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Abstract

Background: Protein tertiary structure prediction is a fundamental problem in computational
biology and identifying the most native-like model from a set of predicted models is a key sub-
problem. Consensus methods work well when the redundant models in the set are the most
native-like, but fail when the most native-like model is unique. In contrast, structure-based methods
score models independently and can be applied to model sets of any size and redundancy level.
Additionally, structure-based methods have a variety of important applications including analogous
fold recognition, refinement of sequence-structure alignments, and de novo prediction. The
purpose of this work was to develop a structure-based model selection method based on predicted
structural features that could be applied successfully to any set of models.

Results: Here we introduce SELECTpro, a novel structure-based model selection method
derived from an energy function comprising physical, statistical, and predicted structural terms.
Novel and unique energy terms include predicted secondary structure, predicted solvent
accessibility, predicted contact map, b-strand pairing, and side-chain hydrogen bonding.

SELECTpro participated in the new model quality assessment (QA) category in CASP7, submitting
predictions for all 95 targets and achieved top results. The average difference in GDT-TS between
models ranked first by SELECTpro and the most native-like model was 5.07. This GDT-TS
difference was less than 1% of the GDT-TS of the most native-like model for 18 targets, and less
than 10% for 66 targets. SELECTpro also ranked the single most native-like first for 15 targets, in
the top five for 39 targets, and in the top ten for 53 targets, more often than any other method.
Because the ranking metric is skewed by model redundancy and ignores poor models with a better
ranking than the most native-like model, the BLUNDER metric is introduced to overcome these
limitations. SELECTpro is also evaluated on a recent benchmark set of 16 small proteins with large
decoy sets of 12500 to 20000 models for each protein, where it outperforms the benchmarked
method (I-TASSER).

Conclusion: SELECTpro is an effective model selection method that scores models indepen-
dently and is appropriate for use on any model set. SELECTpro is available for download as a stand
alone application at: http://www.igb.uci.edu/~baldig/selectpro.html. SELECTpro is also available as a
public server at the same site.
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Background
Selecting the most native-like model from a set of
possible models is a crucial task in protein structure
prediction. A variety of Model Quality Assessment
Programs (MQAPs) have been developed that assign
numeric scores to models in a set, and then use the
scores to rank the models and ultimately select a single
model. MQAP methods can be divided roughly into
three categories based on the type of information they
use: evolutionary methods use sequence or profile
similarity between target sequence and template, con-
sensus methods use similarity between models, and
structure-based methods use model coordinates [1].
Each category of methods has inherent strengths and
weaknesses.

Evolutionary methods can provide quality scores that
have been shown to correlate with structural similarity to
native [2]. However, for lower confidence alignments the
scores do not correlate well with structural similarity.
Furthermore, identification of the best template and
specific alignment can be difficult. In addition, models
built from multiple templates or template-free methods
cannot be scored appropriately by evolutionary methods
alone.

Consensus methods take advantage of the observation
that similar models produced by different predictors
tend to be more accurate than those that are structural
outliers. In practice, consensus methods outperform the
methods they draw from, and they rarely pick a very
poor model. The disadvantage, however, is that when the
best model is a structural outlier it will be overlooked for
lack of popularity [1]. Also, consensus methods are not
appropriate for selecting from small sets of structurally
diverse models, especially in the extreme case of a two-
model set.

While consensus methods depend on similarity between
models, structure-based methods calculate scores on
each model independently. For this reason, structure-
based methods can be applied to model sets of any size
and diversity, and will produce the same score for a
model regardless of the other models in the set.
Structure-based methods can also be used for template-
free modeling [3-6] and model refinement procedures
[7, 8]. One weakness of high resolution structure-based
methods, including protein free energy approximation
functions [9-12] and physics based approaches [13, 14],
is their sensitivity to local structural irregularities such as
steric clashes and chain breaks, which can significantly
bias scores on otherwise accurate models. Even slight
differences in model backbones can produce signifi-
cantly different scores [15]. Lower resolution structure-
based methods, such as statistical potentials [6, 16, 17],

are more robust to backbone variation, but are sensitive
to extended low contact-order regions in the models.

Here we describe SELECTpro, a novel structure-based
MQAP that combines high and low resolution energy
terms into a model selection method that is effective on
model sets of variable size, diversity, and target difficulty.
Most of our assessment is calculated from the CASP7
model quality assessment category (QA) results published
online [18]. The QA category provides a framework for the
unbiased evaluation of MQAPs on ensembles of models
produced by diverse automated prediction methods.

Results and discussion
We analyze the CASP7 quality assessment category
predictions with a focus on the quality of the model
ranked first by each predictor and the recovery of the
most native-like model in the set. Only SetAll is used in
the assessment of the quality of the model ranked first by
each group (Table 1). The results are very similar when
using SetComplete (data not shown) because QA groups
rarely rank an incomplete model first.

The assessment of the recovery of the most native-like
model, is performed on both SetAll and SetComplete
(Table 2) because the few cases where an incomplete
model is the most native-like have a significant effect on
the average recovery metrics of all QA groups. Incomplete
and irregular models are especially challenging for
structure-based methods. A comparison of the average
Pearson Correlation on SetAll and SetComplete, highlights
these issues (Table 3). The frequency of recovering the most
native-like model is calculated on SetComplete (Figure 1).

The utility of SELECTpro for selecting the best model
from a small set is demonstrated by selecting from the
five models submitted for each target by the top
automated predictors. These small set selection results
are calculated using SetAll (Figure 2). SELECTpro is also
evaluated on a recent benchmark set of 16 small proteins
with large decoy sets of 12500 to 20000 models for each
protein and compared to I-TASSER (Figure 3).

To make fair comparisons to groups participating on
only a subset of targets, common subset comparisons
between SELECTpro and each of these groups are
included in Tables 1 and 2. Only groups participating
on at least half of the targets are included, and for groups
with multiple submissions only the best one is shown. In
the results tables any value that is better than SELECTpro
is underlined.

For multiple domain targets, the sum of GDT-TS over all
domains is used as the GDT-TS of the model. Since the
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Table 1: Quality of Model Ranked First (MQA1) Relative to Most Native-Like Model (Mmax)

Summary Results Common Subset Results

Group Targets a ΔGDTQA1 = 0 ΔGDTQA1% < 1 ΔGDTQA1% < 10 ΔGDTQA1 ΔGDTQA1 = 0 ΔGDTQA1% < 1 ΔGDTQA1% < 10 ΔGDTQA1 p-value

699_1 95 (124) 12 18 66 5.07 - - - - -
713_1 95 (124) 7 11 63 5.44 12 18 66 5.07 2.5E-01
634_1 95 (124) 7 15 53 7.75 12 18 66 5.07 1.6E-03
704_1 95 (124) 5 8 49 7.76 12 18 66 5.07 3.5E-04
178_1 95 (124) 8 12 59 8.44 12 18 66 5.07 3.0E-03
633_1 95 (124) 6 9 52 10.12 12 18 66 5.07 1.8E-06
692_1 95 (124) 6 9 52 10.16 12 18 66 5.07 1.2E-06
657_1 95 (124) 1 5 40 12.71 12 18 66 5.07 1.8E-08
691_1 95 (124) 0 1 24 15.10 12 18 66 5.07 2.2E-13
091_1 94 (123) 11 18 61 7.93 12 18 65 5.10 2.1E-03
026_1 94 (123) 1 2 40 9.30 12 18 65 5.10 1.2E-07
338_5 93 (122) 2 3 37 15.10 12 18 65 5.05 1.3E-09
556_1 93 (121) 10 15 51 6.83 12 18 64 5.15 1.8E-02
734_1 92 (120) 4 4 36 16.16 12 18 64 5.10 5.6E-11
718_1 92 (119) 1 3 32 14.04 11 17 64 5.19 1.6E-10
717_1 87 (112) 3 7 36 10.15 10 15 59 5.31 4.3E-08
016_1 86 (111) 5 9 49 7.93 10 16 58 5.26 1.4E-03
038_1 85 (108) 3 7 60 5.75 11 16 58 5.34 1.2E-01
276_1 80 (104) 5 5 39 8.94 11 17 54 5.21 7.7E-07
013_1 78 (100) 4 6 41 9.86 10 15 56 4.87 2.0E-05
703_1 69 (86) 3 6 35 8.74 9 15 45 5.35 1.2E-04
191_1 61 (78) 2 5 32 9.35 7 10 39 6.04 2.3E-03
066_1 55 (72) 1 2 14 23.19 7 10 45 4.09 4.3E-10

a The number of targets where the QA group made a valid prediction (NT) with the number of domains of these targets (ND) in parentheses.
* SELECTpro (699_1) results appear in bold face and all results that are better than SELECTpro are underlined. Statistically significant p-values (p < .05) are also in bold.
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Table 2: Recovery of Top GDT-TS Model (Mmax)

SetAll SetComplete

Summary Results Common Subset Results Summary Results s Common Subset Results

Group Targetsa rank ΔGDTBLUNDER rank ΔGDTBLUNDER p-value Group Targets rank ΔGDTBLUNDER rank ΔGDTBLUNDER p-value

699_1b 95 (124) 29.8 11.8 - - - 699_1 95 (124) 17.8 10.4 - - -
704_1 95 (124) 46.5 17.8 29.8 11.8 2.7E-06 633_1 95 (124) 20.7 11.8 17.8 10.4 4.7E-02
178_1 95 (124) 42.3 19.6 29.8 11.8 2.9E-04 634_1 95 (124) 29.5 12.7 17.8 10.4 5.7E-02
657_1 95 (124) 78.5 37.0 29.8 11.8 3.9E-20 704_1 95 (124) 24.1 13.1 17.8 10.4 1.1E-02
634_1 94 (121) 52.0 16.5 29.2 11.7 1.3E-02 178_1 95 (124) 24.1 13.7 17.8 10.4 6.5E-03
091_1 94 (123) 27.2 17.4 29.3 11.9 2.2E-05 657_1 95 (124) 53.5 32.0 17.8 10.4 8.6E-18
633_1 94 (121) 39.0 20.6 29.2 11.7 1.3E-08 713_1 94 (122) 18.3 10.9 17.9 10.4 2.0E-01
026_1 94 (123) 55.9 22.7 29.4 11.6 3.2E-10 692_1 94 (122) 20.6 11.6 17.7 10.3 6.7E-02
556_1 93 (121) 33.8 11.7 29.0 11.7 * 091_1 94 (123) 16.8 12.3 17.4 10.4 2.4E-02
692_1 93 (119) 38.7 20.6 29.2 11.6 1.1E-08 026_1 94 (123) 37.3 18.3 17.6 10.2 1.5E-07
691_1 93 (120) 98.1 28.6 28.6 11.7 9.6E-19 691_1 94 (123) 54.4 22.2 17.4 10.4 2.4E-14
338_2 93 (122) 60.4 30.2 30.2 11.9 2.7E-15 556_1 93 (121) 21.2 10.3 17.2 10.2 4.9E-01
713_1 92 (116) 26.4 12.8 29.6 11.8 3.2E-01 338_2 93 (122) 28.2 16.8 18.0 10.4 1.5E-08
734_1 89 (116) 55.2 31.5 29.3 11.2 1.6E-15 734_1 88 (115) 28.9 18.1 17.3 9.6 7.0E-09
718_1 83 (105) 81.6 31.9 30.5 12.0 1.6E-14 718_1 83 (105) 46.4 26.9 17.6 10.4 4.5E-13
717_1 78 (98) 46.8 22.8 30.9 12.0 3.4E-09 717_1 78 (98) 28.4 16.4 17.6 10.3 2.1E-05
013_1 78 (100) 60.1 27.5 30.2 12.0 1.5E-09 013_1 78 (100) 32.4 17.6 18.5 10.3 3.7E-06
276_1 78 (102) 52.9 28.9 29.6 11.6 3.3E-12 276_1 78 (102) 29.0 18.7 17.5 10.2 8.5E-10
038_1 70 (87) 25.9 11.9 27.6 11.8 4.6E-01 038_1 74 (95) 19.8 10.7 17.4 10.4 3.6E-01
703_1 69 (86) 37.2 20.6 31.5 11.9 5.1E-07 703_1 69 (86) 20.6 14.5 17.6 10.5 4.7E-04
191_1 61 (78) 45.5 21.9 26.2 12.6 1.0E-06 191_1 61 (78) 27.6 15.2 16.7 11.1 2.8E-03
066_1 55 (72) 91.1 54.6 30.5 10.5 5.1E-24 066_1 55 (72) 48.0 46.5 18.5 9.1 1.8E-18
016_1 53 (72) 30.9 20.0 31.2 12.5 2.0E-05 016_1 53 (70) 18.2 18.5 17.8 11.0 1.4E-05

a The number of targets where the QA predictor scored Mmax (NT) with the number of domains of these targets (ND) in parentheses.
b In the CASP7 submission SELECTpro did not have a score for Mmax of target T0356 due to a processing error. We added in the score for this analysis in order to make complete common
subset comparisons.
* SELECTpro (699_1) results appear in bold face and all results that are better than SELECTpro are underlined. Statistically significant p-values (p < .05) are also in bold.
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QA predictions correspond to the entire structures, it is
impossible to fairly assess the domains independently.

To assess the significance of the summary statistics
compared in Table 1, Table 2, and Figure 2, we
performed paired t-tests between SELECTpro each other
group on common subsets of targets (or targets and
models when appropriate). All p-values from the tests
appear in the tables and figure, but only statistically
significant p-values (p < .05) are shown in bold.

Table 3: Correlation of Selected Groups

Group Targets SetAll PC SetComplete PC ΔPC

634_1 (Pcons) a 95 0.811 0.847 0.036
713_1 (Circle-QA) b 95 0.765 0.823 0.058
633_1 (ProQ) b 95 0.716 0.781 0.064
699_1 (SELECTpro) b 95 0.676 0.763 0.087
556_1 (LEE) c 93 0.814 0.792 -0.023

a Consensus method.
b Structure based method.
c QA scores calculated as GDT-TS similarity to human predictor of LEE.
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Figure 1
Recovery of Mmax using SetComplete. (A) number of
targets where Mmax is ranked first (top of dark blue bar), in
the top five (top of gray bar), and in the top ten (top of white
bar). (B) number of targets where ΔGDTBLUNDER% is less than
10% (top of light blue bar) and less than 20% (top of purple
bar). Only the first ten groups are shown in both graphs.
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Figure 2
Reranking models from top servers. Each server
predictor submitted five models per target, with the highest
confidence model ranked first. (A) the number of targets
where each server's highest GDT-TS model is ranked first is
shown with gray bars, and black bars when the models are
reranked with SELECTpro. (B) shows the change in average
GDT-TS for each group when SELECTpro is used to select
model 1. P-values of paired t-tests are shown above the
horizontal axis when SELECTpro demonstrates improved
model selection and statistically significant improvements
(p < .05) are in bold.
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Large Decoy Set Model Selection. Large decoy set
model selection with SELECTpro on I-TASSER benchmark
set. This set of 16 small proteins was used as one of the
benchmark sets for evaluating the I-TASSER method [19].
The complete decoy sets can be downloaded from [20]. Each
protein has from 12500 to 20000 decoy models. For each
protein different symbols are used to indicate the GDT-TS of
Mmax (□), SELECTpro's MQA1 (×), and I-TASSER's MQA1 (+).
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The following notations are used throughout the results
section:

• Mmax: The model with the highest GDT-TS among all
server models.

• MQA1: The model with the highest QA score.

• NT: The number of targets a group made valid
predictions on.

• ND: The number of domains a group made valid
predictions on.

The recovery of Mmax by a QA predictor can only be
evaluated if Mmaxwas scored by the predictor. In most cases
QA predictors did not provide scores for all available server
models, and frequently there is no score for Mmax. For
example, predictor 016_1 (AMBER/PB) made submissions
on 86 targets, but Mmax is only scored for 53 of these
targets – so only these targets (NT = 53) can be evaluated
for this predictor.

Quality of Model Ranked First (MQA1) Relative to
Most Native-Like Model (Mmax)
In this section on the assessment of the model ranked first,
and the corresponding Table 1, we use the following three
metrics:

• ΔGDTQA1 = GDT-TS(Mmax) - GDT-TS(MQA1) : The
GDT-TS difference between Mmax and MQA1 measures
how much is lost by selecting MQA1 rather than Mmax for
a single target.

• ΔGDTQA1 = ΣΔGDTQA1/ND : The average ΔGDTQA1 is a
simple way of assessing the quality of MQA1 over all
targets.

• ΔGDTQA1% = ΔGDTQA1/GDT-TS(Mmax) : The GDT-TS
difference percentage allows for comparison across
targets with different numbers of domains and difficulty
levels.

The columns of Table 1 are: (1) group number; (2)
number of targets the group made predictions on; (3)
number of targets such that ΔGDTQA1 = 0; (4) number of
targets such that ΔGDTQA1% < 1%; (5) number of targets
such that ΔGDTQA1% < 10%; and (6) ΔGDTQA1 . The
common subset results section has an additional column
for the p-value of the paired t-test using ΔGDTQA1. The
rows are sorted first by the number of targets and then by
ΔGDTQA1 . Of the groups participating on all 95 targets,
SELECTpro has the lowest average ΔGDTQA1, with a value
of 5.07, followed closely by group 713_1 (Circle-QA), with

a value of 5.44. Predictor 038_1 (GeneSilico) has an
average ΔGDTQA1 of 5.75, with predictions on 85 targets.
In common subset comparisons with these two groups
SELECTpro is not significantly better, with p-values of .25
and .12 respectively. In common subset comparisons with
all remaining groups SELECTpro is significantly better.

Another way to assess the quality of MQA1 over many
targets is to count the number of targets such that MQA1

is the best model, or nearly the best, in the set. A method
that performs very well on most targets, but very poorly
on a few, would still be recognized by this criteria.
SELECTpro recovers the best model for 12 targets, selects
a model with ΔGDTQA1% < 1% for 18 targets, and selects
a model with ΔGDTQA1% < 10% for 66 targets. Group
091_1 (Ma-OPUS) also performs well, with 11, 18, and
61 targets in the respective categories. Only the 60 targets
with ΔGDTQA1% < 10% of predictor 038_1 (GeneSilico)
on its 85 target subset are better than SELECTpro in
common subset comparison (58 for SELECTpro).

The BLUNDER Measure Recovery of Mmax

How well does a QA predictor recover Mmax? The
traditional metric to assess Mmax recovery is the rank of
Mmax, and the average rank over many targets ( rank ).
While rank captures some important information, it
ignores the redundancy of models and the quality of
models ranked better than Mmax. Consider the following
hypothetical situation: group A ranks Mmax 10th and all
nine models ranked above it are redundant with ΔGDT of
~2.0, group B ranks Mmax 5

th and the four models ranked
above it are diverse with a ΔGDT between 10.0 and 20.0.
Which group has done a better job of recovering Mmax? In
this example, the rank metric favors group B, although
group A ranks only a single redundant model above Mmax.
In addition, the models ranked better than Mmax by group
A have only slightly lower GDT-TS than Mmax, while the
models ranked better than Mmax by group B are
significantly worse than Mmax. To address these weaknesses
of the rank metric, we introduce the BLUNDER metric,
which focuses on the worst model ranked better than Mmax

(the most embarrassing blunder). This measure is not
affected by model redundancy and measures the quality of
models ranked above Mmax. The BLUNDER metric is
defined using the following notation, and used in the
assessment of the recovery of Mmax and the corresponding
Table 2 and Figure 1:

• MBLUNDER: The model with the minimum GDT-TS
among models ranked better than Mmax.

• ΔGDTBLUNDER = GDT-TS(Mmax) - GDT-TS(MBLUNDER) :
The GDT-TS difference between Mmax and MBLUNDER

measures the size of the worst blunder.
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• ΔGDTBLUNDER = ΣΔGDTBLUNDER/ND : The average
ΔGDTBLUNDER measures how well a method robustly
recovers Mmax over many targets.

• ΔGDTBLUNDER% = ΔGDTBLUNDER/GDT-TS(Mmax) : The
ΔGDTBLUNDER percentage allows for comparison across
targets with different numbers of domains and difficulty
levels.

Figure 1 contains graphs of the frequency of recovering
Mmax using the rank (A) and ΔGDTBLUNDER% (B)
measures on SetComplete. SELECTpro ranks Mmax first
for 15 targets, in the top five for 39 targets, and in the top
ten for 53 targets. SELECTpro's ΔGDTBLUNDER% values
are less than 10% of GDT-TS(Mmax) for 40 targets and
less than 20% for 63 targets. These results are best among
all QA participants. The average Mmax recovery results are
summarized in Table 2. The results columns are (1)
average rank ( rank ) and (2) average ΔGDTBLUNDER

( ΔGDTBLUNDER ) on SetAll and SetComplete. The common
subset results section also includes a column for the p-
value of a paired t-test using ΔGDTBLUNDER (p-value).
Rows are sorted separately for each dataset by NT first
and then ΔGDTBLUNDER . On SetComplete SELECTpro has
a ΔGDTBLUNDER of 10.4. In common subset compar-
isons one group has a lower rank : group 091_1 (Ma-
OPUS) with rank of 16.8 on 94 targets compared to
17.4 for SELECTpro. On SetAll SELECTpro did not
submit a score for Mmax of target T0356 (HHpred2_TS1)
due to a processing error. In order to make complete
common subset comparisons when possible we added in
the SELECTpro score for HHpred2_TS1. SELECTpro
ranks it 86th and ΔGDTBLUNDER = 50.0. Both results are
significantly worse than the SELECTpro averages.

Pearson Correlation for Individual Proteins
The assessor evaluation of the quality assessment
category [18] focused on the Pearson Correlation
between the QA scores and GDT-TS. Here we use the
Pearson Correlation only to highlight some of the
difficulties for structure-based methods in dealing with
incomplete models, as well as basic non-protein like
structural features. Approximately half of the models in
SetAll are incomplete, with backbone coordinates miss-
ing for one or more residues.

Incomplete models present a challenge to SELECTpro and
other structure-based methods because the scores for each
model are only comparable when calculated on coordinates
for the same set of residues. Another issue is that some
complete models have severe chain-breaks, severe steric
clashes, or significant portions modeled only as extended
chains. These local problems can overwhelm the energy of
what may otherwise be a good model. Consensus methods

do not suffer from these local structure problems. Given this
rationale, one would expect structure-based methods to see
the most improvement in terms of average Pearson
Correlation on SetComplete relative to SetAll. Table 3
shows the average Pearson Correlation of five selected
groups. Predictors 713_1 (Circle-QA), 633_1 (ProQ), and
SELECTpro are structure-based MQAPs, while 634_1
(Pcons) is a consensus method and 556_1 (LEE) scored
structures based on the GDT-TS similarity to their human
Model 1 CASP7 prediction [18]. As expected, the structure-
based MQAPs improve more than the structural similarity-
based methods. The even greater increase in Pearson
Correlation for SELECTpro can be accounted for by the
failure to generate appropriate completemodels for some of
the incomplete models resulting in QA scores calculated on
extended chains.

Reranking Top Server Group Models
Predictors in CASP may submit up to five models, but
CASP evaluation focuses on the model designated as
Model 1. Clearly, the selection of Model 1 is critical in the
CASP setting and for protein structure prediction in
general. Figure 2 contains the results when SELECTpro is
used to rerank the five models submitted by each of the
top ten servers from CASP7, compared to each server's
results. In the following assessment Mmax-g is the model
with the highest GDT-TS of the five models submitted by
a server. Figure 2 (A) shows that SELECTpro recovers
Mmax-g more frequently than 8 of the top 10 server groups;
in addition, when SELECTpro is used to select Model 1 the
average GDT-TS increases for 7 of 10 sever groups;
however, the increase is only statistically significant for
3 groups. SELECTpro improves using both criteria for the
top 3 server groups (Zhang-Server, Pmodeller6, and
ROBETTA). These results highlight the utility of SELECT-
pro for the task of model selection. The comparisons
made here are fair because structure-based methods can
be applied in the server setting to any number of models.

Large Decoy Set Model Selection
Here we analyze SELECTpro's model selection capability
on the large decoy sets for 16 small proteins from a
recent I-TASSER benchmark set [19]. The I-TASSER
prediction method generates 12500 to 20000 different
backbone conformations. The complete decoy sets can
be downloaded from [20]. The consensus method
SPICKER [21] is used to cluster the models and a
centroid model is built from the first cluster. A second
round of simulation resolves the steric clashes in the
centroid model and results in the final predicted model.
The centroid model and final model are not part of the
decoy set. In order to make a fair model selection
comparison the decoy model closest to the centroid is
used as I-TASSER's MQA1.
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On the benchmark set SELECTpro has an average GDT-
TS of 63.7, while I-TASSER has an average GDT-TS of
62.1. SELECTpro's average ΔGDTQA1 is 9.2 and I-
TASSER's ΔGDTQA1 is 10.7. Figure 3 displays the GDT-
TS results for the individual proteins in the benchmark
set. Different symbols are used to indicate the GDT-TS of
Mmax (□), the GDT-TS of SELECTpro's MQA1 (×), and the
GDT-TS of I-TASSER's MQA1 (+) for each protein. A
paired t-test of the hypothesis that SELECTpro and I-
TASSER's mean performance are equal produces a p-
value of .19, which is not statistically significant, but
does give some evidence that SELECTpro can select a very
good model from a large set of decoys at least well as an
established method that utilizes consensus methods.

Conclusion
A MQAP that can select the most native-like model from
a set of possibilities has a variety of applications in
protein structure prediction. The new quality assessment
category introduced in CASP7 allows for the unbiased
assessment of MQAPs on the models produced by
automated predictors. This category allows researchers
to focus on the model scoring aspect of protein structure
prediction.

The results presented in this work demonstrate that
SELECTpro, a structure-based model selection method,
consistently selects one of the best models from the large
diverse sets of models produced by automated predictors,
across all levels of target difficulty. On these large diverse
sets of models, SELECTpro also recovers the single most
native-like model well compared to other methods. On
the small sets of five models submitted for each target by
the top automated predictors, in most cases SELECTpro
selects better models than the predictors themselves.

Since SELECTpro and other structure-based methods
score models independently, they can be incorporated
into the model selection pipelines of individual protein
structure prediction servers. For this reason, it may help
predictors if the CASP organizers distinguished methods
that score models independently from those that do not.

Consensus and structure-based methods can be com-
bined to achieve improved results. For example, the meta-
server method Pmodeller [22] combines consensus
(Pcons [23]) and structure-based methods (ProQ [24])
to predict protein structures more accurately than either
method in isolation. The assessment of the QA category
by CASP assessors recognized the consensus method
Pcons (group 634_1) for the high Pearson Correlation
between their scores and model GDT-TS on most targets
[18]. In their own assessment the authors of Pcons
recognized that while consensus methods performwell in

most cases, "when most of the models are incorrect and
the few correct models are outliers a consensus based
approach cannot be expected tomake an optimal choice."
[1] For instance, they identified three particular targets in
CASP7 where their consensus method failed: T0283,
T0350, and T0351 [1]. The Pcons average ΔGDTQA1 on
these three targets is 30.8. The same research group's
structure-based method ProQ (group 633_1) has an
average ΔGDTQA1 of 17.2. In contrast, on these three
targets SELECTpro has an average ΔGDTQA1 of only 7.1.
This example highlights the potential of combining
SELECTpro with existing model selection methods.

SELECTpro has been made publicly available as a server,
where users may submit from 2 to 100 models for
evaluation. In addition to the global confidence scores,
the scores of individual energy terms are also returned to
the user by email for each model submitted. SELECTpro
is one of several protein structure tools in the SCRATCH
suite of predictors [25], and is available through: http://
www.igb.uci.edu/~baldig/selectpro.html.

Methods
Datasets
All of the comparative analysis in this work is performed
on the server models and quality assessment predictions
submitted in the CASP7 [26] experiment. The CASP QA
experiment is particularly relevant for the evaluation of
model selection methods for several reasons: (1) the QA
predictors were blind to the true structures at the time of
prediction making it impossible for methods to be tuned
to improve results; (2) the set of proteins is diverse: the 95
targets range in size from 68 to 530 amino acids, come
from a variety of organisms, and span the full range of
prediction difficulty; (3) each target has more than 200
predicted models that contain the types of errors that occur
in automated structure prediction; (4) the protein set is not
selected by any of the participating QA groups; (5) the
models are scored by a variety of methods and the results
are publicly available. We perform analysis on the set of all
models (SetAll) and a subset of models (SetComplete) that
are complete and free of gross structural irregularities, as
described below. All of the ABIpro models and some of the
3Dpro models were optimized using the exact energy
function of SELECTpro. These models are removed because
of the obvious bias towards these models. In recent CASP
experiments the GDT-TS [27] has been used as the primary
automatic structural similarity measure. The published
GDT-TS values from the CASP7 website are the only
structural similarity measure used in this work.

SetAll
The SetAll dataset consists of the server models with a GDT-
TS value published on the CASP7 website, a total of 23,423
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models. To calculate a score on a protein model SELECTpro
requires the backbone coordinates (N, Ca, C) for all model
residues as input. A total of 8,812models in SetAll have only
a Ca trace or have no coordinates for one or more residues.
Modeller8v1 [28-30] was used to generate completemodels
from the incomplete ones, and then the complete models
were scored by SELECTpro. In most cases the complete
models were built appropriately from the incomplete
models; however, in some cases the final model was a
fully extended chain due to an error in our application of
Modeller. We failed to identify this problem until after the
completion of the CASP7 competition. The SELECTpro
scores versus GDT-TS scores for all models of target T0305
are displayed in plot A of Figure 4. The circled outliers with
very low confidence scores and high GDT-TS scores are
models that were incomplete and the complete models
generated by Modeller were fully extended chains. The
Pearson correlation on the set of all models for T0305 is
.641. The SELECTpro scores versus GDT-TS scores for
complete models only are displayed in plot B of Figure 4,
and the Pearson correlation is .966.

SetComplete
The scores produced by SELECTpro are comparable on
completemodels of the same sequence. There is no standard
for the handling of incomplete models and we assume that
participating groups took a variety of approaches. Using
only complete models ensures that the MQAP scores are
calculated from the same coordinates. Thus, the models
retained in SetComplete are screened first for completeness.
Models missing backbone coordinates for one or more
residues are removed. This leaves 14,611 models.

Structure-based MQAPs are susceptible to local structural
irregularities in models, and will tend to score such
models poorly. This is why methods developed to select
near-native models from sets of decoys remove such

models from consideration [31]. We apply additional
filters (described below) for Ca-Ca clashes, Ca-Ca chain
breaks, and expanded termini to remove an additional
1,217 models leaving 13,494 more plausible models in
SetComplete.

The Ca-Ca clash model filter enforces a squared
difference penalty for Ca-Ca distances less than 3.6 Ǻ.
The distance between the Ca atoms of residue i and j is
denoted by ri,Ca,j,Ca and N is the protein length. The
constant 13.52 in the threshold below corresponds to
two severe clashes where ri,Ca,j,Ca = 1.0 Ǻ. Models with a
sum of squared differences greater than 13.52 per 100
residues are filtered out.

max , . . ( / ), , ,0 3 6 13 52 100
2

−{ } >
>
∑ r Ni C j C

i j
a a

The Ca-Ca chain break model filter enforces a squared
difference penalty for ri,Ca,i+1,Ca distances greater
than 4.0 Ǻ. The constant 16.0 in the threshold
below corresponds to a single chain break where
ri,Ca,i+1,Ca = 8.0 Ǻ. Models with a sum of squared differences
greater than 16.0 per 100 residues are filtered out.

max , . . ( / ), , ,0 4 0 16 0 1001
2

r Ni C i C

i
a a+ −{ } >∑

The expanded termini filter removes models where a
large portion of the structure is modeled as expanded
chain with no non-local interactions. The screening
procedure is: scan from the N-terminus until three
consecutive residues have a contact number of at least
10, and repeat from the C-terminus. The contact number
of a residue is defined here as the number of other Cb
atoms within 10 Ǻ of the residue's Cb [3]. If the sum of
low contact number termini residues is at least 20% of
N, the model is filtered out.

Model Representations
Reduced representation
In the reduced representation the heavy backbone atoms,
carbonyl oxygen, amide hydrogen (N, Ca, C, O, H), and
Cb are represented explicitly. For glycine residues a
pseudo Cb is calculated. The side-chain atoms are
represented by a single united point (centroid) [32,
33]. The centroid is calculated as the mean of the
position of the heavy side-chain atoms. For glycine and
alanine the centroid (CT) is set to the Cb atom. Only the
heavy backbone atoms (N, Ca, C) are used as input to
SELECTpro and the positions of additional atoms and
centroids are calculated from these.
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Figure 4
SetAll versus SetComplete. Plots of SELECTpro scores
versus GDT-TS scores for T0305 models from SetAll (A) and
SetComplete (B). The Pearson correlation is .641 for SetAll
and .996 for SetComplete. This large difference is mainly due
to the extended chain models (circled in plot A) scored by
SELECTpro due to an error in our use of Modeller to
generate complete models from incomplete ones.
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All heavy-atom representation
In the all heavy-atom representation the centroid is
removed and the heavy side chain atoms are represented
explicitly. The side-chains are initially placed onto the
backbone of the reduced representation in their most
likely conformation according to the SCWRL backbone-
dependent rotamer library [34]. The side-chain place-
ments are then optimized using the SELECTpro all-atom
energy terms (described below) in conjunction with the
rotamer library.

Energy Functions Overview
EREDUCED is the combined energy calculated from the
reduced representation. EREDUCED is a linear combina-
tion of predicted (EPRED-SS, EPRED-SA, EPRED-CM), physical
(EVDW-REP), and statistical (ECT-REP, ESTAT-ENV, ESTAT-PW-

CI, ESTAT-PW-CD, EROG) terms:

EREDUCED = w1EPRED-SS + w2EPRED-SA + w3EPRED-CM +
w4EBETA + w5EVDW-REP + w6ECT-REP + w7ESTAT-ENV +
w8ESTAT-PW-CI + w9ESTAT-PW-CD + w10EROG

EALL-ATOM consists of the energy terms that depend on
the all heavy-atom representation. EALL-ATOM is a linear
combination of the following physical terms:

EALL-ATOM = w11ESC-HB + w12ELEN-JONES + w13ESOLVATION +
w14EELECTRO

EFINAL is the sum of EREDUCED and EALL-ATOM, and is used
for the final scoring of models by SELECTpro. The
individual energy terms are outlined briefly below and
the detailed description of the novel terms follow in the
remainder of this section. Underlined terms are adapted
from previously described energy terms their details are
included in the Appendix.

Parameter Weights
The parameter weights were determined by repeatedly
varying individual weights and maximizing the sum of
the GDT-TS of the lowest EFINAL models on a training set
built from CASP6 protein domains. For each CASP6
protein domain a set of 500 decoy models was generated
using fragment assembly with the RMSD to native as the
dominant term in the objective function [3].

EREDUCED
EPRED-SS: predicted secondary structure

EPRED-ACC: predicted solvent accessibility

EPRED-CM: predicted contact map

EBETA: sheet formation

EBB-REP: backbone repulsion

ECT-REP: centroid repulsion

ESTAT-ENV: residue environment potential [3]

ESTAT-PW-CI: context independent pair-wise potential [3, 16]

ESTAT-PW-CD: context dependent pair-wise potential [6]

EROG: compactness

EALL-ATOM
ESC-HB: side-chain hydrogen bonding

ELEN-JONES: van der Waals forces [10]

ESOLVATION: solvation effects [35]

EELECTRO: electrostatic interactions

Throughout this work the convention of all capital letters
referring to global energy and all lower case referring to
local energy is used. For instance, EPRED-CM refers to the
global contact map energy and Epred-cm(i,j) refers to the
contact map energy between residues i and j.

Parameter notation used in energy equations
Model variables
ri,x,j,y: distance between atom x of residue i and atom y of
residue j

rx,y: distance between atom x and atom y

vi,x,j,y: vector from atom x of residue i to atom y of residue j

ui,x,j,y: unit vector calculated from vi,x,j,y

Ni: number of residues in contact with residue i, with
contact defined as ri,Cb,j,Cb < 10 Ǻ

phii: Phi angle of residue i

psii: Psi angle of residue i

Protein specific input parameters
aai: amino acid type of residue i

ssi: predicted secondary structure of residue i (H,E,C)

acci: predicted solvent accessibility of residue i ('e':
exposed, '-', buried)

cmapi,j: predicted contact/non-contact between residues i
and j, with contact defined as ri,Ca,j,Ca < 12 Ǻ
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Protein independent parameters
Ivalue: ideal parameter value for a given calculation

svalue: standard deviation value for a given calculation

vdwx: van der Waals radius of atom x

vdwx+y: vdwx + vdwy

Ωstat-env: pre-calculated statistics for use in ESTAT-ENV

Ωstat-pw-oi: pre-calculated statistics for use in ESTAT-PW-CI

Ωstat-pw-od: pre-calculated statistics for use in ESTAT-PW-CD

Dmin,pw-od: minimum interaction distance for centroid
pairs used in ESTAT-PW-CD

Dmax,pw-od: maximum interaction distance for centroid
pairs used in ESTAT-PW-CD

Dmin-CT: minimum distances between centroids of amino
acid pairs observed in pdb_select25 [36].

Reduced Representation Energy Term Details
The details of how the novel reduced representation
energy terms are calculated are presented in this section.
The predicted structural terms EPRED-SS, EPRED-ACC, and
EPRED-CM and the b-strand pairing term, EBETA, are novel
and unique to SELECTpro. Additional reduced represen-
tation terms are adapted from previously published work
and their details are included in the Appendix.

Predicted structural features overview
The predicted structural feature predictions used in
EPRED-SS, EPRED-ACC, and EPRED-CM come from the
SCRATCH suite of predictors [25]. Each predictor is
trained in a supervised fashion using curated non-
redundant datasets extracted from the PDB [37]. The
secondary structure (SSpro [38]) and solvent accessibility
(ACCpro [39]) predictors use ensembles of 1D-RNN
(one dimensional-recursive neural network) architec-
tures [40]. The contact map predictor (CMAPpro [41])
uses ensembles of 2D-RNN architectures [40].

EPRED-SS: predicted secondary structure
The predicted secondary structure term EPRED-SS pena-
lizes deviation of the torsion angles from the torsion
angle parameters for helices and strands predicted by
SSpro. There is no penalty for predicted coils. The
parameter values for helix residues are: I

H�
= -65.3, sH� =

11.9, IHψ = -39.4, sHψ = 11.3. The parameter values for
strand residues are: IE� = -135.0, sE� = 15.0, IEψ = 135.0,
sEψ = 15.0. Only torsion angles that are more than two

standard deviations from the ideal are penalized, with
the penalty defined as follows:
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The definition of Epred-strand(j) is equivalent to Epred-helix(i),
but with IE�, sE�, IEψ and sEψ in place of the
corresponding helical values.

EPRED-ACC: predicted solvent accessibility
The solvent accessibility predictor ACCpro predicts the
percent of solvent accessibility in 5% increments for each
residue. Using 25% exposure as a binary threshold the
accuracy of the predictor is ~77% [39]. The binary
exposure ('e')/burial ('-') prediction is used as the
predicted solvent accessibility for EPRED-ACC. In the
reduced representation the solvent accessibility of residue
i is estimated by its contact number (Ni), where Ni > 16 is
considered buried [3]. If the predicted status of a residue
is not realized in the model, the penalty is calculated as:
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EPRED-CM: predicted contact map
The contact map predictor CMAPpro predicts the prob-
ability of contact or non-contact between Ca atoms, with
a contact threshold of 12 Å. The strategy utilized to infer
predicted contacts from the probabilitymatrix [41] results
in maps that are sparse when compared to those of real
proteins; thus, unrealized contacts are penalized while
non-contacts are not. The constant 1.0 is added to the
penalty to ensure that all unrealized contacts make a
significant contribution to EPRED-CM.
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The predicted contact map can help identify the highest
GDT-TS models in the set, even when they are not highly
similar to native. A good example of this is CASP7 target
T0304 is a 122 residue a/b protein where the highest
GDT-TS model in the set is Zhang-Server_TS1 (GDT-TS =
45.55). Most secondary structure predictors (including
SSpro) failed to predict the first two strands making this
target especially difficult. No QA method ranked the
highest GDT-TS model first; however, SELECTpro ranked
it second and the model ranked first by SELECTpro
(T0304.Zhang-Server_TS4) has the second highest GDT-
TS. These models have the lowest EPRED-CM of any
models in the set, but the native structure has an even
lower EPRED-CM. Figure 5 compares the native and
predicted contact maps for target T0304.

EBETA: strand pairing
The formation of hydrogen bonds between the residues
of b-strand partners is a major determinant of the tertiary
structure of b and a/b proteins. The b hydrogen bonding
treatment described here favors realistic strand pairing
and sheet formation. The treatment also efficiently
accommodates bulges in strands because it does not
force the register between two paired strands. EBETA is the
global strand pairing energy that penalizes the hydrogen
bonding of b residues between strand pairs. Ebeta-

sp(bkÆbw) is the strand pairing energy of strand bk to
strand bw. Ebeta-sp is only commutative if the two strands
have the same length. Ebeta-hb(i,j) is the hydrogen
bonding penalty between residues i and j.

Ebeta-sp is calculated for all possible strand pairings, but
only the two lowest energies from each strand are used in
EBETA. Other strand-strand interactions are ignored. In
the equations below S is the set of all strands in the
protein, bm1 is the strand with the minimum pairing
energy from bk, and bm2 is the strand with the next lowest
pairing energy from bk. If the strand count is less than six
at least two of the strands must be edge strands. This is
accounted for by only considering the single best strand
partner for two strands.
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In the equations for Ebeta-sp below, Sk is the set of all residues
in strand bk. Each time Ebeta-hb is calculated the pair (i,j) is
chosen with i from Sk and j from Sw, such that Ebeta-hb is
minimized. Then residue i is removed from Sk, and residue j
is removed from Sw. Ebeta-hb is calculated once for each
residue in Sk. If Sk has more residues than Sw each unpaired
residue is given maximum penalty of Ebeta-hb.
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Between two anti-parallel strand partners, only every
other pair of residues is hydrogen bonded. For the pairs
that are not hydrogen bonded, a pseudo-bonding
calculation is used. The hydrogen bonding energy and
pseudo-bonding energy are both calculated and the
minimum of the two is used in Ebeta-hb(i,j).

If residues i and j are paired in parallel strands, either i forms
hydrogen bondswith j-1 and j+1, or j forms hydrogen bonds
with i-1 and i+1. No hydrogen bonds are formed between
the atoms of residues i and j. The hydrogen bonding energy
is calculated for both possible conformations and only the
minimum of the two is used in Ebeta-hb(i,j).
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F(aÆd) is the directional energy calculation for a single
hydrogen bond where a is the index of the acceptor residue

Figure 5
Contact map comparison. True contact map of target
T0304 in lower left, predicted contacts upper right. Contact
is defined as Ca atoms within 12 Å. For predicted contacts
with a sequence separation of at least six, 651 of 915 (71%)
are correct.
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and d is the index of the donor residue. Three geometrical
measures are used to estimate the strength of hydrogen
bonds: the distance between the acceptor and the hydrogen
atoms (ra,O,d,H), the angle at the acceptor atom (ua,C,a,O · ua,
O,d,H), and the angle between the acceptor and donor atom
vectors (ua,C,a,O · ud,N,d,H). The distance and acceptor atom
angle parameters are motivated by the orientation-depen-
dent hydrogen bonding potential described in [42]. The
following parameters were set based on idealized hydrogen
bonding between b residues, with standard deviation values
set such that two standard deviations approximate the cut-
off in true hydrogen bonds. The ideal distance from
hydrogen atom to accepting oxygen is Ihb-dist = 1.9 Ǻ, with
standard deviation shb-dist = 0.5 Ǻ. The ideal angle at the
acceptor atom is 0°, so the ideal (ua,C,a,O · ua,O,d,H) is Iacc-dp =
1.0, with standard deviation sacc-dp = 0.11. The ideal angle
between the acceptor and donor atom vectors is 180°, so the
ideal (ua,C,a,O · ud,N,d,H) is Iacc-don-dp = -1.0, with standard
deviation sacc-dp = 0.15. The parameters for pseudo-bonded
residues are as follows: the ideal distance for ra,O,d,H is Ips-hb-
dist = 7.9Ǻ, Ips-acc-dp = -1.0, and Ips-acc-don-dp = -1.0. The standard
deviations from the corresponding hydrogen bonding
parameters above are used in Fps(aÆd).
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The penalty for the observed value (x) increases up to 6
standard deviations from the ideal value (μ).
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All-Atom Energy Term Details
The all-atom energy terms depend on atom-atom
interactions when all heavy atoms are included in the
model. In the all-atoms energy equations x and y refer to
atoms in the model and the residue positions are not
referenced. The van der Waals radii and well-depths (εx,
used in ELEN-JONES) come from the CHARMM19 para-
meter set [43]. The side-chain hydrogen bonding term,
ESC-HB, is described in detail here because it is unique to
SELECTpro. The details of ELEN-JONES, ESOLVATION, and
EELECTRO are provided in the Appendix.

ESC-HB: side-chain hydrogen bonding
ESC-HB penalizes unsatisfied hydrogen bond donor and
acceptor atoms that are at least partially buried. There is
no penalty for fully exposed donor or acceptor atoms.
Exposure percent ( ΔGx

slv %) is calculated as Δ ΔG Gx
slv

x
ref/ .

The definitions of ΔGx
slv and ΔGx

ref are provided in the
description of ESOLVATION in the Appendix. Atoms at least
75% exposed are considered fully exposed and atoms less
than 25% exposed are considered fully buried. For 25%
< ΔGx

slv% < 75% the penalty weight is reduced linearly
from 1.0 at 25% to 0 at 75%. The ideal distance from the
acceptor atom to donor atom is Ihb-da-dist = 2.9 Ǻ. In the
equations below donors is the set of all side-chain
hydrogen donor atoms and acceptors is the set of all
side-chain hydrogen acceptor atoms.
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Appendix
In the interest of completeness and reproducibility we
include the details of the energy terms that are adapted
from previous work.

Reduced Representation Energy Term Details
EBB-REP: backbone repulsion
This term penalizes steric clashes between non-bonded
atoms explicitly represented in the reduced representa-
tion. The penalty for overlapping atoms is the overlap
distance squared as defined here:

E E i j

E i j i x j y vdw r

BB REP bb rep

j i

bb rep x y i

− −
>

− +

=

= −

∑ ( , )

( , ) ( , , , )( ,Θ xx j y
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i x j y x yi x j y
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, ,

, , ,

)

( , , , )
,

,

2

1

0
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=

<⎧
⎨

+Θ 
if  

otherwise⎩⎩

ECT-REP: centroid repulsion
A centroid-centroid repulsive term is used to reduce the
overcrowding of side-chains in the reduced representa-
tion. The minimum distance between two centroids in
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the calculation is the minimum observed for each pair of
residue types – DCT-min(aai,aaj) – in pdb_select25. The
penalty for centroid-centroid overlaps is defined as the
overlap distance squared:

E i j D aa aa r

i j

CT REP CT i j i CT j CT

j i

− −
>
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1,, ( , )

,
, , , minif 

otherwise

r D aa aai CT j CT CT i j<⎧
⎨
⎩

−

0

ESTAT-ENV: residue environment potential
The motivation for this term is to model the hydrophobic
effect. The level of burial for each residue in the model is
estimated by the number of other Cb atoms within 10 Ǻ
(the contact number Ni) [3]. The values in the table Ωstat-

env reflect the likelihood of observing a particular Ni for
each residue type. For model residues near both termini
the contact number is artificially increased to account for
the missing neighbors along the chain.
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ESTAT-PW-CI: context independent pair-wise interactions
This context independent pair-wise potential comes from
Equation 6 of [3]. The potential considers the likelihood of
observing the pair of centroids in a given distance bin relative
to the background, with distance bins of < 5, 5–7, 7–10, 10–
12, and > 12 Å. The advantage of a context independent pair-
wise potential is that it is less vulnerable to over-fitting by a
conformational search because of its generality.
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ESTAT-PW-CD: context dependent pair-wise potential
This context specific pair-wise potential is from [6]. This
pair-wise potential depends on the local structure and
relative orientation of both amino acids in the

interaction. The statistics are calculated independently
for each combination of local structures and relative
orientations. At each position the local structure is
considered either compact or open and the relative
orientation is determined by the dot product of the Ca to
Cb unit vectors of each residue and divided into three
classes: parallel, anti-parallel, and intermediate.
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EROG: compactness
The radius of gyration is a simple measure of the global
compactness of a domain. EROG penalizes models that
are less compact than expected according to [44]. If the
radius of gyration of the model (l) is less than the
expected value (2.2N.38), there is no penalty. If it is
greater, then the penalty is the squared difference
between observed and expected. In the equation below
ri,mean is the distance between the Ca of residue i and the
mean of all Cas in the model.

E N

ri mean
N

N

ROG = −
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All-Atom Energy Term Details
ELEN-JONES: van der Waals forces
A fundamental characteristic of native globular protein
structures is their efficient steric packing of atoms in the
protein core. A Lennard-Jones 12-6 potential with
damped repulsion (ELEN-JONES) is used to measure the
quality of steric packing. ELEN-JONES is the sum of local
energy calculations Elen-jones(x,y) performed on all pairs of
non-bonded atoms. Since the repulsive portion of the
standard Lennard-Jones 12-6 potential will overwhelm
the entire energy function with a single significant atom-
atom clash – repulsion is handled by a linear ramp from 0
to 10 as shown in the equation below [10]. Since Elen-jones
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= 0 when (vdwx,y/rx,y) = 26 independent of atom types,
the switch to a linear ramp occurs when (vdwx,y/rx,y) > 26 .
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ESOLVATION: solvation effects
Solvation energy is calculated using the implicit solva-
tion model described in [35] with the following
adjustment: for overlapping atoms, the sum of their
van der Waals radii is used in the calculation in place of
the observed atom-atom distance in the model. This
restricts the amount a single atom can contribute to the
burial of another atom. Without this adjustment over-
lapping atoms will bias the calculation to indicate an
atom is more buried than it would be otherwise. In the
solvation model ΔGx

slv is the observed solvation free
energy of atom x in the model, calculated as the free
energy of the fully exposed atom ( ΔGx

ref ) minus the
reduction in solvation caused by the surrounding atoms.
ΔGx

free was determined empirically by setting it equal to
ΔGx

ref and increasing its magnitude until ΔGx
slv of

deeply buried atoms became zero. lx is the correlation
length of atom x. Vy is the volume neighboring atom y.
The values of these parameters come from [3535], with
the exception of ΔGx

ref [45]. The equation for ΔGx
slv

below is the combination of Equations 5,6, and 7 of
[35], with the atom overlap adjustment.
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EELECTRO: electrostatics
Electrostatic interactions between charged atoms are
treated by simple repulsion and attraction according to
inverse distance squared. The use of distance squared
rather than linear distance encourages the formation of
salt bridges in the models. There is a correction for atom-
atom distance below the minimum realistic value. The

ideal distance between oppositely charged atoms is Ihb-da-
dist = 2.75 Ǻ. In the equations below pos is the set of all
positively charged atoms and neg is the set of all
negatively charged atoms.
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Availability and requirements
• Project home page: http://www.igb.uci.edu/~baldig/
selectpro.html

• Operating system: linux for stand alone version, server
is platform independent

• Programming language: C++ and Perl

• Software requirements: Perl

• Disk space requirements: 1.6 Gb for full version, 13
Mb without feature predictors
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