
BioMed CentralBMC Structural Biology

ss
Open AcceSoftware
ProteinShader: illustrative rendering of macromolecules
Joseph R Weber

Address: Extension School, Harvard University, Cambridge, Massachusetts 02138, USA

Email: Joseph R Weber - joe.weber@alumni.duke.edu

Abstract
Background: Cartoon-style illustrative renderings of proteins can help clarify structural features
that are obscured by space filling or balls and sticks style models, and recent advances in
programmable graphics cards offer many new opportunities for improving illustrative renderings.

Results: The ProteinShader program, a new tool for macromolecular visualization, uses
information from Protein Data Bank files to produce illustrative renderings of proteins that
approximate what an artist might create by hand using pen and ink. A combination of Hermite and
spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes
and ribbons with a repeating pattern of texture coordinates, which allows the application of texture
mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source
program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language
to modify the graphics pipeline.

Conclusion: By programming to the graphics processor unit, ProteinShader is able to produce
high quality images and illustrative rendering effects in real-time. The main feature that distinguishes
ProteinShader from other free molecular visualization tools is its use of texture mapping
techniques that allow two-dimensional images to be mapped onto the curved three-dimensional
surfaces of ribbons and tubes with minimum distortion of the images.

Background
The study of protein structure is an intensely active area of
research. The number of proteins for which a three-
dimensional structure has been solved has increased
exponentially in recent years, and there are currently over
56,000 entries in the Protein Data Bank (PDB [1,2]), a
publicly accessible single worldwide archive of structural
data for biological macromolecules. The three-dimen-
sional structure of a protein determines what other mole-
cules it is capable of binding and interacting with, so a
deep understanding of protein structure is critical for pre-
dicting protein function and for designing drugs that
interact with proteins.

The basic building blocks of protein, amino acids, are
small enough that they can be easily understood using
simple balls and sticks models that show every atom and
bond. Proteins, however, are typically composed of hun-
dreds or even thousands of amino acids, making detailed
three-dimensional models very difficult to understand.
Fortunately, artistic ribbon representations of the protein
backbone can be used to clarify regions of secondary
structure, for example by using spiral ribbons for α-helices
and arrows for β-strands [3], and simplified cartoon-style
models using ribbons and tubes are commonly used in
molecular visualization programs.

Published: 30 March 2009

BMC Structural Biology 2009, 9:19 doi:10.1186/1472-6807-9-19

Received: 26 July 2008
Accepted: 30 March 2009

This article is available from: http://www.biomedcentral.com/1472-6807/9/19

© 2009 Weber; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19331660
http://www.biomedcentral.com/1472-6807/9/19
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
The World Index of BioMolecular Visualization Resources
web page [4] has an extensive listing of free molecular vis-
ualization programs that can run on ordinary personal
computers. One of the most influential of these is RasMol
[5], which is written in the C programming language, and
is available on Windows, Macintosh, Linux, and Unix
platforms [6,7]. RasMol's success was apparently due to
an excellent compromise between rendering speed and
image quality so that even large proteins can be rotated in
real time [8]. More recently, Java based molecular visuali-
zation tools have become popular, in large part because of
Java's platform independence, and a typical PDB web
page for a protein now contains links to allow interactive
three-dimensional images to be displayed using Java pro-
grams such as KiNG [9], WebMol [10], or Jmol [11].

Recent advances in programmable graphics cards offer a
number of new opportunities for illustrating proteins.
Many inexpensive, commonly available graphics cards
now fully support the use of the OpenGL Shading Lan-
guage (GLSL [12]), which is used to write small programs,
known as shaders, for modifying the graphics pipeline to
produce sophisticated visual effects [13]. A few free
molecular visualization tools have begun to take advan-
tage of these new opportunities. The Visual Molecular
Dynamics program uses GLSL to improve image quality
and rendering speed [14,15], while QuteMol goes further
by using GLSL to add illustrative rendering effects (also
known as non-photorealistic rendering) such as borders
around atoms and halo effects that make space filling,
balls and sticks, and liquorice models much easier to
interpret [16,17].

The ProteinShader program described in this paper fur-
ther exploits GLSL by using custom texture mapping and
lighting calculations implemented on the graphics card to
produce ribbon and tube cartoon-style illustrative render-
ings of proteins that approximate what an artist might cre-
ate by hand using pen and ink. Custom shading
calculations are also used to map text labels and decora-
tive textures onto the curved surfaces of tubes and ribbons
shown in color.

Implementation
ProteinShader is written primarily in Java, which was cho-
sen because of its platform independence, as well as the
ability of a Java Swing-based GUI to adopt the look and
feel of the current operating system [18]. The Javadoc tool
[19] was used to extract comments from the source code
and generate the API (Application Programming Inter-
face) files that are included in the help directory of the
ProteinShader distribution. The current version of Pro-
teinShader, beta 0.9.4, is available as Additional files 1
and 2, or can be downloaded from SourceForge [20],
where future versions will be posted.

To obtain hardware-accelerated rendering of high quality
three-dimensional perspective images of a protein, the
low-level Open Graphics Library (OpenGL [21,22]) that
runs on most modern graphics cards is used. The ribbons
and tubes used by ProteinShader are drawn as collections
of flat polygons tiled together to form continuous sur-
faces, and texture mapping coordinates are assigned to
individual vertices as they are generated. Because OpenGL
is primarily intended to work with the C/C++ language,
Java Bindings for OpenGL (JOGL [23,24]) is used to allow
the Java code to access OpenGL.

To map textures onto the surfaces of ribbons and tubes,
vertex and fragment shaders written in the OpenGL Shad-
ing Language [12,13] are used. The vertex shader allows a
programmer to manipulate directional vectors associated
with a vertex, while the fragment shader is for applying
custom equations for setting the color of each surface frag-
ment (potential future pixel) [13,25].

To speed up the number of frames per second that can be
rendering during an animation (a constant rotation),
geometry is cached on the graphics card by using OpenGL
display lists [26]. When tested with an inexpensive good
quality mid-range graphics card, the ATI Radeon X1600,
caching geometry in advance resulted in a nine-fold
increase in performance for ribbons and a thirteen-fold
increase in performance for tubes (data not shown).

Results and discussion
Overview of the ProteinShader GUI
A screenshot of the ProteinShader GUI is shown in Figure
1, where the retinol-binding protein [27] is displayed as a
pen-and-ink style rendering. The main window consists of
a drawing canvas with a menu bar across the top, and the
purpose of each menu is summarized in Table 1. The File
menu's chooser box will open to the ProteinShader's data
directory by default, so that is the best place to store pro-
tein structure files downloaded from the PDB web site [1].

The retractable control panel on the right side of the can-
vas is composed of two parts: a left-side subpanel that
allows the user to select any model, chain, residue, or
atom of the protein structure, and a right-side subpanel
that can be switched to any of several different modifier or
action subpanels. The menu at the top right of the control
panel is used for changing the right-side subpanel, and the
purpose of each subpanel is summarized in Table 2. Most
of the modifier subpanels also allow selection of individ-
ual α-helices, β-strands, or loop regions.

A few examples of the kind of artwork ProteinShader can
generate are shown in Figure 2 using the porin protein
[28,29], the ribonuclease inhibitor protein [30], the 3-iso-
propylmalate dehydrogenase enzyme [31], and the potas-
Page 2 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
sium channel [32]. When a protein structure is loaded, the
canvas automatically displays it as a pen-and-ink style
illustrative rendering of ribbons and tubes, and the right
side of the control panel is set to the Decorations sub-
panel shown in Figure 1. A variety of patterns can be
applied to the ribbons and tubes by using the Halftone
Texture and Bend Texture menus of the Decorations sub-
panel. The patterns are read from image files, which will
be discussed further below in the section on texture map-
ping. A Cartoon Visibility subpanel can be used to deem-
phasize parts of the structure by setting them to be
translucent, and the Visibility menu above the canvas can
be used to display heterogens, such as the 3-isopropyl-
malate substrate molecules in Figure 2C or the K+ ion in
Figure 2D.

In addition to the ribbons and tubes cartoon-type repre-
sentations, the Style menu above the canvas can also be
used to select atom-type representations: space filling
(spheres), balls and sticks (spheres and cylinders), and
sticks (cylinders). Dragging the mouse across the canvas
can be used to rotate or zoom in on images, or an image
can be rotated at constant speed by using a motion control
panel. Details on mouse movements or the various con-
trol panels and menus can be found by using the Help
menu above the canvas.

General strategy for tubes and ribbons
Three-dimensional ribbons and tubes can be drawn by
sweeping a waist polygon along a curved line at regular
intervals and, at each point along the curve, aligning the
polygon to a local coordinate frame (an xyz-axis system)
that keeps the plane of the polygon perpendicular to the
tangent of the curve [33]. When two copies of the polygon

are placed at adjacent points along the curve, connecting
their vertices can be used to define the small, flat polygons
that ultimately approximate the curved surface of the rib-
bon or tube. In ProteinShader, the curved line and local
coordinate frames needed for creating ribbons and tubes
are generated using the xyz-coordinates of the α-carbons
in each polypeptide chain.

Local coordinate frames for α-carbons
To define each α-carbon's local xyz-coordinate frame, the
technique illustrated in Figure 3A is used. For α-carbon i,
a tangent vector T (z-axis) is calculated as the vector point-
ing from α-carbon (i - 1) to α-carbon (i + 1). A second vec-
tor in the same plane is calculated by subtracting α-carbon
(i - 1) from α-carbon (i), and a binormal vector B (y-axis)
is then calculated as the cross product of this second vec-
tor and T. Finally, the cross product of B and T is used to
obtain a normal vector N (x-axis). If a previous or next α-
carbon is missing, the calculations use the current α-car-
bons's amino group nitrogen or carbonyl group oxygen,
respectively.

N, B, and T form a right-handed perpendicular xyz-axis
system, with N and T in the plane represented by the light
green triangle in Figure 3A. Written as column vectors, N,
B, and T form the rotation matrix shown in Figure 3B. This
matrix can be used to take a waist polygon drawn in the
xy-plane of a global xyz-coordinate system and rotate it
into the xy-plane of the local coordinate frame for an α-
carbon.

Hermite interpolation
To develop a curved line that passes through the α-car-
bons in a chain, Hermite interpolation [34] is used. The

Table 1: Menu bar options.

Menu Purpose

File In addition to Open and Quit, there is an Export Image submenu that allows the image on the canvas to be saved as a PNG or JPEG
file.

Style The Cartoon submenu allows the protein to be displayed as Tubes, Ribbons, Tubes and Ribbons, or Frenet Frames. The Atom
submenu offers Space Filling (spheres), Balls and Sticks (spheres and cylinders), or Sticks (cylinders).

Visibility Coarse-level of control over whether Amino Acids, Heterogens, or Waters are visible. Control panels in Table 2 provide a more
fine-grained control.

Orientation Choosing Original resets the protein to its original size and front orientation, while Front, Back, left, Right, Top, and Bottom affect
the protein's orientation, but not the camera distance.

Background Sets the background color on the canvas to Black, Gray, Light Gray, White, or opens a Chooser dialog box that can be used to select
any color.

Tools Opens and closes the control panel on the right side of the canvas.

Help Opens the desktop's default web browser and loads a help html file.
Page 3 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
curved line is actually a spline, a series of piecewise cubic
polynomial equations, where each polynomial equation
begins at one α-carbon and ends at the next. The xyz-coor-
dinates and tangent vectors of the two α-carbons are used
to solve the constants A, B, C, and D in the set of parame-
terized equations shown in Figure 3C. The parameter t is
set to 0.0 at α-carbon (i) and to 1.0 at α-carbon (i + 1), so
intermediate values of t can be used to solve for the xyz-
coordinates of any point on the curved line. The tangent
vectors used in the calculations are adjusted to a length of
4.0 because that gives a reasonable curvature for α-helices
and β-strands.

SLERP
An algorithm is also needed for interpolating between the
local coordinate frames of α-carbons. The tangent (z-axis)

of each interpolated frame could be calculated from the
first derivatives of the equations shown in Figure 3C, and
a simplistic linear interpolation could be used to calculate
a normal (x-axis) and binormal (y-axis) for each point.
However, a much smoother interpolation can be achieved
by using the spherical linear interpolation (SLERP)
parameterized equation shown in Figure 3D[35-37].

SLERP, which is based on the use of quaternions, is com-
monly used in computer graphics for gliding a camera
through a scene because it avoids the quirks and jerky
motion of earlier methods [37]. A quaternion is a four-
tuple devised by W. R. Hamilton to extend complex num-
bers into multiple dimensions, but it can also be used to
represent a three-dimensional rotation in space [35,37]. A
rotation matrix can be converted into a quaternion [38],

The ProteinShader GUIFigure 1
The ProteinShader GUI. A screen capture of the ProteinShader GUI with a pen-and-ink style rendering of the retinol-bind-
ing protein [PDB:1AQB], a β-barrel structure [27], as a tubes style display. In the control panel on the right, the entire model
was selected in the Decorations subpanel, and real-time halftoning was applied by selecting Noise from the Halftone Texture
menu and Diagonals 1 from the Bend Texture menu.
Page 4 of 19
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQB

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
and interpolating between quaternions produces a
smoother rotation than attempting to interpolate between
matrices.

Hermite-SLERP algorithm
To maintain the three-dimensional structure of a tube or
ribbon, the waist polygon drawn in the xy-plane of each
local coordinate frame should be kept perpendicular to
the spline, so the tangent (z-axis) of each local frame
should closely matches the tangent of the spline. A minor
problem with using SLERP is that the tangent of each
interpolated quaternion (the z-axis of the local frame that
the quaternion is equivalent to) will not necessarily match
the tangent calculated by Hermite interpolation.

To fix any discrepancy between the SLERP- and Hermite-
calculated tangents, the tangents are compared, and if
there is more than one degree of difference, a rotation is
used to make the SLERP tangent match the Hermite tan-
gent. The axis and angle of rotation are calculated using
the cross product and dot product, respectively, of the two
tangents, and for convenience the axis and angle are con-
verted into a quaternion.

Multiplying the interpolated quaternion by the tangent-
fix-up quaternion adjusts the interpolated quaternion so
that if it was converted back into a rotation matrix, its tan-
gent would now match the tangent of the spline. The net
effect of these manipulations is that the tangent (z-axis) of
each local frame along the spline is determined by Her-
mite interpolation, while the SLERP algorithm provides
for a smooth, gradual rotation of the xy-axes.

Frenet Frames
To visualize the spline and local coordinate frames pro-
duced by the Hermite-SLERP algorithm, the Style menu
above the canvas has a Frenet Frames option. An α-helix
from the c-Jun protein [39] is shown as Frenet Frames in
Figure 3E, where the local frames use the same color
scheme as in Figure 3A, and the interpolated frames are
shown on a smaller scale. In Figure 3F, the same α-helix is
shown after selecting Tubes from the Style menu and
Wireframe from the Decorations panel. The red end cap is
the waist polygon that is swept along the spline while
drawing the tube, and the lines of the wireframe connect
the vertices that define the surface of the tube. In Figure
3G, the α-helix is shown after selecting Plain from the

Table 2: Subpanels of the retractable right-side control panel.

Subpanel Purpose

Selection The left-side subpanel allows selection of any model, chain, residue, water, heterogen, or atom of the protein. This subpanel
is always present, whereas the right-side subpanel can be changed to any of the subpanels listed below.

Decorations Applies texture maps and other special effects to ribbon and tube segments (the term segment refers to the length of a tube
or ribbon that corresponds to an individual amino acid). This subpanel is visible in Figure 1.

Cartoon Color Sets the color of tube and ribbon segments. Default colors based on region or amino acid type can be used, or a color
chooser dialog box can be opened.

Cartoon Visibility Sets any segment or group of segments in a tube or ribbon to be opaque, translucent, or invisible.

Cartoon Side Chains Used to display amino acid side chains in combination with tubes or ribbons. The side chains can be shown as space filling,
balls and sticks, or sticks.

Motion Allows constant motion about the x-axis and/or y-axis of the protein. The frames per second will be displayed in the upper
left of the canvas.

Antialiasing Provides options for smoothing out the aliasing (jagged diagonal line) effect that often occurs at the edges of geometrically
defined objects.

Atom Color Sets the color of atoms in a space filling, balls and sticks, or sticks style display. Default colors based on atom or amino acid
type can be applied, or a color chooser dialog box can be opened.

Atom Visibility Sets any atom or group of atoms to be opaque, translucent, or invisible. A slider allows any degree of translucency from 0 to
100%.

Atom Scale Adjusts the radii of spheres in a space filling or balls and sticks style display.

Tiling Can be used to turn off automatic tiling (level of detail control) for spheres and cylinders. This panel has no effect on ribbon
and tube style displays.
Page 5 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
Decorations panel and using the Cartoon Color panel to
apply colors based on amino acid type. Phong lighting
calculations [40,41] are used to smooth out the appear-
ance of the tube's surface and to add specular highlighting
(the shiny plastic-like appearance) to enhance the three-
dimensional quality of the image.

Untwisting β-strands
The Hermite-SLERP algorithm works fine for α-helices
and loops, but encounters a problem with β-strands,
where the amino acid side chain directionality alternates
by approximately 180 degrees for successive residues. The
local coordinate frames will, in most cases, flip direction

Illustrative renderings of proteinsFigure 2
Illustrative renderings of proteins. Real-time halftoning and edge-line generation algorithms have been applied to ribbon
and tube style displays generated from PDB structure files. (A) The porin protein [PDB:3POR], a transmembrane β-barrel
structure [28,29]. (B) The ribonuclease inhibitor protein [PDB:2BNH], a α/β horseshoe-shaped structure [30]. (C) The 3-iso-
propylmalate dehydrogenase enzyme [PDB:1A05], a three-layer (α-β-α) sandwich-structure [31], with two substrate mole-
cules (C, gray; O, red; Mg2+, green). (D) The potassium channel [PDB:1BL8], a transmembrane α-domain structure [32], with a
K+ ion (deep pink) in the channel. In all four images, loop regions are de-emphasized by showing them as thin ribbons with 75%
translucency. In (A) to (C), α-helices are shown as tubes, while β-strands are shown as wide ribbons. In (D), the α-helices are
shown as wide ribbons.
Page 6 of 19
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3POR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BNH
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1A05
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BL8

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19

Page 7 of 19
(page number not for citation purposes)

Calculation of local coordinate frames and a spline for drawing tubesFigure 3
Calculation of local coordinate frames and a spline for drawing tubes. (A) The local coordinate frame for α-carbon
number i in a polypeptide chain, Cα (i), is calculated relative to the triangle (light green) that it forms with Cα (i-1) and Cα (i+1).
The vectors N (Normal; green), B (Binormal; yellow), and T (Tangent; red) are the xyz-axes, respectively, of the local frame
(see Local coordinate frames in the text). (B) The column vectors N, B, and T form a matrix that defines a rotation about Cα
(i). (C) The tangent vectors and xyz-coordinates of two α-carbons are sufficient to define a parameterized cubic polynomial
equation (see Hermite interpolation in the text). The set of cubic polynomials connecting the α-carbons of a polypeptide chain
form a spline, which is shown as a curved dotted line in (A). (D) The equation for interpolation between rotations using
quaternions (see SLERP in text). (E) An α-helix after selecting Frenet Frames from the Style menu. The α-carbons (small gray
spheres) have local frames represented by green, yellow, and red vectors as in (A). The smaller local frames between α-car-
bons are interpolated by using the Hermite-SLERP algorithm described in the text. (F) The α-helix from (E) after selecting
Tubes from the Style menu and Wireframe from the Decorations panel. To draw the tube, a regular polygon defined by 20
vertices in a circle (red) is swept along the spline and rotated into alignment with the xy-plane of each local frame. Connecting
vertices between successive positions of the polygon produces the surface of the tube. (G) The α-helix from (F) after Plain is
selected from the Decorations menu and the Cartoon Color subpanel is used to color tube segments by amino acid type.

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
for every other α-carbon. Consequently, a β-strand ribbon
will appear highly twisted as illustrated in Figure 4, where
two β-strands are shown as Frenet frames (Figure 4A) or
ribbons (Figure 4B). The twisted ribbons are visually diffi-
cult to follow, and any images mapped onto their surface
become highly distorted.

To fix this problem, the local coordinate frames for succes-
sive α-carbons are compared to check for a radical change
in direction. The frames are aligned along their tangents
(z-axes) by using the procedure described earlier for mak-
ing SLERP-calculated tangents match Hermite-calculated
tangents, and if the angle between the two binormal vec-
tors (y-axes) is greater than 90 degrees, the second frame

Untwisting β-strand ribbonsFigure 4
Untwisting β-strand ribbons. (A) The local coordinate frames for two β-strands are calculated using the same algorithm as
for the α-helix in Figure 3. In this view, the direction of the y-axis (yellow) of the local frames can be seen to alternate by
approximately 180 degrees for each successive α-carbon in a chain. (B) The ribbons drawn using the local coordinates frames
shown in (A) have a highly twisted appearance, making the text labels texture mapped onto their surface very difficult to read.
(C) The local frames for the β-strands in (A) are shown after being adjusted by an algorithm that compares the local frames for
successive α-carbons and, if necessary, rotates frames 180 degrees about their z-axis. (D) The ribbons drawn using the local
coordinate frames shown in (C) have a smoothed out appearance. The direction of the text labels indicates the amino to car-
boxyl direction of the polypeptide chain.
Page 8 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
is rotated 180 degrees about its tangent (z-axis). After per-
forming this fix-up step along a β-strand's length, the
frames will be aligned as shown in Figure 4C. The appear-
ance of the ribbon is greatly improved as shown in Figure
4D, and the antiparallel nature of the two β-strands
becomes more obvious because the crests and valleys of
the ribbons coincide.

It might seem simpler to assume that the coordinate frame
for every second α-carbon should be rotated. However,
that strategy will not always work because there are occa-
sional irregularities in the structure of lengthy β-strands,
as well as some problems with how β-strands are defined.

Combining side chains with ribbons
Because the spline runs through the α-carbons, when balls
and sticks representations of amino acid side chains are
combined with ribbons, the side chains appear to be
firmly attached to the ribbon. This effect is illustrated in
Figure 5, which shows two β-strand ribbons after the Balls
and Sticks button was clicked in the Cartoon Side Chain
subpanel of the Control Panel. By looking closely along
the length of the ribbon, the alternating orientation of
side chains discussed in the previous section can be clearly
observed.

Segments and texture mapping
If a region of secondary structure were stored as a single
collection of vertices, dynamically applying colors or tex-
tures to mark individual amino acids would become quite
complex. Therefore, the basic geometric unit of organiza-
tion for rendering tubes and ribbons in the ProteinShader
program is a segment, which is defined as a length of a
tube or ribbon that corresponds to a single amino acid. A
segment's center is the xyz-coordinates of its α-carbon,
while its beginning and end are the midpoints along the
spline to the previous and next α-carbon, respectively.

A segment can be thought of as a collection of local coor-
dinate frames, as shown in Figure 6A, where an amino
acid is shown as Frenet frames with blue, gray, and red
spheres marking the beginning, α-carbon, and end of the
segment, respectively. The same amino acid is also shown
as a tube segment (Figure 6B) and as a ribbon segment
(Figure 6C). As the waist polygon that specifies the verti-
ces of a tube or ribbon segment is swept along the spline
and aligned to each local frame, every vertex is assigned a
surface normal and a pair of texture coordinates. The sur-
face normal is a vector needed for lighting calculations,
while the texture coordinates allow two-dimensional
images such as the swirl pattern in Figure 6D to be system-
atically mapped onto the surface of a tube or ribbon seg-
ment. By convention, the texture coordinates are referred
to as s and t, and each coordinate is on a scale from 0.0 to
1.0 [42,43].

Vertices at the beginning of a segment are assigned a t-
coordinate of 0.0, while vertices at the end are assigned a
t-coordinate of 1.0. The s-coordinate, on the other hand,
increases in the counter clockwise direction as the vertices
of the waist polygon are drawn in the xy-plane, and the
exact start and end values are somewhat variable. For
example, the broad surfaces of ribbons have s-coordinates
from 0.0 to 1.0, but on the narrow sides of ribbons the s-
coordinates run from 0.0 to only 0.125. For tubes, the s-
coordinate runs from 0.0 to 2.0 so that the same texture
map will be wrapped around the tube twice.

The Patterns, Text Labels, and Wireframe buttons of the
Decorations subpanel accomplish their effects by using
texture mapping. The images in the Patterns menu are
read from PNG (Portable Network Graphics [44]) or JPEG
(Joint Photographic Experts Group [45]) files in the tex-
tures/patterns subdirectory, and the menu can be modi-
fied by editing a configuration file. The lines for the
wireframe images are calculated on-the-fly, while the
images needed for amino acid labels are generated when-
ever a protein structure is first loaded by extracting letters
and digits from an image file. Texture mapping is also
important for creating pen-and-ink style drawings.

Pen-and-ink style drawings
To produce pen-and-ink style drawings, a variety of edge
lines need to be added. For ribbons, many of the edge
lines can be added by darkening fragments of a surface if
they have an s or t coordinate close to the minimum or
maximum. For tubes, however, this approach is only use-
ful at the beginning or end of a segment, as what appears
to be an edge along the length of a tube is determined by
the view angle.

A solution for generating edge lines based on the view
angle is presented in Figure 7. Lighting calculations typi-
cally use a surface normal that indicates the direction a
fragment faces, a view vector from the fragment to the
camera, and a lighting vector from the fragment to the
light source (a fragment is similar to a pixel, but occurs
earlier in the graphics pipeline). As shown in Figure 7A, if
the angle between the surface normal (N) and the view
vector (V) is close to 90 degrees, then the surface is an edge
and should be darkened.

Instead of a sharp cutoff, the smoothing function graphed
in Figure 7B is used to determine edge line intensity: I =
exp2(-2d2), where d = 2cosine(θ) and θ is the angle
between N and V. This equation is from a paper on single-
pass wireframe rendering [46], where d was a distance.
The equation is also used to smooth edge lines generated
from texture coordinates.
Page 9 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
The result of these edge-line calculations can be seen by
comparing two images of the human growth hormone
protein [47]. In Figure 7C, a color model has been con-
verted to grayscale by using the equation: gray = 0.30 red +
0.59 green + 0.12 blue. In Figure 7D, edge lines generated
from the view angle have been applied along with texture-
coordinate based edges added to segment end caps.

The image in Figure 7D is shown in Figure 8 after using the
real-time halftoning technique [48] to mix a noise texture
(upper right inset) with grayscale lighting calculations by
using the smooth threshold function, color = 1.0 - aliasFac-
tor*(1.0 - {halftoneColor + grayscaleColor} [49]. An alias-
Factor of 4.0 is suitable for some applications of
halftoning [49], but a number closer to 1.0 is used in Pro-

Combining balls and sticks style side chains with ribbonsFigure 5
Combining balls and sticks style side chains with ribbons. β-Strands 3 (H52-L63) and 4 (W67-T78) of the retinol-bind-
ing protein [PDB:1AQB] are shown as ribbons (main chain) with side chains added as a balls and sticks style display. The small
gray spheres that appear to be imbedded in the ribbon are the α-carbons of the main chain.
Page 10 of 19
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQB

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
teinShader to obtain a more subtle effect. This function
allows for grayscale values, whereas some versions of half-
toning only allow black and white.

To emphasize bends in the middle of segments, a second
texture has been applied to the image in Figure 8 (see
lower right inset), and the intensity of the texture is pro-
portional to how strongly a segment's spline is bent. A
bend factor on a linear scale from 0.0 to 1.0 is calculated

by comparing the tangents at the beginning and end of a
segment. If the tangents have an angle close to 180 degrees
when placed tail to tail, the spline is nearly straight and
the bend factor is close to 0.0. If the angle is almost 50
degrees, the segment is strongly bent, and the bend factor
is close to 1.0.

Halftoning and bend textures can be selected from menus
in the Decorations panel shown in Figure 1. The textures

Texture mapping onto the curved surfaces of tube and ribbon segmentsFigure 6
Texture mapping onto the curved surfaces of tube and ribbon segments. (A) The local coordinate frames needed for
drawing a single amino acid as a tube or ribbon segment are shown using the same conventions as in Figure 3, except that a
small blue sphere marks the amino-terminal end of the segment, while a small red sphere marks the carboxyl-terminal end. The
same amino acid is drawn as a tube segment in (B) and as a ribbon segment in (C). In both (B) and (C), a blue end cap indicates
the amino-terminus of the segment, while a red end cap indicates the carboxyl-terminus. (D) This two-dimensional swirl image
was mapped onto the curved three-dimensional surfaces of the tube (B) and ribbon (C) segments by using (s, t) texture coor-
dinates that are assigned to each vertex of a segment when its geometry is first calculated.

(A) (B)

(C) (D)

0.0

s

t

0.5 1.0

0.0

0.5

1.0
Page 11 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
are stored as PNG [44] or JPEG [45] files, and the Help
menu has directions for adding new textures. Textures can
be assigned to individual segments of a ribbon or tube, so
the pen-and-ink style drawing can be mixed with other
options (Patterns, Text Labels, Wireframe, and Plain).

Selection of individual segments also allows important
regions of a protein to be highlighted by adding amino
acid side chains to pen-and-ink style drawings. As exam-
ples, in Figure 9 side chains involved in binding of human
growth hormone to its receptor [50] have been added as a

space filling (Figure 9A) or balls and sticks (Figure 9B)
style display, and the way that a loop region (red in Figure
9C) of the transmembrane β-barrel porin protein fills up
much of the channel [28,29] is illustrated with space fill-
ing side chains (Figure 9D).

Performance costs for shaders
The experiments in Figures 10 and 11 measure the per-
formance costs for using vertex and fragment shaders to
perform custom lighting, texture mapping, and edge-line
generation calculations. For a space filling style display,

Generation of edge lines for pen-and-ink style drawingsFigure 7
Generation of edge lines for pen-and-ink style drawings. (A) Edge lines for a tube are calculated by measuring the angle
between the view vector V and the surface normal vector N, and then darkening a surface if the angle is close to 90 degrees.
(B) The equation for edge-line intensity is based on the smooth function used for single-pass wireframe rendering [46]. (C) A
tube style display of the human growth hormone protein [PDB:1HGU], a four α-helix bundle structure [47], is shown in gray
scale and using Phong lighting with a single directional light and no specular highlighting. (D) Edge lines are added to the image
shown in (C).
Page 12 of 19
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HGU

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
Phong lighting using custom shaders (Figure 10A) pro-
duces a smoother, higher quality image than using the
built-in OpenGL lighting (Figure 10B). The performance
cost appears to be fairly minor (Figure 10C), with about a
12% reduction in frames per second during an animation
when the Phong shaders are used rather than the built-in
lighting. Similar results were seen for a tubes style display
(Figures 10D to 10F), with about a 17% reduction in
frames per second.

For Figure 11, the Decorations subpanel of the Protein-
Shader GUI was used to select shaders for special effects
while rendering a tubes style display. For each test protein
in Figure 11F, if the Phong lighting (Plain) frames per sec-
ond is considered to be 100%, switching to the wireframe
shaders or adding patterns by texture mapping typically
results in a fairly minor reduction of less than 20%, while
more complex calculations such as adding text labels or
halftoning result in reductions of almost 50%. Given the

Use of real-time halftoning and bend textures for pen-and-ink style illustrative renderingsFigure 8
Use of real-time halftoning and bend textures for pen-and-ink style illustrative renderings. The human growth
hormone protein image shown in Figure 7D is shown with a halftoning texture (upper right inset) and a bend texture (lower
right inset) mapped onto the surface of each tube segment. The halftoning texture is mixed with lighting calculations, whereas
the bend texture is multiplied by a bend factor from 0.0 to 1.0 that is determined by comparing the tangents at the very begin-
ning and end of a segment.
Page 13 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
quality of the images obtained, the performance costs for
using custom vertex and fragment shaders seems reasona-
ble. A caveat to these results, however, is that a fairly
recent good quality graphics card is required.

The proteins tested in Figure 11F range from 175 amino
acids to about 8,000 amino acids (see Table 3), and each
approximate doubling in protein size results in a roughly
2-fold reduction in frames per second. Overall, the 46-

Combining amino acid side chain displays with pen-and-ink style illustrative renderingsFigure 9
Combining amino acid side chain displays with pen-and-ink style illustrative renderings. (A) The human growth
hormone image from Figure 8 is displayed in a different orientation, and amino acid side chains involved in binding to the
growth hormone receptor [50] are shown as a space filling style display colored by amino acid type (the amino acids are F10,
F54, E56, I58, R64, Q68, D171, K172, E174, T175, F176, R178, C182, and V185). The α-carbons are also shown. (B) The same
as (A), except that the protein is shown as ribbons and the amino acid side chains are shown as a balls and sticks style display.
(C) The transmembrane β-barrel protein porin that was shown as a side view in Figure 2A is shown here with an end view of
the β-barrel. A loop region (loop 7) that fits inside the β-barrel is highlighted in red. (D) The same as (C), except that the
amino acid side chains of loop 7 are shown as a space filling style display and are colored by amino acid type. Loop 7 restricts
the size of the channel to a narrow region called the eyelet, which is about 8 angstroms in diameter and 9 angstroms in length
[28,29].
Page 14 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
fold increase in number of residues from the smallest to
the largest test protein (1AQB to 1AON) results in very
close to a 46-fold decrease in frames per second (from 153
to 3.2 frames per second for Phong lighting (Plain) and
from 86.7 to 1.9 frames per second for Halftoning). These

results indicate that, at least within this size range, render-
ing times scale in a nearly linear manner for tubes style
displays with custom shaders.

Comparison of Phong vertex and fragment shaders to OpenGL's built-in lightingFigure 10
Comparison of Phong vertex and fragment shaders to OpenGL's built-in lighting. (A) A close up view of a small
portion of the c-Jun homodimer [PDB:1JUN], a leucine zipper protein [39], is shown as a space filling (spheres) style display.
Lighting calculations were performed using the phong.vert and phong.frag shaders in the ProteinShader shaders directory. (B)
The same view as in (A), except that OpenGL's built-in lighting was activated by temporarily removing the phong.frag file from
the shaders directory and restarting the program (a dialog box warns the user that the Phong shaders could not be compiled,
and OpenGL's built-in lighting is used as a backup). (C) Several proteins were used to compare the frames per second that
could be rendered during an animation of a space filling style display while using OpenGL's built-in lighting (white bars) or
Phong shaders (black bars). (D) Phong lighting is used on a tubes style display of the same protein as in (A). (E) The same view
as (D), except that OpenGL's built-in lighting is used. (F) The same comparisons as in (C), except that a tubes style display is
used. See Table 3 for the sizes of the test proteins and notes on the computer used for performance testing.

Table 3: Proteins used in performance testing.

PDB ID Residues Atoms Protein

1AQB 175 1574 retinol-binding protein
1BL8 388 2824 potassium channel

6ADH 748 5669 alcohol dehydrogenase
13PK 1660 12508 phosphoglycerate kinase
1E79 3315 25248 F1 ATPase inhibited by DCCD

1AON 8015 59674 GroEL-GroES-(ADP)7 chaperonin complex

The performance tests graphed in Figures 10 to 12 were made on a Macintosh 2.16 GHz Intel Core 2 Duo with 2 GB of RAM and an ATI Radeon
X1600 graphics card with 256 MB VRAM. To prevent an out of memory error for the largest protein tested, the chaperonin complex, the
maximum size of the Java heap was increased to 512 MB by adding "-Xmx512m" as an argument to the java command in the run.sh script provided
with the ProteinShader distribution.
Page 15 of 19
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AON
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1JUN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AQB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BL8
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=6ADH
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=13PK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1E79
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AON

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
Antialiasing
When pen-and-ink style ribbons and tubes are drawn on
a white background, the darkened edges often appear to
be quite jagged, as shown in Figure 12A. This phenomena,
which is referred to as aliasing [51,52], occurs because a
pixel is determined to be all the way in or out of an object
based on whether the center of the pixel falls within a
boundary line.

The ProteinShader control panel has an Antialiasing sub-
panel, where the option to antialias black edges of half-
toning images can be selected. By adding gray pixels

outside object boundaries, this option partially smooths
out the jagged edges, as shown in Figure 12B. To accom-
plish this effect, a translucent black silhouette of each tube
or ribbon segment is rendered four times with a slight off-
set (a half pixel up, down, left, or right) before rendering
the segment with halftoning.

The Antialiasing subpanel also provides an option for
smoothing any image by rendering the entire scene sev-
eral times with jitter and blending the images. The scene
can be jittered from 2 to 16 times using jitter values taken
from the OpenGL Programming Guide [53], and this

Performance costs of texture mapping, edge line generation, and real-time halftoningFigure 11
Performance costs of texture mapping, edge line generation, and real-time halftoning. An α-helix is shown after
using the Decorations subpanel of the ProteinShader GUI to select Plain (A), Wireframe (B), Text Labels (C), Patterns (D), or
Halftoning (E). (F) Several proteins were used to compare frames per second during an animation for the type of images shown
in (A) through (E). The items in the graph legend are presented in the same order as (A) through (E). See Table 3 for the sizes
of the test proteins and notes on the computer used for performance testing.

0

25

50

75

100

125

150

1AQB 1BL8 6ADH 13PK 1E79 1AON

fr
am

es
 p

er
 s

ec
on

d

Plain

Wireframe

Text Labels

Patterns

Halftoning

Protein Data Bank ID

(A) (D)(B) (E)(C)

(F)
Page 16 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
antialiasing can be combined with the silhouette-based
antialiasing to produce nicely smoothed dark edges, as
shown in Figures 12C and 12D.

Antialiasing dramatically slows rendering during an ani-
mation, as shown in Figure 12E. The silhouette-based

antialiasing slows rendering by about 3-fold, while jitter-
ing the entire scene n times will slow rendering down
about n-fold. Because of the performance costs, antialias-
ing is intended mainly for saving static images as PNG or
JPEG files. Antialiasing is used on all of the images in pre-
vious figures, except for Figures 10 and 11.

Antialiasing object edgesFigure 12
Antialiasing object edges. (A) The dark edges of a small portion of the retinol-binding protein from Figure 1 display a
marked alias (jagged edge) effect if nothing special is done to smooth out the edges. (B) Same as A, except that the dark edges
have been partially smoothed by using the Antialiasing panel of the ProteinShader GUI to select an option to antialias the black
edges of halftoning images by using translucent black silhouettes to add gray pixels to the edges (see Antialiasing section of
text). (C) Same as (B), except that the Antialiasing panel has been used to select an option to perform additional antialiasing by
jittering the entire scene 3 times and blending the images. Each jittered image is offset by a fraction of a pixel from the original
image. (D) Same as (C), except that the scene is jittered 6 times. (E) The performance costs for antialiasing are measured by
comparing frames per second during a constant rotation. See Table 3 for the sizes of the test proteins and notes on the com-
puter used for performance testing. The items in the graph legend are presented in the same order as (A) through (D). The
images were generated on a monitor with a 72 pixels per inch resolution, where the alias effect in (A) is quite obvious. Because
of the dramatic slowdown in rendering time, antialiasing is primarily intended for saving static images, not for animations.

0

10

20

30

40

50

60

70

80

90

1AQB 1BL8 6ADH 13PK 1E79 1AON

fr
am

es
 p

er
 s

ec
on

d

Aliased

Silhouettes

Jitter 3X

Jitter 6X

Protein Data Bank ID

(A) (D)(B) (C)

(E)
Page 17 of 19
(page number not for citation purposes)

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
Conclusion
The ProteinShader program is a platform-independent
Java-OpenGL molecular visualization tool that exploits
recent advances in programmable graphics cards. The pri-
mary accomplishment of this free, open-source code pro-
gram is its ability to render a protein as a cartoon-style
drawing that approximates what an artist might create by
hand using pen and ink (see Figures 1, 2, 8, and 9). The
artistic effects employed by ProteinShader rely heavily on
texture mapping, where two-dimensional images are sys-
tematically mapped onto the curved surfaces of three-
dimensional ribbons and tubes. To minimize distortions
or irregularities in the images used as textures, a hybrid
Hermite-SLERP algorithm was developed for generating
smooth, gradually rotating tubes and ribbons.

The custom texture mapping and lighting calculations
needed for rendering pen-and-ink style images are imple-
mented using vertex and fragment shaders written in the
OpenGL Shading Language [12,13], which is supported
on most new graphics cards for ordinary desktop and lap-
top computers. Shaders are also used for mapping text
labels and decorative textures onto the surfaces of ribbons
and tubes shown in color.

To create images suitable for publication, the program has
antialiasing options that can nicely smooth out the jagged
(pixelated) edges that are often seen in computer-gener-
ated images. However, antialiasing dramatically slows
rendering time, so it may not be suitable for animations,
unless a fairly high-end graphics card is used. The per-
formance costs for using custom shaders rather than
OpenGL's built-in lighting equations appears to be fairly
minor on recent graphics cards.

As an aid to future development, a Frenet frames style dis-
play allows the user to visualize the mathematics that
underlies the tubes and ribbons. Key areas for future
development are representations of DNA, which is not
currently supported, and selection by clicking on parts of
an image. In the present version of the ProteinShader pro-
gram, all manipulations are done through user-friendly
menus and control panels.

Availability and requirements
• Project name: ProteinShader

• Project home page: http://proteinshader.source
forge.net

• Operating system: Platform independent (tested on
Linux, Macintosh OS X, and Windows XP)

• Programming languages: Java and OpenGL Shading
Language

• Other requirements: Java 1.5 and a graphics card
supporting OpenGL 2.0 or higher.

• License: GNU General Public License

• Restrictions to use by non-academics: None

Authors' contributions
JRW wrote the program and authored the manuscript. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
The ProteinShader program was originally written as a thesis project for
the ALM in Information Technology program at the Harvard University
Extension School, and I thank my thesis director, Hanspeter Pfister, who
provided critical feedback on the project and suggested the use of the real-
time halftoning technique developed by Freudenberg, Masuch, and Strot-
hotte [48,49]. I am also grateful to Brad Fish for making his glFont source
code freely available and to Jerome Jouvie and Ron Sullivan for making their
TextureLoader source code freely available. The license agreements and
terms of use for the glFont and TextureLoader libraries are in the licenses
subdirectory of the ProteinShader distribution.

References
1. RSCB Protein Data Bank [http://www.rcsb.org]
2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids
Res 2000, 28:235-242.

3. Richardson JS: The anatomy and taxonomy of protein struc-
ture. Adv Protein Chem 1981, 34:167-339.

4. World Index of Biomolecular Visualization Resources [http:/
/molvis.sdsc.edu/visres/molvisfw/titles.jsp]

5. Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for
all. Trends Biochem Sci 1995, 20(9):374.

6. Home Page for RasMol and OpenRasMol [http://
www.openrasmol.org]

7. Bernstein HJ: Recent changes to RasMol, recombining the var-
iants. Trends Biochem Sci 2000, 25(9):453-455.

8. Martz E: Protein Explorer: easy yet powerful macromolecular
visualization. Trends Biochem Sci 2002, 27(2):107-109.

Additional file 1
ProteinShader program without source code. This compressed file con-
tains the complete ProteinShader program including associated libraries,
but no source code. A README.txt file gives an overview of the Protein-
Shader distribution, and the index.html file in the help subdirectory has
directions on getting started with the program as well as a set of tutorials.

[http://www.biomedcentral.com/content/supplementary/1472-
6807-9-19-S1.zip]

Additional file 2
ProteinShader program with source code. This compressed file contains
everything in the binary distribution plus the Java source code and a
build.xml file for compiling with Ant.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-9-19-S2.gz]
Page 18 of 19
(page number not for citation purposes)

http://proteinshader.sourceforge.net
http://proteinshader.sourceforge.net
http://www.biomedcentral.com/content/supplementary/1472-6807-9-19-S1.zip
http://www.biomedcentral.com/content/supplementary/1472-6807-9-19-S2.gz
http://www.rcsb.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7020376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7020376
http://molvis.sdsc.edu/visres/molvisfw/titles.jsp
http://molvis.sdsc.edu/visres/molvisfw/titles.jsp
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.openrasmol.org
http://www.openrasmol.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11852249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11852249

BMC Structural Biology 2009, 9:19 http://www.biomedcentral.com/1472-6807/9/19
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

9. KiNG Display Software [http://kinemage.biochem.duke.edu/soft
ware/king.php]

10. WebMol Java PDB Viewer [http://www.cmpharm.ucsf.edu/cgi-
bin/webmol.pl]

11. Jmol: an open-source Java viewer for chemical structures in
3D [http://www.jmol.org]

12. OpenGL Shading Language Specification [http://
www.opengl.org/documentation/glsl]

13. Shreiner D, Woo M, Neider J, Davis T: OpenGL 2.0 and the
OpenGL Shading Language. In OpenGL Programming Guide Fifth
edition. Upper Saddle River, NJ: Addison-Wesley; 2005:623-664.

14. Visual Molecular Dynamics [http://www.ks.uiuc.edu/Research/
vmd]

15. Humphrey W, Dalke A, Schulten K: VMD: visual molecular
dynamics. J Mol Graph 1996, 14(1):33-38.

16. QuteMol [http://qutemol.sourceforge.net]
17. Tarini M, Cignoni P, Montani C: Ambient occlusion and edge

cueing for enhancing real time molecular visualization. IEEE
Trans Vis Comput Graph 2006, 12(5):1237-1244.

18. The Swing Tutorial [http://java.sun.com/docs/books/tutorial/
uiswing/index.html]

19. Javadoc Tool Home Page [http://java.sun.com/j2se/javadoc/
index.jsp]

20. ProteinShader Project Summary Page [http://sourceforge.net/
projects/proteinshader]

21. OpenGL [http://www.opengl.org]
22. Shreiner D, Woo M, Neider J, Davis T: OpenGL Programming

Guide. Fifth edition. Upper Saddle River, NJ: Addison-Wesley; 2005.
23. The JOGL API Project [http://jogl.dev.java.net]
24. Davis G: Learning Java Bindings for OpenGL (JOGL). Bloom-

ington, IN: AuthorHouse; 2004.
25. Rost RJ: OpenGL Shading Language. Upper Saddle River, NJ:

Addison-Wesley; 2006.
26. Shreiner D, Woo M, Neider J, Davis T: Display lists. In OpenGL Pro-

gramming Guide Fifth edition. Upper Saddle River, NJ: Addison-Wes-
ley; 2005:277-300.

27. Zanotti G, Panzalorto M, Marcato A, Malpeli G, Folli C, Berni R:
Structure of pig plasma retinol-binding protein at 1.65 A res-
olution. Acta Crystallogr D Biol Crystallogr 1998, 54(5):1049-1052.

28. Brandon C, Tooze J: Membrane proteins. In Introduction to Protein
Structure Second edition. New York: Garland Publishing;
1998:223-250.

29. Weiss MS, Schulz GE: Porin conformation in the absence of cal-
cium. Refined structure at 2.5 A resolution. J Mol Biol 1993,
231(3):817-824.

30. Kobe B, Deisenhofer J: Mechanism of ribonuclease inhibition by
ribonuclease inhibitor protein based on the crystal structure
of its complex with ribonuclease A. J Mol Biol 1996,
264(5):1028-1043.

31. Imada K, Inagaki K, Matsunami H, Kawaguchi H, Tanaka H, Tanaka N,
Namba K: Structure of 3-isopropylmalate dehydrogenase in
complex with 3-isopropylmalate at 2.0 A resolution: the role
of Glu88 in the unique substrate-recognition mechanism.
Structure 1998, 6(8):971-982.

32. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen
SL, Chait BT, MacKinnon R: The structure of the potassium
channel: molecular basis of K+ conduction and selectivity.
Science 1998, 280(5360):69-77.

33. Hill FS: Extruded shapes. In Computer Graphics using OpenGL Sec-
ond edition. Upper Saddle River, NJ: Prentice Hall; 2000:310-321.

34. Hill FS: Hermite interpolation. In Computer Graphics using OpenGL
Second edition. Upper Saddle River, NJ: Prentice Hall; 2000:644-645.

35. Gamasutra: Rotating Objects Using Quaternions [http://
www.gamasutra.com/features/19980703/quaternions_01.htm]

36. Sacred Software: Quaternions [http://www.sacredsoftware.net/
tutorials/Quaternions/Quaternions.xhtml]

37. Shoemake K: Animating rotation with quaternion curves.
Comput Graph (ACM) 1985, 19(3):245-254.

38. Maths: Conversion Matrix to Quaternion [http://www.euclide
anspace.com/maths/geometry/rotations/conversions/matrix
ToQuaternion/index.htm]

39. Junius FK, O'Donoghue SI, Nilges M, Weiss AS, King GF: High reso-
lution NMR solution structure of the leucine zipper domain
of the c-Jun homodimer. J Biol Chem 1996, 271(23):13663-13667.

40. Hill FS: Phong shading. In Computer Graphics using OpenGL Second
edition. Upper Saddle River, NJ: Prentice Hall; 2000:435-436.

41. OpenGL Directional Lights II [http://www.lighthouse3d.com/
opengl/glsl/index.php?ogldir2]

42. Hill FS: Adding textures to faces. In Computer Graphics using
OpenGL Second edition. Upper Saddle River, NJ: Prentice Hall;
2000:439-465.

43. Shreiner D, Woo M, Neider J, Davis T: Assigning texture coordi-
nates. In OpenGL Programming Guide Fifth edition. Upper Saddle
River, NJ: Addison-Wesley; 2005:420-421.

44. PNG: Portable Network Graphics [http://www.libpng.org/pub/
png]

45. JPEG: Joint Photographic Experts Group [http://
www.jpeg.org]

46. Baerentzen JA, Nielsen SL, Gjael M, Larsen BD, Christensen NJ: Sin-
gle-pass wireframe rendering. In ACM SIGGRAPH Conference
Sketches: July 2006; Boston ACM Press, New York; 2006.

47. Chantalat L, Jones ND, Korber F, Navaza J, Pavlovsky AG: The crys-
tal-structure of wild-type growth-hormone at 2.5 angstrom
resolution. Protein Pept Lett 1995, 2:333-340.

48. Freudenberg B, Masuch M, Strothotte T: Real-time halftoning: a
primitive for non-photorealistic shading. In Proceedings of the
13th Eurographics Workshop on Rendering: 26–28 June 2002; Pisa, Italy
Springer-Verlag Wien, New York; 2002:227-232.

49. Freudenberg B, Masuch M, Strothotte T: Real-time halftoning: fast
and simple stylized shading. Game Programming Gems 4
2004:443-450 [http://wwwisg.cs.uni-magdeburg.de/~stefans/npr/
entry-Freudenberg-2004-RTH.html]. Charles River Media

50. Cunningham BC, Wells JA: High-resolution epitope mapping of
hGH-receptor interactions by alanine-scanning mutagene-
sis. Science 1989, 244(4908):1081-1085.

51. Hill FS: Aliasing; antialiasing techniques. In Computer Graphics
using OpenGL Second edition. Upper Saddle River, NJ: Prentice Hall;
2000:577-586.

52. Shreiner D, Woo M, Neider J, Davis T: Antialiasing. In OpenGL Pro-
gramming Guide Fifth edition. Upper Saddle River, NJ: Addison-Wes-
ley; 2005:247-260.

53. Shreiner D, Woo M, Neider J, Davis T: The accumulation buffer.
In OpenGL Programming Guide Fifth edition. Upper Saddle River, NJ:
Addison-Wesley; 2005:482-495.
Page 19 of 19
(page number not for citation purposes)

http://kinemage.biochem.duke.edu/software/king.php
http://kinemage.biochem.duke.edu/software/king.php
http://www.cmpharm.ucsf.edu/cgi-bin/webmol.pl
http://www.cmpharm.ucsf.edu/cgi-bin/webmol.pl
http://www.jmol.org
http://www.opengl.org/documentation/glsl
http://www.opengl.org/documentation/glsl
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744570
http://qutemol.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17080857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17080857
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/j2se/javadoc/index.jsp
http://java.sun.com/j2se/javadoc/index.jsp
http://sourceforge.net/projects/proteinshader
http://sourceforge.net/projects/proteinshader
http://www.opengl.org
http://jogl.dev.java.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9757135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7685826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7685826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9000628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9739088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9739088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525859
http://www.gamasutra.com/features/19980703/quaternions_01.htm
http://www.gamasutra.com/features/19980703/quaternions_01.htm
http://www.sacredsoftware.net/tutorials/Quaternions/Quaternions.xhtml
http://www.sacredsoftware.net/tutorials/Quaternions/Quaternions.xhtml
http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662824
http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2
http://www.lighthouse3d.com/opengl/glsl/index.php?ogldir2
http://www.libpng.org/pub/png
http://www.libpng.org/pub/png
http://www.jpeg.org
http://www.jpeg.org
http://wwwisg.cs.uni-magdeburg.de/~stefans/npr/entry-Freudenberg-2004-RTH.html
http://wwwisg.cs.uni-magdeburg.de/~stefans/npr/entry-Freudenberg-2004-RTH.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2471267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2471267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2471267
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and discussion
	Overview of the ProteinShader GUI
	General strategy for tubes and ribbons
	Local coordinate frames for a-carbons
	Hermite interpolation
	SLERP
	Hermite-SLERP algorithm
	Frenet Frames
	Untwisting b-strands
	Combining side chains with ribbons
	Segments and texture mapping
	Pen-and-ink style drawings
	Performance costs for shaders
	Antialiasing

	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

