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Abstract
Background: Several studies have demonstrated that protein fold space is structured hierarchically and
that power-law statistics are satisfied in relation between the numbers of protein families and protein folds
(or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid
residue segments taken from various protein folds. We used inter-residue contact patterns to measure
the tertiary structural similarity among segments. Using this similarity measure, the segments were
classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special
resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we
constructed networks by linking structurally similar clusters.

Results: The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning
is consistent with results of earlier studies, where similar partitioning was reported in classifying protein
domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-
networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with
numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the
major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-
partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct
a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network
was characterized by non-power-law statistics, which is also a novel finding.

Conclusion: Main findings are: (1) The universe of 50 residue segments found here was characterized by
non-power-law statistics. Therefore, the universe differs from those ever reported for the protein
domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca.
40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks
encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the
dozens of elements (sub-networks).
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Background
Despite the vast number of amino-acid sequences, protein
folds (or superfamilies) are quantitatively limited [1-4].
Consequently, protein fold classification is an important
subject for elucidating the construction of protein tertiary
structures. A key word to characterize protein folds is
"hierarchy". Well-known databases – SCOP [5] and CATH
[6] – have classified the tertiary structures of protein
domains hierarchically. Similarly, a tree diagram was pro-
duced to classify the folds [7].

Mapping the tertiary structures of full-length protein
domains to a conformational space, a structure distribu-
tion is generated: a so-called protein fold universe [8-11].
A key word to characterize the fold universe is "space par-
titioning". A two-dimensional (2D) representation of the
fold universe was proposed in earlier reports [12,13],
where the universe was partitioned into three fold (α, β,
and α/β) regions. A three-dimensional (3D) fold universe
was partitioned into four fold regions: all-α, all-β, α/β,
and α+β [10]. Software that is accessible on a web site,
PDBj http://eprots.protein.osaka-u.ac.jp/globe.cgi, serves
the distribution on a global surface [14].

The structures of short protein segments have also been
studied: Segments of a few (2–3) amino-acid residues
long were projected in a two-dimensional (2D) space,
where some typical combinations frequently appeared
[15]. Fold universes of segments of 4–9 residues long [16]
and 10–20 residues long [17-19] showed several clearly
distinguishable structural clusters. A systematic survey for
10–50 residue segments has shown that the fold universe
is classifiable into segment universes of three types: short
(10–22 residues), medium (23–26 residues), and long
(27–50 residues) [20]. In this work, the 3D shape of the
universe varied abruptly at 23 and 27 residues long. A
sequence-structure correlation found in short segments
supports the tertiary structure prediction of full-length
proteins [21-23].

These studies of protein segments and domains exemplify
some structural clusters existing in the low-dimensional
(2D or 3D) conformational space. The benefit of the low-
dimensional expression is that one can readily imagine
the shape of the universe. Increasing the segment length,
however, the lowering of the space dimensionality hides
the internal architecture of the structure distribution.
Consequently, the internal architecture of the distribution
for 50-residue segments (or longer segments) is unclear
[20]. To compensate the full-dimensional information to
the low-dimensional expression, a network is helpful in
which two structures close to each other in the full-dimen-
sional conformational space are connected.

Presume an ensemble of points (or nodes). Inter-node
linkages form the networks. The network concept has

been applied recently to biological systems [24-27]. Struc-
turally similar segments can be linked for the segment
fold universe. The structural similarity is computed for the
overall structures of two segments (i.e., all coordinates of
the segments). Therefore, the similarity is a quantity
defined in full-dimensional space. Consequently, a 2D or
3D universe consisting of linked nodes involves full-
dimensional information. To assign inter-node linkage in
the ensemble, a score is important to quantify the struc-
tural similarity between two tertiary structures. Inter-resi-
due contact (native contact) patterns have been used as
reaction coordinates in protein folding studies [28-30].
When two structures have similar native contact patterns,
they exhibit similar inter-residue packing. Results of sev-
eral studies indicate that the native contacts are useful
indicators to assess the protein folding process [31-43]
and folding time scale [41-43].

Herein, we constructed a fold network of 50-residue seg-
ments taken from four major structural classes of protein
domains. We used the inter-residue contact pattern for the
similarity score. The resultant networks showed the main
partitioning, as expected. Furthermore, as a new finding,
the network of the segment structures was partitioned into
dozens of universal communities (sub-networks). From
these observations, we propose a novel protein structure
hierarchy with community sites at a hierarchy level. The
novelty of the currently identified hierarchy was ensured
by non-power-law statistics in the hierarchy, which differs
from power-law statistics characterizing other hierarchies
ever found for protein tertiary structures.

Results
As described in Methods, 50-residue segments were taken
from representative proteins and classified into Kc clusters,
each of which consists of structurally similar segments.
We calculated the native contact patterns that are com-
mon in each cluster, and constructed networks by con-
necting the clusters according to their contact pattern
similarity. In Results, we first examine the general aspects
of the obtained clusters. Second, we check the conforma-
tional distribution using a 3D map. Finally, we analyze
the characterization of 50-residue segment universe using
a network analysis.

As described in this paper, indices i and j are used for spec-
ifying residue positions in a 50-residue segment, s and t
for segment ordinal numbers, u and v for cluster ordinal
numbers, and w for a community ordinal number.

General aspects for clusters
Figure 1A portrays the dependence of the average cluster
size <S > (Eq. 3) on the number Kc of clusters. Actually, Kc
determines the spatial resolution to view the universe of
the 50-residue segments: With decreasing Kc, <S >
increases because structurally different segments are fused
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into a cluster. The change of <S > was rapid for small Kc
and slow for larger Kc.

The segments were generated by sliding a 50-residue win-
dow one residue by one residue along the domain
sequences (see Methods). Consequently, two segments
taken from the same protein domain with mutual adja-
cency in the sequence might have similar structures and
might therefore be involved in a cluster. We did the fol-
lowing analysis to verify this possibility quantitatively:
Presume that a cluster u involves nm segments originated

in a protein m. Subsequently, we introduced a quantity:

, where the summation is taken over pro-

teins that supply segment(s) to the cluster u, and Np is the

number of those proteins. Figure 1B presents a plot of the

average of Ou as a function of Kc: . For

Kc = 1000, <O > converged to 2.2. Consequently, a protein

supplies only two or three segments to a cluster on aver-
age: i.e., a cluster does not contain excessive segments

derived from a single protein for Kc ≥ 1000.

Figure 2 depicts the number (nu) of segments involved in
a cluster as a function of the cluster ordinal number for Kc
= 1000. The decay of nu is non-exponential. It is particu-
larly interesting that even cluster #950 involves more than
100 segments, which means that the cluster comprises

more than 40 (= 100/2.5) different proteins (<O > ≈ 2.5
for Kc = 1000). In the last 50 clusters, nu decreased quickly.
These clusters consist of randomly structured segments.
Although segments were taken from all-α, all-β, α/β, and
α+β SCOP classes, the structures can be random.

Figure 3 depicts <f >Kc (Eq. 9) depending on Kc. The value
of <f >Kc was 0.60–0.65 for Kc ≥ 1000. The similarity
threshold f0 for assigning the inter-cluster linkage (Eq. 7)
was 0.7. Figure 3 presents that the inter-residue similarity
is compatible with the intra-cluster similarity.

O n Nu m
m

= ∑ / p

< >= ∑O O Ku
u

K c

c/

<S > and <O > as a function of KcFigure 1
<S > and <O > as a function of Kc. (A) <S > is the average cluster size (Eq. 3). The error bar shows the standard deviation 
over clusters. (B) <O > is the average number of segments supplied by a protein to a cluster (see the text for a detailed defini-
tion of <O >).

Number nu of segments in a cluster as a function of the ordi-nal number of the clusterFigure 2
Number nu of segments in a cluster as a function of 
the ordinal number of the cluster.
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Fold universe and network of clusters
The inter-cluster (inter-node) links were assigned to the Kc
clusters according to the adjacency matrix auv. Directly
connected clusters have mutually similar inter-residue
contact patterns. Internal architectures of the networks
were investigated by dividing the networks into commu-
nities (sub-networks) using Newman's method [44]. In
parallel, we projected the networks into a 3D space to
obtain positions in the conformational space (see Addi-
tional file 1 for details). Although the clusters were
embedded in the 3D space, the inter-cluster links were
given to clusters that are mutually close in the full-dimen-
sional space.

Each community was characterized by five biophysical
structural features: the α, β, αβ secondary-structure ele-
ments, the radius of gyration, and the number of inter-res-
idue contacts, denoted respectively as nα, nβ, nαβ, Rg, and
Ncontact. Then, the communities were classified into four
types (α, β, αβ, and randomly structured communities)
depending on the five structural features (see Methods for
details).

Figure 4 portrays the 3D cluster distributions at Kc = 1000,

2000, and 3000, where a single color was assigned to a
community depending on secondary-structure elements
nα, nβ, and nαβ (see Additional file 1 for details). This fig-

ure clearly illustrates that the 3D cluster network is parti-

tioned into four fold-regions (mainly α, mainly β, αβ, and
randomly structured regions) independent of Kc, which

respectively consist of α, β, αβ, and randomly structured
communities. We termed this partitioning as "main parti-
tioning". Figure 5 shows that the overall shape of the net-

work adopted a three-leaf clover shape (mainly α, mainly

β, and αβ regions surrounding the randomly structured
region). We checked quantitatively whether the 3D distri-
bution reflected the original full-dimensional distribution

by calculating F-measure  (see Additional file 1 for

the definition of ). The value of  was, respec-

tively, 0.804 for Kc = 1000, 0.673 for Kc = 2000, and 0.593

for Kc = 3000. The large value of  for Kc = 1000 indi-

cates that the 3D cluster distribution fairly reflects the full-

dimensional distribution. The  value decreased con-

Fmax

Fmax Fmax

Fmax

Fmax

Averaged correlation coefficient <f >Kc (Eq. 9) for intra-clus-ter segments as a function of KcFigure 3
Averaged correlation coefficient <f >Kc (Eq. 9) for 
intra-cluster segments as a function of Kc.

Networked 3D distribution of clusters for Kc = 1000 (A), 2000 (B), and 3000 (C)Figure 4
Networked 3D distribution of clusters for Kc = 1000 (A), 2000 (B), and 3000 (C). In this figure, a sphere represents a 
cluster. The larger the sphere, the more segments the cluster involves. The coloring method for clusters and inter-cluster links 
is explained briefly below (see Additional file 1 for details): The α, β, and αβ communities are, respectively, red, blue, and 
green. The larger the secondary-structure contents in a community, the greater the color strength. All randomly structured 
communities are shown in black. Colors assigned to cluster-cluster links are as follows: red for links within α communities, 
blue for those within β communities, green for those within αβ communities, and black for other links.
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comitantly with increasing Kc. However, the three-leaf clo-

ver shape of the distribution was conserved at various Kc,

which strongly suggests that the main partitioning exists
in the 50-residue segments universe.

Figure 6 displays segment tertiary structures picked from
clusters. This figure portrays that the structure classifica-
tion by the five structural features correlates well with the
visual secondary-structure constitution. Most segments

originating in the all-α SCOP fold class were assigned to
the α communities (see a-1 and a-2 in Figure 6). Those
that originated in the all-β SCOP fold class were assigned
to the β communities (see b-1 – b-3). The majority of seg-
ments taken from the α/β SCOP fold class were assigned
to the αβ communities (see c-1 – c-4), although some
were involved in other fold regions. In contrast, segments
from the α+β SCOP fold class scattered to all the fold
regions because the α+β proteins are a mixture of helices,
strands, and randomly structured fragments, where the α
and β secondary-structure elements are not necessarily
neighbors to each other in the sequence. Consequently,
the 50-residue segments from the α+β proteins can
involve various structural features. The randomly struc-
tured region contained clusters with a few secondary-
structure elements (see r-1 – r-4 in Figure 6). However, its
polypeptide packing was loose, as portrayed in Figure 7,
where the randomly structured clusters had large Rg.

Non-power-law statistics
The protein-domain universe is known to be an extremely
biased distribution [8,45]. Many studies have suggested a
power-law statistic to represent the relation between the
number of families and the number of folds [9,46,47]. For
instance, Shakhnovich and co-workers created a protein-
domain universe graph (PDUG) with adoption of a DALI

Main and sub-partitioning of the cluster networkFigure 5
Main and sub-partitioning of the cluster network.

Tertiary structures picked from 3D distribution for Kc = 1000 ColorsFigure 6
Tertiary structures picked from 3D distribution for Kc = 1000 Colors. of clusters are the same as those depicted in 
Figure 4. Inter-cluster links are not shown. This figure is presented with the same orientation as that of Figure 4.
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Z-score for the similarity score, and showed that the
domain universe followed a power-law distribution [9].
Consequently, it is interesting to check if the currently
produced network of the 50-residue segments follows the
power law distribution.

First, we calculated the number (nseg) of segments
involved in each cluster. Figures 8A, B, and 8C portray the
relation between nseg and the number of clusters that
respectively involve nseg segments at Kc = 1000, 2000, and
3000. The distributions were symmetric (the value of
skewness was 0.138 for Kc = 1000, 0.006 for Kc = 2000,

and -0.066 for Kc = 3000) on the X-axis, log(nseg), and far
from the power-law statistics. Therefore, the currently
obtained universe differs from those that have ever been
reported. Additionally, we calculated the number (n'seg) of
segments involved in each community, and showed the
relation between n'seg and the number of communities
involved n'seg fragments for Kc = 1000, 2000, and 3000. We
again obtained non-power-law statistics in the relation
(data not shown).

Next, we calculated a connectivity distribution, P(k), of
the networks to investigate details of the cluster network
[48]. The P(k) is defined as a distribution function of clus-
ters that have k links to other clusters. Figures 9A, B, and
9C respectively present P(k) at Kc = 1000, 2000, and 3000.
Subsequently, P(k) decays exponentially with increasing
k. Therefore, these distributions are exponential ones (or
possibly truncated power-law distributions). Conse-
quently, non-power-law networks (i.e., non-scale-free
networks) are again observed for the current networks.

Robustness of communities
We conducted modularity analysis to study cluster net-
works from another perspective. First, the networks were
divided into communities (see Methods). A modularity
Qmod is an index to assess how well the network is divided
into communities [49]: 0 ≤ Qmod ≤ 1. A network with a
large Qmod is characterized by numerous intra-community
links and a few inter-community links. Figure 10A por-
trays the Kc dependence of Qmod, which has the maximum
at Kc = 200, indicating that the communities were highly
isolated at Kc = 200. For Kc > 200, the communities were
connected gradually by links, thereby decreasing Qmod.
For Kc ≥ 1000, Qmod converged to a value (0.63), which
indicates that the 50-residue segment network is charac-
terized by high modularity.

Radius of gyration Rg of clustersFigure 7
Radius of gyration Rg of clusters. With increasing Rg, the 
cluster color is redder. This figure is presented with the 
same orientation as that of Figure 4.

Relation between number (nseg) of segments involved in a cluster and number of clusters for Kc = 1000 (A), 2000 (B), and 3000 (C)Figure 8
Relation between number (nseg) of segments involved in a cluster and number of clusters for Kc = 1000 (A), 
2000 (B), and 3000 (C).
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We next calculated the number of communities at various
Kc. We classified the communities into major and minor
communities. Major ones are communities consisting of
more than three clusters. Then, minor ones are small iso-
lated communities consisting of only one or two clusters
without links to other communities. No community
involves only one cluster linked to another community.
The Kc dependence of the number (Ncom) of the major
communities is presented in Figure 10B. The minor com-
munities do not characterize the overall property of the
network because only 10% of clusters belong to the minor
communities at any Kc. The increment of Ncom with
increasing Kc was rapid for 100 ≤ Kc ≤ 1000 and slow for

Kc ≥ 1000. The values of Ncom were, respectively, 36, 38,
and 38 at Kc = 1000, 2000, and 3000. This result shows
that the number of communities was conserved for Kc ≥
1000.

In addition to the analysis presented above, we checked to
determine whether the contents (i.e., segments) involved
in the communities are conserved with variation of Kc.
Subsequently, we assigned a single color to communities
common to the universes at Kc = 1000 (Figure 11A), 2000
(Figure 11B), and 3000 (Figure 11C). For instance, the
majority of segments in the orange community of Figure
11A were involved in the orange ones in Figures 11B and

Connectivity distribution P(k) of cluster network at Kc = 1000 (A), 2000 (B), and 3000 (C)Figure 9
Connectivity distribution P(k) of cluster network at Kc = 1000 (A), 2000 (B), and 3000 (C). The X-axis k shows the 
number of links of a cluster connected to other clusters. Solid lines are the best-fit curves drawn assuming that P(k) decays 
with k exponentially.

Kc dependence of Ncom and QmodFigure 10
Kc dependence of Ncom and Qmod. (A) The Kc dependence of modularity Qmod (Eq. 10). (B) The bar graph shows the Kc 
dependence of number, Ncom, of communities assigned to the left y-axis. The line with filled circles represents the ratio 
(assigned to right y-axis) of clusters in major communities to all clusters.
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11C. Consequently, the communities are conserved well
in the universes at different Kc. In other words, the net-
work partitioning into communities is universal, inde-
pendent of the spatial resolution (i.e., Kc). We termed this
inter-community partitioning as "sub-partitioning",
whereas the main partitioning is inter-regional partition-
ing (Figure 5).

Discussion
Herein, we described universal partitioning of two types
in the 50-residue segment networks (Figure 5) based on
the network analysis. The main partitioning (the network
separation by fold regions) resembles that in the classifi-
cation scheme of existing databases such as CATH and
SCOP. The mainly α, mainly β, αβ, and randomly struc-
tured regions consist respectively of α, β, αβ, and ran-
domly structured communities. However, for the first
time, we found communities in the segment fold uni-
verse: this sub-partitioning (network separation by com-
munities) is a novel finding. High modularity ensures
persistently existing communities, where the intra-com-
munity clusters are linked tightly and the inter-commu-
nity clusters are linked weakly. The universality of the sub-
partitioning was remarkable for f0 (0.65 ≤ f0 ≤ 0.75). Nev-
ertheless, outside this range, the universality vanishes
gradually. Our results reveal a hierarchically structured
universe for 50-residue segments, as depicted in Figure 12.
This hierarchy is robust because the main and sub-parti-
tionings are independent of Kc for Kc ≥ 1000.

Figure 10B portrays that the current universe for the 50-
residue segments consists of some dozens (ca. 40) of
major communities. Kihara and Skolnick reported that
the current PDB database might cover almost all structures
of small proteins [50]. Crippen and Maiorov generated
many self-avoiding conformations of a chain and sug-

gested that the possible structures of a 50-residue chain
are classifiable roughly into a small number of types,
although the secondary-structure formation was not
incorporated in their model [51]. A study proposed the
conjecture that tertiary-structure evolution of proteins
might be achieved using limited repertoires of basic units
such as supersecondary structure elements [52]. Results of
such studies are consistent with our results because we
have shown that protein tertiary structures can be decom-
posed into the dozens of major communities of 50-resi-
due segments. Actually, 90% of clusters belong to the
major communities. To link those studies with our study
more closely, detailed contents of each major community
should be investigated. In fact, such a research project is
proceeding now. Moreover, the role of the minor commu-
nities in the protein structure construction should be stud-
ied.

The currently observed 50-residue segment universe was
characterized by the non-power-law distribution. Our
result apparently differs from the power-law distribution
widely known for the hierarchical protein domain uni-
verse [9,46,47,53]. The emergence of the non-power-law
statistics might be related to the usage of the inter-residue
contact, which is a more relaxed similarity measure than
widely used ones such as RMSD or the DALI Z-score. It is
known that in the power-law statistics the rate for isolated
clusters in the entire clusters is high [53]. In our non-
power law statistics, the rate was low because the relaxed
measure provided linkages between clusters. Thus, the
two statistics compensate to each other to survey the fold
universe. From the non-power-law universe, we could
show a novel hierarchy (Figure 12) in the universe and the
existence of 40 repertories (Figure 10) to construct the
protein tertiary structures, which have not been reported
from the power-law universe. These results were also

Communities at Kc = 1000 (A), 2000 (B), and 3000 (C)Figure 11
Communities at Kc = 1000 (A), 2000 (B), and 3000 (C). For each universe, only the top 13 communities by the number 
of involved clusters are shown. A single color is assigned to communities that are common to the three universes. Communi-
ties that are not common among the three are not shown, nor are minor communities.
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found in the 60- and 70-residue segment universes (data
not shown). This suggests that the non-power law is likely
to be a general property for segment universes.

The current network helps to trace conformational
changes of segments along the network linkages. Supple- mentary Results displays that the conformation gradually

changes when shifting the view from a cluster to another
(see Additional file 1).

The inter-residue contact (native contact) has been widely
used as a reaction coordinate in protein folding (see Intro-
duction). We intend to use the currently obtained net-
works for protein folding study. The networks of fixed-
length segments are readily applicable for conformational
sampling in protein folding, where the chain length is
usually fixed. The randomly structured clusters are located
at the root of the distribution (Figure 4 and Figure 5),
from which the segment conformation can diversify to
mainly α, mainly β, or αβ regions with increased com-
pactness (Figure 7).

Conclusion
We constructed a 50-residue segment network for investi-
gating the protein local structure universe. The network
was partitioned into some dozens (ca. 40) of major com-
munities with high modularity (0.60 <Qmod < 0.65), inde-
pendent of the spatial resolution (Kc). The major
communities existed universally and persistently in the
universe. Surprisingly, 90% of all segments were covered
by the major communities. Consequently, numerous sim-
ilarities exist among local regions (i.e., 50-residue seg-
ments) of proteins. Furthermore, the currently
constructed segments networks are characterized by non-

Two network typesFigure 14
Two network types. Network (A) has larger modularity 
Qmod than (B) does. Filled circles form a community (Com 1); 
open ones construct the other community (Com 2). Lines 
between circles represent links.

Hierarchy in the segment universe proposed from the cur-rent studyFigure 12
Hierarchy in the segment universe proposed from 
the current study.

Smoothed inter-residue contacts c(i, j) (Eq. 4)Figure 13
Smoothed inter-residue contacts c(i, j) (Eq. 4). It is 
presumed that residue pair (i, j) is in contact (i.e., c(i, j) = 1), 
and that the other pairs are non-contacting. Equation 4 pro-
vides negative cs(i', j') at sites where an inequality, |i - i'| + |j - 
j'| + |(|i - i'| - |j - j'|)| > 5, is satisfied. Besides, this inequality is 
satisfied without exception when any one of the three ine-
qualities, |i - i'| > 2, |j - j'| > 2, or ||i - i'| - |j - j'|| > 2, is met. 
Those negative c(i, j) = 1), and that the other pairs are non-
contacting. Equation 4 provides negative cs(i', j') are reset to 
zero (see text).
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power-law (non-scale-free) statistics, which apparently
differs from reported characteristics for the fold universe
of full-length proteins.

Methods
This section includes six subsections. The first three –
"Generation of 50-residue segment library", "Clustering
segments", and "Computation of inter-residue contact
patterns" – are preparative subsections describing con-
struction of the 50-residue segment fold universe. In the
subsection titled "Construction of a universe and net-
work", construction of the fold universe and the network
is described. "Modularity analysis" presents analyses used
to examine the network. The subsection "Characterization
of communities by structural features" describes a method
to characterize communities depending on five structural
features. Specification of indices i, j, s, t, u, v, and w is given
at the beginning of Results.

Generation of 50-residue segment library
We generated a structure library of 50-residue segments
with reference to the all-α, all-β, α/β, and α+β fold classes
defined in the SCOP database (release 1.69) [5]. The
SCOP database presents a list that provides a representa-
tive for each protein family. We selected tertiary structures
of the representative domains from the PDB database [54]
with elimination of multi-chain domains, those involving
structurally undetermined regions, and those shorter than
50 residues. Furthermore, we eliminated domains consist-
ing of 400 residues or more, which might involve structur-
ally repeating units. Then we obtained 1803 domains
(456 from all-α, 393 from all-β, 393 from α/β, and 561
from α+β). A domain that is nr amino-acid residues long
produces nr - 49 segments from sliding a 50-residue win-
dow along the sequence one residue-by-one residue.
Finally, we obtained an ensemble of 186 821 segments
(32 040 from all-α, 39 375 from all-β, 63 177 from α/β,
and 52 229 from α+β). The residue site of each segment
was re-numbered from 1 to 50 in our study.

Clustering segments

We classify the collected segments into clusters as follows:
First, the inter-Cα atomic distances were calculated for seg-

ment s, where the distance between residues i and j is
denoted as rs(i, j). We eliminated residue pairs |i - j| < 3

because the distances for these pairs are similar for all seg-
ments. In other words, those distances have less sensitivity
to discriminate the structural differences of segments.
Then, the number (Npair) of the Cα-atomic pairs in a 50-

residue segment is 1128: Npair = 1128. The set of distances

is expressed as a Npair-dimensional vector:  = [rs(1, 4),

rs(1, 5), ..., rs(47, 50)]. We define the root mean square

distance (rmsdst) between  and  as in the Npair-dimen-

sional Cartesian space: .

For classifying the 186 821 segments into Kc clusters, we
applied Lloyd's K-means algorithm [55] to the set of rmsdst
values, where s, t = 1, ..., 186821. One should set Kc in
advance in the K-means algorithm. We examined various
values for Kc (Kc ≤ 5000). In Lloyd's method, the Kc clusters
are set randomly at the beginning. The finally converged
clusters are output. We have checked that the main results
are independent of the initial set of clusters.

We calculated the center ( ) of a cluster u in the Npair-

dimensional space as ,

where the element  is given as

The nu is the number of constituent segments of the cluster
u.

We defined a size Su of the cluster u as

This equation simply quantifies the average distance from
the cluster center  to segments belonging to the cluster u
in the Npair-dimensional space. The average cluster size is

defined simply as

where the summation is taken over all the Kc clusters.

Computation of inter-residue contact patterns
In this subsection, we present computation of the inter-
cluster and intra-cluster structural similarity based on the
inter-residue contact patterns. The inter-residue contacts
in segment s were defined as follows: Calculating all the
inter-heavy atomic distances between residues i and j for
the segment, their minimum distance was registered as
the inter-residue distance qs(i, j). Then, if qs(i, j) < 6.0 Å, we
judged that the residues i and j were contacting and set a
quantity cs(i, j) to 1 (otherwise, cs(i, j) = 0). Here, we again
eliminated residue pairs of |i - j| < 3 in the calculation of
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cs(i, j). The set of cs(i, j) constructs a matrix Cs, where ele-
ment (i, j) is cs(i, j).

The upper limit (6.0 Å) for qs(i, j) allows no penetration of
a water molecule between residues i and j: At qs(i, j) = 6.0 Å,
the substantial space for water penetration between the res-
idues is approximately 2.0 Å (= 6.0 - 2 × 2.0) assuming that
radii of segment heavy atoms are 2.0 Å. This space of 2.0 Å
is smaller than the diameter of a water molecule (2.8 Å).

A structural similarity between segments s and t might be
counted by comparing Cs and Ct. However, a strict com-
parison engenders an oversight of the similarity in the fol-
lowing case: Presume that cs(i, j) = 1 and ct(i,+ 1, j) = 0 in
the segment s, and cs(i, j) = 0 and ct(i,+ 1, j) = 1 in segment
t. The inter-residue contacts in these segments differ but
they are similar. The strict comparison does not count
such a similarity. To incorporate such similarity, smooth-
ing of Cs was performed as

This smoothing (see Figure 13) was done only when resi-
dues i' and j' are not contacting and the residues i and j are
contacting in the segment. If Eq. 4 produces a negative
value, then cs(i', j') is set to zero. If a non-contacting resi-
due pair (i', j') has multiple values for cs(i', j') attributable
to contributions of some contacting pairs around (i', j'),
then the largest value is assigned to the non-contacting
pair. As described in this paper, the inter-residue contact
matrix Cs indicates that after the smoothing.

Here, we calculate the contact patterns which are specific
to a cluster. For this purpose, we averaged C over the entire
segment library and over all segments in cluster u. We

denote these averaged matrices as  and , respec-

tively. Then, we defined a quantity ,

where element (i, j) is denoted as . The similarity

between clusters u and v was measured using the follow-
ing correlation coefficient:

where

The term  in Eq. 5 is defined by setting u = v in

Eq. 6, and the term  by setting  = 1. A large

correlation coefficient indicates similar inter-residue con-
tact patterns between the clusters.

The coefficient  is useful as a distance

between clusters u and v in a multi dimensional space.
Consequently, the set of coefficients define a multi-
dimensional weighted graph (i.e., weighted network). In
this work, we must convert this weighted graph into an
un-weighted one to perform community analysis, which
only deals with the un-weighted graph. Therefore, we
introduce an adjacency matrix auv in which element (u, v)

is given as follows.

The inter-residue contact patterns are similar between

clusters u and v only when . Herein, we

set f0 to 0.7. The meaning of 0.7 is explained in the Results

section.

We next assessed the intra-cluster similarity. First, we

defined a quantity  for a segment s,

where element (i, j) of ΔCs is denoted as ΔCs(i, j). Then, we

averaged ΔCs(i, j) over the segments in cluster u:

We define a matrix Gu for that the element (i, j) as gu(i, j).
Then, we calculated the correlation coefficient f(Gu, ΔCs)
between Gu and ΔCs for segments in cluster u, using the
same definition as that in Eq. 5. Subsequently, we calcu-
lated an averaged correlation coefficient <f >u over
f(Gu,ΔCs) of the segments in the cluster u. This quantity is
a measure to express the similarity of the inter-residue
contact patterns among the segments in cluster u. Finally,
<f >u was averaged over all clusters.

The larger the value of , the more similar the inter-

residue contact patterns in each cluster are, on average.
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Construction of a universe and network
We constructed a distribution (i.e., fold universe) of Kc
clusters in a 3D conformational space with embedding
clusters into the 3D. Details are presented in Additional
file 1. As explained in the Introduction, lowering of the
space dimensionality hides the internal architecture of the
fold universe. To compensate the full-dimensional infor-
mation to the 3D distribution, links were assigned to clus-
ters with similar inter-residue contact patterns (auv = 1).
The generated networks were subjected to the modularity
analysis described in the next subsection.

Modularity analysis
To investigate a property of the cluster network, we
divided the network into communities (i.e., sub-net-
works) using an efficient method [44]. An example of a
network is presented in Figure 14, where two communi-
ties (Com 1 and Com 2) exist. A modularity Qmod is an
index to assess how well the network is divided into com-
munities [49]:

where Iw is the number of links connecting clusters within
a community w, Ncom is the number of communities exist-
ing in the entire network, and I is the number of links
existing in the entire network. The quantity dw is called the
"total degree", which is defined for each community as dw
= 2Iw + Iw-other, where Iw-other is the number of links con-
necting clusters in the community w and clusters outside
the community. The value of Qmod is 0–1: Qmod
approaches 1 when the number of links connecting differ-
ent communities decreases. For instance, the network in
Figure 14A has Qmod of 0.466 (I = 34, I1 = 18, I2 = 15, d1 =
37, and d2 = 31). That of Figure 14B has Qmod of 0.388 (I
= 37, I1 = 18, I2 = 15, d1 = 40, and d2 = 34). The two net-
works are equivalent except for the inter-community
links.

Characterization of communities by structural features

The manner of differentiating the communities is impor-
tant. Herein, we characterize the communities depending
on five biophysical structural features: radius of gyration
(Rg), number of inter-residue contacts

(  with removal of pairs of |i - j| < 3),

number of α-helical residues (nα), number of β-helical

residues (nβ), and the sum of nα and nβ (i.e., nαβ = nα + nβ).

First, we calculate the five quantities for each segment. The
secondary-structure assignment to each residue in a seg-

ment is done using software available at the STRIDE web
site http://webclu.bio.wzw.tum.de/stride/[56]. Next, we
took the average for each of the five quantities over seg-
ments in a community. We designate the average quanti-
ties in a community w as Rg(w), Ncontact(w), nα(w), nβ(w),
and nαβ(w). Then, we classify the communities into α, β,
αβ, and randomly structured ones according to the five
quantities: Randomly structured communities are those
with Rg > 14 Å and Ncontact(w) < 100 or those with nαβ(w)
< 15. In the remaining communities, α communities are
those with nα(w) > 0.7 × nαβ(w). In the remaining commu-
nities, β communities are those with nα(w) > 0.7 × nαβ(w).
The finally remaining communities are classified as αβ
communities. Each segment in the αβ communities sig-
nificantly involves both an α helix and a β strand.
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