search (e.g. excluding sub-surface
matches during a library search).

Automated Identification of Ligand Binding Surfaces
Functional surfaces of proteins can be derived from struc-
tural information extracted from three-dimensional coor-
dinates. This task can be automated for PDB files
deposited with heteroatom records (HETATM) describing
atoms belonging to small molecule cofactors rather than
to part of a biopolymer chain. To extract the functional
surfaces that surround structural features of a protein, an
exclusion contact surface is generated by measuring a dif-
ference in solvent accessibility between a structure with
and without a molecule in proximity. This is illustrated for
the NADP binding surface from human pathogen S. pyo-
genes (PDB:2ahr) in Figure 1a. Atoms with a change in sol-
vent accessibility between the bound and apo structure are
identified as the contact surface (Figure 1b). We utilize the
Delauney triangulation and alpha shape method for
measuring solvent accessibility [27-29].

A Library of Protein Functional Surfaces
An exclusion contact surface has been calculated for every
heteroatom molecule associated with a protein's PDB file
and organized into the Global Protein Surface Survey
(GPSS). The GPSS contains three-dimensional libraries of
functionally annotated surfaces from ligand, DNA, metal
and peptide binding surfaces and is updated weekly to
correspond to PDB deposits. Libraries are publicly accessi-
ble through a web browser[32] or via a PyMol[33] plugin.
In this study, we utilize only the ligand binding surfaces

of the GPSS: 113,921 members representing 5,575 unique
ligands (PDB version: November 2006). For this subset of
the GPSS, the average number of residues forming a sur-
face is 12 and the average molecular weight of the bound
ligands is 305. To reduce redundancy and improve search
efficiency, we further limit our search library to a single
ligand of each type from each protein deposit. The first lig-
and of each type, as described in the PDB file, was
selected.

Similarity Searching Surface Libraries
We incorporate our two comparison algorithms, Surface-
ShapeSignatures and SurfaceAlign into a comprehensive
searching methodology, SurfaceScreen, to query a protein
surface against the GPSS library. The GPSS library con-
tains pre-computed binding surfaces for ligand, DNA,
metals, and peptides from all structures in the PDB. Sur-
faceScreen is outlined in Figure 5. Given a protein struc-
ture, we first identify all solvent accessible surfaces on the
structure utilizing the CASTp[34] database and select a
query surface of interest. The query surface is compared to
each member of our surface library using SSS. Each sur-
face, whose shape is not within a threshold, is eliminated
from the library. In this manner, the SSS is used as a fast
pre-classifier before the computationally intensive align-
ment algorithm and scoring functions are applied. Finally,
the spatial alignment is performed and the alignments are
scored and ranked.

Independently, each scoring function conveys unique
properties about a surface alignment, but an overall score
is necessary to consistently evaluate and rank surfaces in a
database search. To this end, we define the SurfaceScreen
score:

The SurfaceScreen score is bounded between 0 and 3, and
represents contributions from global shape similarity,
local spatial residue alignment, and global alignment vol-
ume overlap. The denominator in the cRMSD P-value
component reflects the maximum probability value esti-
mated by our statistical significance evaluations, 10-9. The
oRMSD, lSVOT, and rSVOT scores are omitted because
they are too highly correlated to the cRMSD and gSVOT
scores, respectively. They are, however, still useful for
post-processing results.

Data Analysis and Classification
Receiver Operator Characteristic Curves
Surface retrieval benchmarking experiments are summa-
rized in a Receiver Operator Characteristic (ROC) curve,
where the sensitivity is plotted against its specificity at var-
ious significance levels of summed probabilities. In the
ROC curve, the x-axis represents the false positive rate, or

gSVOT
VAB

VAA VBB VAB
lSVOT

Vab
Vaa Vbb Vab

AB ab=
+ −

=
+ −

,

rSVOT
gSVOTab
lSVOTAB

=

SurfaceScreen SSS
cRMSD P value

gSVOT Score
 = − + −

−
+( )

log( )
1

9
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The SurfaceScreen methodology uses the SSS algorithm to rapidly pre-classify surfaces based on shape complimentarityFigure 5
The SurfaceScreen methodology uses the SSS algorithm to rapidly pre-classify surfaces based on shape compli-
mentarity. Similarly shaped surfaces are then spatially aligned using the SurfaceAlign algorithm and scored. While the GPSS 
library also contains surfaces from DNA, metal and peptide binding surfaces, in this study, only ligand binding surfaces were 
considered.
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1-specificity, which is calculated by as 1-TN/(TN+FP),
where TN is the number of true negatives and FP is the
number of false positives. The y-axis represents the true
positive rate, or sensitivity, and is calculated as TP/
(TP+FN), where FN is the number of false negatives. An
overall performance measure of a classification test can be
calculated by the area under the ROC curve (AUC)[35].
Bound between 0 and 1, an AUC of 1 is indicative of a per-
fectly accurate classification test, in which all true posi-
tives are distinguished from false positive. An AUC of 0.5
corresponds to a random classification test (e.g. a coin
flip). The AUC is a combined measure of sensitivity and
specificity.

For our SurfaceScreen methodology, the ROC curves meas-
ure our ability to accurately identify similar surfaces from
a large database. A true-positive data point in our database
retrieval experiments is defined when the ligand from the
query surface matches the ligand from the corresponding
library surface (e.g. retrieving heme binding sites when a
heme binding site is used as the query). This definition
should be considered conservative, as protein surfaces
have the ability to bind multiple ligands and, in some
cases, a false-positive prediction may indeed be a biologi-
cally relevant hit.

ATP Conformation Classification
The coordinates for all ATP molecules in the PDB were
identified and extracted. Multiple occurrences of the lig-
and in structure deposit were included and treated as
unique molecules. A pairwise, least-squares superposition
of all remaining molecules was performed and RMSD val-
ues recorded in a distance matrix. Complete linkage clus-
tering was applied to the data matrix. For clarity, we chose
to discover the minimum number of conformation fami-
lies that would accurately represent all ATP molecules. A
range of cut values was tested and we chose to set the
number of clusters to four based on manual visualization
and analysis. The four conformations represent the bent,
extended, and two intermediary forms of ATP.

Results and discussion
Surface-Based Retrieval of Binding Sites for the Same 
Protein: HIV-1 Protease
The utility of surface shape comparisons was assessed by
retrieving functionally homologous human immunodefi-
ciency virus (HIV-1) protease-ligand complexes from the
GPSS. HIV-1 protease is an essential aspartyl protease that
cleaves nascent polypeptides enabling maturation of viral
proteins. Inactivation of the protease blocks production of
infectious viral particles[36]. Therefore, HIV-1 has been
an active target and one of the early success stories of
rational drug design[37]. We identified 151 HIV-1 pro-
tein-inhibitor complexes deposited in the PDB with the
following criteria: proteins are in the dimer conformation,

inhibitors are not compound fragments (molecular
weight >100), and inhibitors are unique in our dataset.
The proteins in our dataset share at least 48% sequence
similarity and secondary structure similarity Z-scores
greater 9.0, as measured using the secondary structure
matching (SSM) algorithm[38].

The binding surface of human HIV-1 (PDB:1eby, E.C.
3.4.23.16, CATH[39] 20.40.70.10, Figure 6ab) with
bound inhibitor BEB (MW 652.7, Figure 6c) was selected
as a query. First, the query was searched against the GPSS
library using the SSS comparisons. The sorted KS distance
scores between the query surface and all members from
the library are plotted in Figure 6d. Points highlighted in
red indicate known HIV-1 inhibitor binding surfaces. The
results behave expectedly as 124 of 151 have KS distance
scores less than 0.1. Plotting the search results in a receiver
operator characteristic (ROC) curve (see Methods) we
measure the retrieval rate using SSS at 84.7% from the
area under the curve (AUC) (Figure 6e). The poorest rank-
ing HIV-1 protease surfaces are associated with aggressive
mutation studies in the binding pocket or correlated to
decisively small (<200) or large (>900) molecular weight
inhibitors.

Next, we performed the same search using only the spatial
alignment scores to evaluate similarity. We observe that
all three alignment-based scoring measures provide better
specificity than SSS distance score. The AUC for cRMSD P-
value, oRMSD P-value, and SVOT are: 97.5%, 96.8% and
93.0%, respectively. The ROC plots are shown for each
measure in Figure 6e. The improved specificity of the spa-
tial alignment scores comes at a significant runtime disad-
vantage. The SSS shape retrieval method took 24 minutes
to compare the query to the GPSSS library, while the spa-
tial alignment took 1,657 minutes. When using the SSS
scores to pre-filter the search library, as described in the
SurfaceScreen methodology, we can achieve an AUC of
95.3% for the combined SurfaceScreen (Figure 6e) score
with an overall runtime of 148 minutes. The shape signa-
ture filter reduced the library 86%, to just over 4,000 sur-
faces, yet did not eliminate any true positives from the
library.

Using the SurfaceScreen score, the most similar (rank 132)
non HIV-1 surface was from plasmepsin II from P. falci-
parum (PDB:1lf3, E.C. 3.4.23.39, CATH 2.40.70.10),
another aspartic protease and a major virulence fac-
tor[40].P. falciparm is a species of Plasmodiums that causes
one of the major malaria infections in humans. Plasmep-
sin II plays an essential role in P. falciparm in the degrada-
tion of hemoglobin as a source of amino acids for growth
and maturation. The binding surface of inhibitor EH5
exhibited strong similarity to the HIV-1 inhibitor binding
site, with a SurfaceScreen score of 1.89. Plasmepsin II
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Retrieval of HIV-1 proteases from the GPSS library using surface similarityFigure 6
Retrieval of HIV-1 proteases from the GPSS library using surface similarity. The binding surface of human HIV-1 
protease (ab) complexed with inhibitor BEB (c) was queried against the GPSS library. The sorted KS distances are shown in (d) 
with other HIV-1 proteases highlighted in red. ROC curves for retrieval using SurfaceShapeSignature, SurfaceAlign and Surface-
Screen scoring are shown in (e). The highest ranking non-protease surface was from the DcmaT (h) binding surface aclacinomy-
cin methylesterase (RdmC) from S. purpurascens (fg). A superposition of the surfaces based on the SurfaceAlign alignment (ij) 
and with their respective ligands (k).
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shares only 12% sequence identity to HIV-1 protease and
an SSM alignment produces a non-significant Z-score of
3.3. The surfaces are both formed at the intersection of
loops and β-sheets, although the plasmepsin II binding
surface is formed from a single chain, unlike HIV-1 pro-
tease, which is occurs at a dimer interface. There are 15 res-
idues that are conserved between the two surfaces. While
it is not surprising that proteases share a similar binding
site, the low level of sequence and secondary structure
similarity highlights that localized functional conserva-
tion can be found in surfaces. Our observation is in agree-
ment with recent reports where HIV-1 inhibitors have
been shown to be effective antimalarial agents[41].

The highest-ranking non-protease surface was from aclaci-
nomycin methylesterase (RdmC) from S. purpurascens
(PDB:1q0r, Figure 6fg). RdmC modifies the aklavinone
skeleton in the biosynthesis of anthracyclines in Strepto-
myces species[42]. Anthracyclines are a class of aromatic
polyketide antibiotics used as chemotherapuetic agents to
treat a wide range of cancers, including leukemia, lym-
phoma, and breast, uterine, ovarian and lung cancers.
Despite sharing only 7% sequence identity and being
built present in different scaffolds (CATH 3.40.50.1820),
the RdmC binding surface of DcmaT (Figure 6h), was
found to be similar with a SurfaceScreen score of 1.81
(ranked at position 134). The superposition of the sur-
faces is shown in Figure 6ij and with their corresponding
inhibitors in Figure 6k. The surprising similarity of these
surfaces has significant medicinal impact as it supports
the recent reports of the inhibitory effects of anthracycline
agents on protease activity[43]. This result shows how
identification of similar binding surfaces (and their corre-
sponding ligands) can provide guidance for structure
based drug discovery, not only in scaffold design but also
to screen against potential undesirable binding site simi-
larities that could result in undesired side effects.

Retrieval and Prediction of Heme Binding Surfaces
Heme is a versatile prosthetic group that plays an impor-
tant role across many biological systems. Hemoproteins
have diverse functions including oxygen binding and
transport, electron transfer and redox, and catalysis. Their
functional diversity is accomplished through an equally
diverse range of protein topologies[9,44]. A comprehen-
sive analysis of 68 b-type heme binding interactions by
Schneider et. al. identified over 20 different folds that bind
heme in both solvent accessible cavities and buried
voids[45]. Even functional homologues show diversity in
binding orientation as observed in HasA and HemS[45].
Surfaces from myoglobin (CATH code = 1.10.490.10,
PDB:1mbn), nitrophorin (CATH code = 1.40.128.20,
PDB:1np4), and inducible nitric oxide synthase (iNOS)
(CATH code = 3.90.1230.10, PDB:4nos)[46], represent-
ing extrema of heme binding, are shown in Figure 7.

The variability of heme binding proteins presents consid-
erable challenges for automated identification and
retrieval of hemoproteins from sequence and structure
databases. Using myoglobin from P. catodon (PDB:1mbn,
Figure 7ab) as a query protein, we compared it to a non-
redundant (<95% sequence identity) PDB set using
BLAST[47]. Using the 690 heme binding proteins in the
PDB as true-positive hits, a retrieval rate of 68.7% is calcu-
lated from the rank order of sorted (by E-value) search
results. Comparing the structure of myoglobin against the
same set of proteins using SSM search results provides a
retrieval rate of 64.4%. The retrieval rate was calculated
from the rank order of sorted Z-scores. The ROC plots are
shown for both methods in Figure 7h.

The myoglobin query was then searched against the GPSS
library. The retrieval rate, using the SurfaceScreen score, is
94.8%. All surface scoring measures had superior per-
formance over sequence and structure methods (Figure
7h). The most selective was the SSS KS distance with
retrieval at 95.8%. Despite the variability of topologies
forming binding surfaces, the binding surface shape
appears to be the most conserved feature of hemopro-
teins. This can be seen in the shape signature plots for
myoglobin, nitrophorin and iNOS (Figure 7h). The iNOS
heme binding pocket is the lowest ranking true-positive
surface against our query, as observed by the stark differ-
ence in shape signatures. It appears that despite evolution-
ary pressure imposed for functional specification, surface
must maintain geometry necessary to accommodate the
canonical heme shape. Surface shape is better conserved
for heme binding than the amino acid environment.
These observations agree with that of Schneider in which
heme binding interactions were found to be generally
diverse, with the exception of only three amino acids at
"hot spots".

While true heme binding surfaces dominate the top scor-
ing surfaces we find that other binding surfaces have sur-
prising similarity to our query surface. The highest
ranking, at position 42, was the Ampcpr binding surface
from ADP-ribose pyrophosphatase (ADPRase) from E. coli
(PDB:1khz). A Nudix hydrolase enzyme, ADPRase cata-
lyzes the Mg2+-dependent hydrolysis of ADP-ribose to
AMP and ribose 5-phosphate[48]. The surface, formed at
the intersection of β-sheets and loops, is shown in Figure
7ij. The SSS plot confirms that strong visual shape similar-
ity between the two surfaces (Figure 7g, red). A shape-
based superposition (ROCS, OpenEye Scientific, Inc.) of
the ligands shows that (Figure 7j) the similarity of these
functionally unrelated proteins may lie strictly in their
ability to accommodate similarly sized molecules.
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Detection of a Convergent Heme Binding Surface
Convergent evolution presents a far more difficult chal-
lenge for annotation of proteins of unknown function.
Structural genomics target, IsdG from S. aureus[49]
(PDB:1xbw), shows no significant sequence similarity
and does not contain the conserved N-terminal histidine
or the GXXXG motif characteristic present in the heme-
monooxygenases family, yet this enzyme displays classi-
cal heme-monooxygenase activity[49]. Also, while all
known members of heme-oxygenase superfamily are of
all α-helical fold, IsdG adopts α+β sandwich with an anti-
parallel β-sheet and ferredoxin-like fold and a β-barrel at
the dimer interface[49].

The structure of IsdG has a prominent pocket formed
between the α-helices and beta sheets (Figure 8a). This is
the largest surface pocket identified by the CASTp web-
server[50]. Querying this surface against the GPSS library
reveals a striking similarity to the heme binding pocket in
heme oxygenase (HmuO) from C. diphtheriae (PDB:1iw0,
Figure 8b). The SSS distributions have distance of 0.06
(Figure 8d). There are 19 conserved residues between the
surfaces that come from diverse regions of the primary
sequence (Figure 8c). The surfaces align with cRMSD P-
value of 9.84 × 10-3 (Figure 8ef) and oRMSD P-value of
5.32 × 10-4 (Figure 8gh). Superposition of the surfaces
results in gSVOT of 0.78, lSVOT 0.84, and rSVOT of 0.93
(Figure 8i). The gSVOT overlap is highlighted in Figure 8j.

Retrieval of functionally diverse heme binding proteinsFigure 7
Retrieval of functionally diverse heme binding proteins. Heme binding proteins myoglobin (a, CATH code = 
1.10.490.10, PDB:1mbn), nitrophorin (c, CATH code = 1.40.128.20, PDB:1np4), and inducible nitric oxide synthase (iNOS) (e, 
CATH code = 3.90.1230.10, PDB:4nos)[46]. The structures are positioned such that the proprionate groups are all oriented in 
the same direction. The corresponding heme binding surfaces are shown adjacent, after being rotated 90 degrees along the Y-
axis. Shape signatures for each surface are shown in (g). The ROC curves for retrieval of heme binding surfaces querying 
myoglobin from P. catodon (PDB:1mbn) against the GPSS library (h). The Ampcpr binding surface (i) from ADPRase is the best 
non-heme binding surface returned from the search. A superposition of the ligands suggests ligand-shape complimentarity driv-
ing the binding surface similarity (j).
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Identification of a convergent heme binding surfaces from surface similarityFigure 8
Identification of a convergent heme binding surfaces from surface similarity. Despite lacking sequence or structural 
homology to the heme-monooxygenase family, IsdG from S. aureus (a, yellow) contains a conserved surface allowing it to per-
form heme-monooxygenase activity. When compared to the heme binding surface from heme oxygenase (HmuO) from C. 
diphtheria (b, green), 19 residues are conserved (c) with similar global shape characteristics (d). The superposition of the con-
served residues is shown for the best scoring cRMSD (e) and oRMSD (g) alignments. The alignments are colored by residue 
type (IsgG large radius, HmuO small radius) in (fh). The superposition of the surfaces resulting in the maximum volume overlap 
(i, red) is shown with bound heme from HmuO (j).
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The SurfaceScreen score for the comparison is 1.98, which
ranked fourth overall against the search library.

Several other structural homologues to IsdG have subse-
quently been solved in the structural genomics effort. A
clustering of the putative binding sites for four additional
enzymes is shown in Figure 9. Surface analysis reveals that
the heme binding pocket is well conserved in protein
TT1390 from T. thermopilus (PDB:1iuj) and protein
BC2969 from B. cereus (PDB:1tz0) suggesting that both T.
thermopilus and B. cereus can acquire iron through heme
degradation. Despite overall structural similarity, the
binding surface is not well conserved in ActVA-Orf66
from S. coelicolor (PDB:1lq9), a protein involved in antibi-
otic synthesis that is known to bind 6-deoxydihydroka-
lafungin (6-DHHK)[51]. Expectedly, this surface forms
the most distant branch of the clustering. Although all
proteins appear to function as monooxygenases they
operate on very different substrates suggesting that con-
vergent evolution may be an important driving force to
evolve new functions from existing protein scaffolds. In
this manner, surface analysis could be used to define a
chemical structure space by interpolating between known
substrates clustered on each node.

Binding Site Retrieval of Functionally Diverse and 
Conformationally Variable Nucleotides
Specific Nucleotide Binding Site Retrieval
ATP is a multifunctional nucleotide associated that has
been classified to catalyze 58 different reactions by the
Enzyme Commission (EC). In over 300 structural com-
plexes, ATP binding is associated with domains from 45
homologous superfamilies, some sharing less than 8%
sequence identity[52]. The nucleotide is quite flexible and
adopts a wide range of conformations, some in less than
energetically favorable states[52]. To determine the extent
that conformational variability exerts on similarity search-
ing, we conducted retrieval experiments with query sur-
faces binding ATP in diverse conformations: cAMP-
dependent kinase (PDB:1atp) protein kinase CK2 from Z.
mays (PDB:1a6o)[53], ATP:corrinoid adenosyltransferase
from S. typhimurium (PDB:1g5t)[54], PurT-encoded glyci-
namide ribonucleotide transformylase from E. coli
(PDB:1kj8)[55]. The conformations were selected by clus-
tering all ATP molecules by their three-dimensional shape
similarity (see Methods) and are shown in Figure 10.

The AUCs calculated using the SurfaceScreen score were
79.1%, 80.1%, 83.0%, and 85.4% for ATP:corrinoid ade-
nosyltransferase, PurT-encoded glycinamide ribonucle-

Binding surface-based classification of structural homologsFigure 9
Binding surface-based classification of structural homologs. Putative binding surfaces for structural genomics targets 
with structural homology to IsdG (PDB:1xbw) and IsdI (PDB:1sqe) from S. aureus are clustered by SurfaceScreen scores. The 
heme binding pocket is well conserved in protein TT1390 from T. thermopilus (PDB:1iuj) and protein BC2969 from B. cereus 
(PDB:1tz0). ActVA-Orf66 from S. coelicolor (PDB:1lq9), is known to bind 6-deoxydihydrokalafungin (6-DHHK)[51]. Cofactors 
are shown immediately below each protein.
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otide transformylase, protein kinase CK2 and cAMP-
dependent kinase, respectively (Figure 10e). The extended
ATP form, which is the most prominent form in the PDB,
had the best retrieval rate, while the bent form ATP had
the poorest. Overall, the rates underperform compared to
the HIV-1 inhibitor and heme binding surface retrievals.
Despite the influence of ligand conformation of surface
conformations, our method appears rather tolerant to
flexible ligands (and their corresponding binding sur-
faces) albeit at the expense of the specificity seen in more
rigid molecules.

It should be noted that the retrieval rates for ATP are espe-
cially conservative, as a disproportional number of ATP
binding surfaces complexed with other molecules are in
the PDB. For example, there are 11 structures of Protein
Kinase A from Bos taurus (PDB:1xha,1xh8,1xh7,1xh6,
1xh5,1xh4,1veb,1svg,1sve,1svh) which have ATP compet-
itive inhibitors bound. By correcting for protein kinase

inhibitor complexes, the AUCs improve approximately
4% across all query surfaces. Unfortunately, there is no
automated method to associate these types of complexes
with their native cofactors except through literature anal-
ysis, which can be uninformative, as every structure
deposit does not have a corresponding publication. The
authors are developing an automated database that cata-
logs such natural cofactor/inhibitor relationships between
structures in the PDB.

Non-specific Nucleotide Retrieval
In some proteins, ligand binding is not an exclusive event,
as some proteins are able to utilize different cofactors to
catalyze the same reaction. Casein kinase 2 (CK2) is a
highly conserved eukaryotic serine/threonine kinase that
plays a key role in various cellular processes and possesses
dual-cosubstrate specificity for guanosine-5'-triphosphate
(GTP) or ATP[53]. This feature, whose biological signifi-
cance is not well understood, is exceptional among

Retrieval of ATP binding proteins from functionally and conformationally diverse classesFigure 10
Retrieval of ATP binding proteins from functionally and conformationally diverse classes. Binding surfaces repre-
senting different ATP conformational classes: cAMP- dependent kinase (PDB:1atp, a), protein kinase CK2 from Z. Mays 
(PDB:1a6o, b), ATP:corrinoid adenosyltransferase from S. typhimurium (PDB:1g5t, c), PurT-encoded glycinamide ribonucle-
otide transformylase from E. coli (PDB:1kj8, d). A superposition of the molecules from each class (f). The retrieval rate for 
each binding surface against the GPSS library is shown as an ROC plot in (e). The retrieval rates are calculated using the Sur-
faceScreen score.
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eukaryotic protein kinases. Querying the CK2 ATP bind-
ing surface (Figure 10b), we can retrieve GTP binding sur-
faces from the GPSS library with AUC of 83.7%, slightly
better than ATP. Given that the two molecules differ only
in their nucleoside, this result is not surprising, as we have
shown ligand shape complimentarity is a strong precursor
of overall surface similarity. In a comparison of the surface
retrieval rates for all nucleotides binding surfaces in the
PDB against the CK2 ATP binding surface, we observe
trends which mirror ligand shape similarity: purine deriv-
atives retrieval is better than the pyrimidines and tri-phos-
phate molecules retrieval is better than di-phosphates
which are retrieved better than mono-phosphates. These
results suggest that our method may be useful to identify
a diverse set of molecular shapes that could potentially
bind to a given surface.

Prediction and Validation of a GDP Binding Site
The F420 coenzyme plays important roles in archaea and
eubacteria in a variety of biochemical reactions (e.g.
methanogenesis, the formation of secondary metabolites,
the degradation of nitroaromatic compounds, DNA
repair)[56]. CofE, a F420-0:gamma-glutamyl ligase, is
responsible for the last two enzymatic steps in coenzyme
F420-2 biosynthesis. Belonging to a structurally uncharac-
terized family of enzymes, CofE from A. fulgidus was
solved as a structural genomics target by the Midwest
Center for Structural Genomics and found to be of novel

fold (PDB:2g9i) (Figure 4a). Solvent accessible cavities
were calculated using the CASTp webserver [27-29,34],
and the largest pocket, presumably the F420, GTP and L-
glutamate binding pocket, was selected to query against
the GPSS ligand surface library. The top-ranking surface
was from GDP-binding protein from B. taurus (PDB:1tad,
red, Figure 4c). A GDP molecule is posed into the surface
based on the superposition from the alignment (Figure
11a, red GDP molecule). Based on this prediction, the
protein was co-crystallized with GDP and a model of the
complex was determined (Figure 11a, green GDP mole-
cule)[56]. The GDP position had RMSD of 1.0 from the
predicted pose (Figure 11b). The addition of the ligand
also improved the resolution of the structure from 2.50 to
1.35 and allowed two loop regions to be modeled where
no electron density was previously seen (Figure 11a,
magenta).

ATP Binding Surface Landscape
The contributions of molecular flexibility only partially
account for reduced retrieval rates observed for ATP bind-
ing surfaces. It is surprising that binding surfaces for this
essential nucleotide do not exhibit a greater level of con-
servation. To explore the global relationship between sur-
faces, enzymatic functions and ligand conformation, we
carried out an all-against-all comparison for a limited
homology dataset (<50% whole sequence identity) of
ATP binding surfaces. This cutoff was selected to encour-

Crystallographic validation of GDP binding prediction in structural genomics targetFigure 11
Crystallographic validation of GDP binding prediction in structural genomics target. The strong similarity of the 
putative binding surface of F420-0:gamma-glutamyl ligase homolog from A. fuldgidus[56] (a) to the GDP binding surface in GDP-
binding protein from B. taurus (Figure 3c) allows a GDP molecule (red, colored by element) to be posed into the surface based 
on the surface superposition. The structure was determined with bound GDP (green, colored by element) with RMSD of 1.0 
from predicted position (b). The addition of the ligand to the crystallization conditions improved the quality of the structure 
from 2.5 (a, gray) to 1.35 (a, green) and allows loop regions (magenta) to be modeled.
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age surface diversity between functionally homologous
proteins yet eliminate redundant analysis. A distance
matrix for the 116 surface set was constructed using the
SurfaceScreen score and complete linkage clustering was
applied. A dendrogram of the clustering is shown in Fig-
ure 12.

The cluster results show that there is minimal functional
exclusivity between binding surfaces and ATP conforma-
tion. The same enzymatic functions can be accomplished
using a variety of binding surfaces and, within each sur-
face, multiple ligand conformations can be bound. In the
most well represented functional families, hyrdolases,

ligases, and transferases, we observe different degrees of
binding mode conservation. A breakdown of surface clus-
tering and ligand conformations is shown as a balloon
plot in Figure 13. Hydrolases have two conformation pref-
erences and favor, deep, encapsulating binding surfaces.
Bent form ATP is disfavored in hydrolases. Ligases are the
most conserved, heavily favoring the bent form of ATP
that requires a wide-mouth surface shape. Transferases are
the most adept of the ATP binding proteins, sampling the
most surface/conformation combinations. They do not
discriminate between ATP conformations but have a pref-
erence for encapsulating binding sites. Several combina-
tions occur with higher frequencies, including an

Clustering of 116 non-redundant ATP binding sites based on their surface similarityFigure 12
Clustering of 116 non-redundant ATP binding sites based on their surface similarity. The dendrogram represents 
the results of complete-linkage clustering, applied to SurfaceScreen score between all surfaces in our dataset (a). Each node is 
color-coded representing its biological functions as assessed through EC numbers or literature references. A second grayscale-
coded shape can be found on all node edges that corresponds to the ATP conformations in Figure 9. A representative binding 
surface from each cluster is shown in (b).
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exclusive combination (4-�), which is the most observed
in this family.

Analysis of a broad collection of ATP binding proteins
suggest that some functional families may have conserved
binding surfaces while others are more divergent. Binding
surfaces themselves also deviate on their level of ligand
conformation tolerance. It is likely that altering protein
surfaces may be the most cost effective evolutionary
mechanism for exploiting functional niches, even within
functional families.

Automated Protein Kinase Classification by ATP Binding Site 
Comparisons
Within the transferase family, the most well conserved
ATP binding surfaces belong to protein kinases. Protein
kinases play vital roles in regulating cellular pathways by
phosphorylating other proteins. Malfunctioning kinases
have been linked to a variety of diseases such as immuno-
deficiency, endocrine disorders and cancer, making them
the target of drug discovery efforts. At their highest level,
kinases are divided by the amino acid residues they target
(serine/threonine or tyrosine) and further classified by

Mapping ATP binding surface cluster membership and ATP conformation classFigure 13
Mapping ATP binding surface cluster membership and ATP conformation class. Observed frequencies for hydro-
lases (a), ligases (b), and transferases (c) are shown. Surface cluster numbers correspond to Figure 11(b). ATP conformation 
class labels correspond to Figure 9. The sums for each row and column are shown on the edges of each plot.

An all-against-all comparison of ATP binding surfaces in the PDBFigure 14
An all-against-all comparison of ATP binding surfaces in the PDB. The dendrogram represents the results of com-
plete-linkage clustering, applied to SurfaceScreen score between all surfaces in our dataset (a). The nodes of the dendrogram 
are color coded for kinase families according to KinBase nomenclature. A branch of the cluster (gray box) is called-out to high-
light the unexpected similarity discovered between the STI-571 binding site in c-Abl kinase and serine/threonine kinase p38 
MAP (b).
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more specific biochemical activity. Functional classifica-
tion of kinase families has been undertaken by many
methodologies utilizing primary sequence, structure,
binding sites, pharmacophore profiles and expert manual
analysis [57-60]

We apply our comparison methodology to protein
kinases to assess our ability to automatically classify them
into their functional subfamilies using only ATP binding
surfaces. A dataset of 297 protein kinases with bound lig-
ands, including both natural and synthetic molecules,
were annotated using a combination of the PDB web
query system, EC numbers, KinBase[61] and the Protein
Kinase Resource[62]. For consistency, family nomencla-
ture is applied from KinBase.

An all-against-all comparison was performed with results
used to populate a distance matrix of SurfaceScreen scores.
A dendrogram showing the complete-linkage clustering is
shown in Figure 14 where each surface node is color
coded by kinase subfamily. Overall, the method shares
strong agreement with the annotated classification, as
seen by the color banding. CDK2 kinases are the most
ordered; with all members perfectly clustered together and
distinct sub-grouping separating nucleotide ligands from
small compound inhibitors. The CK2 and CAMP families
also show divergence between natural ligands and inhibi-
tors. The CAMP groupings are further clustered by the
molecular weight of their bound ligands. The mitogen
activated protein kinases (MAP) are successfully classified
into their sub-families, but on distant nodes in the graph.
In all families, we observe differentiation based on the
activation state of the kinase.

Surface based classification conveys many similarities to
other methods, but has advantages of additional func-
tional insight that could not be automated in other meth-
ods. The ability to distinguish between different activation
states and to organized surfaces based on ligand types and
molecular weight differences could prove useful in devel-
oping binding profiles for enhanced specificity in kinase
drug discovery.

Binding Surface Similarity of c-Abl Kinase Inhibitors
The surreptitious fusion of the cellular form of Abelson
leukemia virus tyrosine kinase (c-Abl) with the breakpoint
cluster region (BCR) gene disrupts the internal control
mechanism causing increased tyrosine kinase activity[63].
The fusion protein BCR-Abl results in the disease chronic
myelogenous leukemia (CML). Five structures of c-Abl
proteins can be found in the PDB with two classes of small
molecule inhibitors: pyrido [2,3.d]pyrimidine-type
(PDB:1m52, 1opk) and 2-phenylaminopyrimidine-type
(PDB:1iep, 1fpu, 1opj). Both inhibitor classes bind in the
ATP binding, but 2-phenylaminopyrimidine-type bind

exclusively in the inactive conformation of the activation
loop. The smaller pyrido [2,3.d]pyrimidine-type class are
indifferent to activation state, making them more potent
but less specific inhibitors[64]. Our clustering accounts
for this behavior and groups them in distinct nodes.

The 2-phenylaminopyrimidine-type inhibitor STI-571
(Figure 15a) is an effective inhibitor of c-Abl activity for
treatment against CML [64-66]. It has been shown to be
specific for tyrosine kinases and also inhibits stem-cell fac-
tor receptor kinase c-Kit (PDB:1t46). Results from query-
ing c-Abl (PDB:1opj, Figure 15a) against the GPSS library
show cKit is the best scoring non-ABL kinase. This cross
reactivity is detected in our cluster (Figure 14b).

A surprising member of this cluster node is serine/threo-
nine kinase p38 mitogen-activated protein (MAP) kianse
(PDB:1kv2, Figure 14b). p38 MAP kinases play critical
roles in regulation of proinflammatory cytokines such as
tumor necrosis factor and interleukin-1 and are a target for
many inflammatory diseases[67]. STI-571 is not currently
known to inhibit, by design or mechanism, any serine/
threonine kinase[68]. The structure of 1kv2, complexed
with inhibitor B96, occupies a unique conformation for
p38 MAPs, where the highly conserved DFG motif is
turned out[67] (Figure 15b). This is the first observation
of this state in a serine/threonine kinase, where it is a hall-
mark for tyrosine kinases (Figure 15a).

A superposition, based on the alignment of the binding
surfaces of c-Abl and p38 MAP, shows that the inhibitors
bind in similar orientation (Figure 15c). STI-571 can be
posed into the p38 MAP surface, based on the alignment
of the surfaces, with no steric clashing and preserves the
orientation of several polar atoms (Figure 15d). While the
conformation of this p38 MAP is unique and presumed to
occur infrequently, its existence presents opportunity to
explore the use of STI-571 and analogs for additional ther-
apeutic uses. Automated surface classification can also
provides important cross-reactivity analysis; where unex-
pected binding sites similarities could result in undesired
side effects.

Conclusion
Proteins maintain the surprising ability to preserve local,
sequentially unordered, surface residue patterns capable
of performing explicit biochemical functions in proteins
showing negligible evolutionary relationships. Even in
homologous proteins, subtle amino acid mutations,
which can be underappreciated by sequence analysis, can
alter the properties of a surface and protein function. In
this study, we describe a novel method for the comparison
and analysis of protein functional surfaces. We observe
that conservation of surface shape and physicochemical
texture provides sufficient discriminative features for
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accurate retrieval of functionally homologous binding
sites. The method serves as a predictive tool allowing for
the identification of cross-binding ligands or binding sites
on proteins of unknown function and for the comparative
analysis of proteins, such as the classification of function-
ally diverse families. We introduced the Global Protein
Surface Survey, a searchable library of functionally anno-
tated protein sites. The SurfaceScreen methodology was
benchmarked against binding pockets from HIV-1 pro-
tease, heme, and ATP and used to further analyze the rela-
tionship between surface similarity, biochemical function
and ligand conformation.

Limitations and Outlook of SurfaceScreen
Our results have shown that two components, shape and
physicochemical texture, define well the functional com-
petence of surfaces. Surface geometry allows accessibility

and proximity for interaction and accurate residue posi-
tioning make available specific functional groups for bio-
chemical function. A notable limitation to our current
method is our spatial residue model, which does not
afford for amino acid substitutions during spatial align-
ments. Previous studies have shown that the substitution
rates for localized surfaces differ from those of the whole
sequences[69,70] and that these differences can provide
better discrimination in surface sequence comparisons.
One option would be to exclude residues less likely to be
involved in function. For example, in the study of general
enzyme function, Ysteng et al[69] studied 3,275 func-
tional surfaces to discover His, Asp, Glu, Ser, and Cys res-
idues account for more than 80% of active site residues in
functional pockets. This is similar to previously published
reports [71-73]. Defining a minimum residue set describ-
ing different functions is plausible, but would reintroduce

Unique conformation of p38 MAP kinase creates similar binding surface to c-Abl kinaseFigure 15
Unique conformation of p38 MAP kinase creates similar binding surface to c-Abl kinase. The binding surface of 
inhibitor STI-571 in c-Abl kinase (a, PDB:1opj) shows strong similarity to the binding surface of inhibitor B96 in p38 MAP kinase 
(b, PDB:1kv2). p38 MAP kinase has DFG motif configuration (stick representation) similar to that seen in c-Abl. SurfaceAlign 
superposition of the surfaces (c). STI-571 is posed into the p38 MAP binding surface based on the surface alignments (d).
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difficulties arising from global versus local surfaces char-
acteristics and properties. This would also naively assume
that some of the residues excluded in a scheme are not
contributing in some way, either mechanistically or struc-
turally, to the function. Many proteins also show high
promiscuity and can bind several different ligands into
this same functional site[74], solvent mediated interac-
tions add complexity to the surface comparisons[75] and
electrostatic potential also plays important role in confor-
mational changes and attracting or rejecting ligands[76].
It is clear that in the future analysis of protein surfaces
properties will need to include contribution from electro-
static potential, side chain dynamics, and chemical pro-
pensities to better describe functional sites.
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