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Abstract

Background: Classification of newly resolved protein structures is important in understanding
their architectural, evolutionary and functional relatedness to known protein structures. Among
various efforts to improve the database of Structural Classification of Proteins (SCOP), automation
has received particular attention. Herein, we predict the deepest SCOP structural level that an
unclassified protein shares with classified proteins with an equal number of secondary structure
elements (SSEs).

Results: We compute a coefficient of dissimilarity (2) between proteins, based on structural and
sequence-based descriptors characterising the respective constituent SSEs. For a set of 1,661 pairs
of proteins with sequence identity up to 35%, the performance of Q in predicting shared Class, Fold
and Super-family levels is comparable to that of DaliLite Z score and shows a greater than four-fold
increase in the true positive rate (TPR) for proteins sharing the Family level. On a larger set of 600
domains representing 200 families, the performance of Z score improves in predicting a shared
Family, but still only achieves about half of the TPR of Q. The TPR for structures sharing a Super-
family is lower than in the first dataset, but Q performs slightly better than Z score. Overall, the
sensitivity of Q in predicting common Fold level is higher than that of the DaliLite Z score.

Conclusion: Classification to a deeper level in the hierarchy is specific and difficult. So the
efficiency of Q2 may be attractive to the curators and the end-users of SCOP. We suggest Q2 may
be a better measure for structure classification than the Dalilite Z score, with the caveat that
currently we are restricted to comparing structures with equal number of SSEs.

Background

The increased pace of protein structure determination,
due to high-throughput, synchrotron-based X-ray crystal-
lography and multi-dimensional NMR, promises rapid
growth in the number of known protein structures [1-3].
Comparison and classification of newly resolved struc-
tures contributes to our understanding of the structural
architecture, evolution and function of proteins, espe-
cially those with low sequence identity to well character-

ised proteins [4,5]. This information is important for the
identification of new protein folds, drug discovery, and
phylogenetic analysis of the proteome.

Classification schemes, such as SCOP (Structural Classifi-
cation Of Proteins) [6] and CATH [7], are well estab-
lished. SCOP is a curated database and probably the
leading classification scheme, providing a comprehensive
description of the structural and evolutionary relation-
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ships among all protein structures [6]. It classifies about
34,500 structurally resolved proteins into seven major
structural levels according to the constituent domains.
The highest level being Class is followed by Fold, Super-
family, Family, Protein and Species in a hierarchical manner,
maintaining one-to-many inter-level relationships. Ele-
ments describing the higher levels are based on coarse
structural similarity and are limited in number [8]. As we
move down the hierarchy, levels become more populated
with many specific elements to cater for the increasing
evolutionary, structural and functional similarities. The
biologically meaningful structural similarities crucial for
classification [6] can be detected using constituent sec-
ondary structure elements (SSEs), e.g., o-helix and S
strand, which are the major determinants of protein
topology [9,10]. For example, SCOP classification gener-
ally depends on the presence of common types of SSEs (at
the Class level), their topological arrangements and con-
nectivity (at the Fold level), structural and functional sim-
ilarity inferred from a common evolutionary origin (at the
Super-Family level) and sequential relatedness leading to
conserved structural signatures important for protein
function (at the Family level) [11]. The inclusion of infor-
mation about SSEs can improve the prediction of protein
structural class and fold [12-14].

Specifically, the use of secondary structure content, the
proportion of different SSE types and relative arrangement
of SSEs has been shown to encode information crucial for
predicting protein structural class and fold. Chen et al.
[15,16] reported an accuracy of up to 68% for protein fold
classification on a set of the 27 most populated folds from
SCOP 1.71.

Hierarchical classification of protein structures involves
various challenges. The correct assignment of a newly
resolved structure to a lower level in the hierarchy is much
more difficult than assignment to a higher level [17]. Rear-
rangement in the classification scheme, especially at the
lower levels in the hierarchy, is common [11]. Proteins
consisting of multiple structurally independent regions,
called domains, pose another challenge. Multiple
domains might impart structural and functional variabil-
ity to the parent protein. Therefore, classification of such
proteins may span multiple sub-trees in the hierarchy. A
classification scheme that takes into account sequence
and structural similarity at the level of constituent
domain(s) would be advantageous, especially in the case
of convergent evolution, where a domain can be found in
evolutionarily unrelated proteins, leading to high struc-
tural similarity, despite low sequence similarity [18]. This
may help to identify functional analogy, if it exists, among
proteins possessing the same domain. Therefore, domains
are important to consider for the classification. However,
structure classification tends to lag behind structure deter-
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mination due to the need for personal expertise and
expert knowledge leading to the manual and semi-auto-
matic maintenance of the classification schemes.

Recently [11], attention has focused on the automation of
SCOP, using established structure and sequence compari-
son methods, independently or in combination. In gen-
eral, such efforts towards automation are computationally
expensive, algorithmically complex, require optimisation
and are prone to errors carried forward from the methods
used. Hence, a computationally inexpensive and robust
approach that minimises the use of secondary algorithms
would be welcome.

State-of-the-art structure comparison and alignment
methods, such as Dali [4], have been proposed to classify
pairs of proteins to appropriate SCOP structural levels
[19]. Dali is used to maintain the Dali database [19], a
database of pair-wise comparisons of protein structures
deposited in the protein data bank (PDB) [20]. Dali uses
the experimentally derived 3D atomic co-ordinates for a
pair of proteins to calculate a Z score (discussed later) to
reflect the extent of similarity between the pair. In this
work, the stand-alone version of Dali, DaliLite version
2.4.4 is used.

Our work aims to assign one of the top four SCOP struc-
tural levels to an unclassified (newly determined) protein
structure. We determine the dissimilarity of the unclassi-
fied structure, in terms of a coefficient of dissimilarity (Q),
to those proteins in SCOP with an equal number of SSEs.
As a case study, we consider proteins with three SSEs. For
a given pair of proteins, Q takes into account the differ-
ence in structural and sequence-based descriptors charac-
terising the constituent SSEs. The structural descriptors are
the separation and relative orientation of every pair of
SSEs and their types (a-helix or f-strand), whereas the
sequence-based descriptors include the length and the
average solvent accessibility of the constituent SSEs. Addi-
tional sequence-based descriptors defining the lengths of
the paired proteins and sequence identity assigned by
DaliLite were also considered, and improve the prelimi-
nary results we reported earlier [21]. We compare the
accuracy of Q in predicting the deepest common structural
level for a pair of proteins to that of DaliLite Z score using
empirically determined, independent thresholds for the
two scores. Building on this initial assessment, we then
compare Q and Z score on a set of 600 domains contain-
ing three to six SSEs, representing 200 families from SCOP
version 1.73.

Results

For the 1,661 pairs of proteins, the correlation between Z
score and Q was calculated. DaliLite Z score measures the
extent of similarity, whereas Q2 measures the extent of dis-
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similarity. Therefore, a negative correlation was observed;
the squared Pearson's correlation coefficient, 12, was 0.44
(Figure 1). The correlation between Z score and Q was
studied independently for the protein pairs sharing any of
the top four structural levels. The highest inverse correla-
tion was observed for the protein pairs sharing a Family (12
= 0.42). Surprisingly, for the pairs sharing the Class, Fold
or Super-family level the two scores showed negligible cor-
relation (72=0.03, 0.01 and 0.08, respectively). In the fol-
lowing we try to rationalise this and evaluate which of the
two scores is more appropriate for structural classification.

The relationship of Z score and Q to the SCOP structural
classification was studied through the frequency distribu-
tion of protein pairs sharing a structural level (Figure 2).
Based on either Q (Figure 2A) or Z (Figure 2B) score, the
protein pairs were not distributed discretely between dif-
ferent structural levels. However, protein pairs sharing the
Super-family and Family levels in the hierarchy congregated
towards the lower range of Q, whereas those from the
higher level of the hierarchy tended to cluster at the upper
range. The reverse was observed in the Z score distribu-
tion. The number of protein pairs sharing a Family
increased with Q, up to a threshold and then decreased.
Similarly, the number of protein pairs sharing a Class
increased slowly at lower values of Q and then increased
sharply when the number of protein pairs sharing a Family
declined with the further increase in Q. In contrast, there
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were some pairs with a common Family, which have a very
low Z score (Table 1). The Z score misses structural simi-
larity between some proteins where it is clearly evident by
visual inspection and fails to identify for them a common
Fold, Super-family or Family. Figure 3 shows some illustra-
tive examples. It appears that Z score may not classify cor-
rectly when sequence identity is low.

The overlap among the distributions of protein pairs shar-
ing a given structural level was studied (Figure 4). The
overlap of Z score distributions was greater than those of
Q (Figure 4B). The Z score distribution for pairs sharing a
Super-family completely overlaps the distribution of those
sharing a Fold and partially overlaps those sharing a Fam-
ily. The Z score distribution for pairs sharing a Class con-
siderably overlaps the distribution of those sharing a Fold.
The overlap in the Q distributions for pairs sharing a given
structural level is less extensive, especially among the top
three levels. In particular, less overlap was observed for
pairs sharing a Family (Figure 4A).

These observations suggest that Q is correlated to the
DaliLite Z score for the pairs with high sequence identity
and is possibly a better measure for the purpose of struc-
ture classification. Next, we identify thresholds for Q that
can be used to assign a common structural level for a given
pair. To compare the accuracy of Q for structural classifi-
cation with that of Z score, the two scores were normal-

0.0

Figure |

2.0

Correlation of DaliLite Z score and coefficient of dissimilarity (Q2) for protein pairs from the DS362 dataset.
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Table I: Selected protein pairs from the DS362 dataset where Q
performs better than Z score in predicting the common
structural level.

Shared Level Protein | Protein 2 Q V4
Fold lef4 livé 0.57  0.00
lef4 lity 0.52 0.00
1faf 1r73 0.64 0.02
1aj3 lrrz 0.64  0.05
1bby lhd 0.57  0.05
livé 1ku3 0.55 0.06
1ba5 1ku3 0.53 0.08
I1bb luhs 0.55 0.09
Super-family 1m36 lyuj 036 0.00
1g2h lity 043 0.00
lirz Ires 0.33  0.02
1bf0 Ita 0.44 0.02
1ifb lumgqg 040 0.03
lig7 lres 043 0.03
1g2h livé 043  0.04
lher lvnd 0.38 0.04
1bw5 lher 043  0.06
1g2h lijko 044  0.07
Family Isrk lyuj 0.14 0.03
1la4 loaw 025 0.05
143 1lhdp 0.08 0.13
lcix loma 022 0.02
lcix lkgh 023  0.07
Ikbe 1tbn 0.22  0.00
llge luxc 0.20 0.04
1hdé 2erl 0.09 0.17

Selected protein pairs where Q performs better than Z score in
predicting the common structural level. Normalised scores are listed.
Z score equal to zero indicates no structural similarity, whereas Q
close to | indicates high dissimilarity.

ised (see Additional file 1, Eqn. S.1; other established
statistical and mathematical manipulations that we use
are also listed there, for completeness). Hereon, references
to Q and Z score are to the normalised scores. The null
hypothesis that no difference exists between the mean normal-
ised value for the two scores for the different structural levels
was tested by the Student's two-sided t-test at a 95% con-
fidence interval, as implemented in the statistical software
package R [22]. Very small p-values for the t-test (Table 2)
suggest that we can reject the null hypothesis and accept
the alternative hypothesis, i.e., there is a significant differ-
ence in the mean values of the two scores for pairs sharing
a common structural level. Therefore, to predict if a pair
shares a given structural level, the mean + standard devia-
tion (SD) of a normalised score for that level can be sug-
gested as a criterion (Tables 2 and 3). For example, a pair
would share a Class, if Q lies within 0.55 + 0.12 or a Fam-
ily, if Q lies within 0.20 + 0.11. Because Class and Family
levels are at the top and at the bottom of the four levels
considered, we only require a single threshold for them
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i.e, Q>0.55and Q2 <0.31, respectively. Considering the
overlap between the Fold and Super-family levels, a single
value threshold will not work 100% of the time, but a
range may provide some useful predictions. For example,
for those pairs where Q = 0.42 + 0.10 a common Super-
family level can be predicted and for pairs where Q = 0.44
+ 0.09 a common Fold level can be predicted. Those pairs
for which Q lies within the overlapping range of super-
family and fold thresholds are discussed in the next sec-
tion. Nevertheless, using these thresholds we have tried to
mimic real-world structure classification using the two
scores independently in terms of true positive rates (TPR)
and false positive rates (FPR) (Table 3). We observe com-
parable performance of Q and Z score for the top three
levels (Class, Fold, Super-family) and a better performance
for Q in classification to the Family level. The confusion
matrices used to calculate TPR and FPR are provided in
Additional file 2. The FPR for classification to the Fold
level using Z score is 38% higher than for Q. Although the
FDPR for assigning a common Family level using Z score is
zero, Q is better, as it has a 75% higher TPR. Correct
assignment to the lower levels in the hierarchy is more
important than to the higher levels, because assignment
to the lower level automatically assigns a pair to all higher
levels in the same classification sub-tree.

The error in the prediction of a common structural level
for a pair of protein was assessed in terms of the variance
to mean ratio (VMR) (Additional file 1, Eqn. S.2) and the
coefficient of error (CE) (Additional file 1, Eqn. S.3). The
former reflects the randomness of a given statistic. VMR
close to zero indicates a more even distribution and VMR
approaching unity indicates a random distribution. The
VMR for DaliLite Z score and for Q (Table 3) shows that
the distribution of Q with respect to different structural
classes in SCOP is more uniform than the distribution of
Z score. This indicates that for another set of proteins, the
thresholds suggested for Q are likely to remain the same,
whereas those for Z score would vary more. CE is a useful
measure to evaluate the precision of the quantitative esti-
mate (thresholds) used for classification. A high value of
CE reflects poor precision.

Whilst the above definition of the classification thresh-
olds seems intuitive, we have also investigated the sensi-
tivity of TPR and FPR to the thresholds, using Receiver
Operating Characteristic (ROC) graphs [23]. Figure 5
presents the ROC graphs for Q and Z score. For a given
structural level, the TPR and FPR were calculated by
increasing the thresholds in intervals of 0.01 from the
lowest to the highest normalised scores. For the Class and
the Family level a single threshold was used for the calcu-
lation of TPR and FPR. For the Fold and the Super-family
level the interval of 0.01 was used to define maximum and
minimum value within the observed maximum and min-
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Distribution of coefficient of dissimilarity (Q2) (A) and DaliLite Z Score (B) with respect to different SCOP lev-
els for protein pairs from the DS362 dataset. Each bin spans an interval of 0.05 of the normalised score.

imum values to calculate the TPR and FPR for the two
scores. Because of the overlapping distributions of Q (and
Z score) among different structural levels (Figure 4A and
4B), the ROC graphs for protein pairs with a common
Class, Fold, Super-family and Family levels do not converge
to 0 or 1 (Figure 5A and 5B). Nevertheless, it is evident
that Q is more accurate than Z score in predicting shared
Family and Class levels. In contrast to Z score, () can pre-
dict the common Fold level better than random.

The classification to the Family level using Q and Z score
was investigated on a large dataset of domains (DSF600)
representing 200 families (see methods). Pairs of domains
consisting of an equal number of SSEs were considered, to
determine thresholds for Q and Z score for predicting dif-
ferent structural levels. We have used the range defined by
mean + SD of the normalised scores as the criterion for a
given structural level, as reported in Tables 4 and 5. How-
ever, such ranges, for the four levels, overlap considerably.
The impact of varying single value thresholds is shown by
the ROC graphs (Figure 6A and 6B). The statistical signif-
icance of classification success of the two scores is
reported in Table 4 and the TPR and FPR are shown in

Table 5. The first assessment utilising proteins consisting
of three SSEs enabled us to identify protocol and relevant
measures for fair comparison of Q and Z score. On the
DSF600 dataset, the overall trend in the TPR, FPR and sta-
tistical significance was similar to the first assessment.
Using DSF600 for Q, the FPR for classification to Class,
Fold and Super-family levels decreased relative to the first
assessment; the TPR, however, increased for predicting a
common Fold. For predicting a Family, using €, the FPR
decreased considerably with a slight decrease in the TPR.
Using Z score, the increase in TPR for classification to the
Family level occurs at the cost of increase in the FPR. The
confusion matrices used to calculate the TPR and FPR are
provided in Additional file 3.

DSF600 exhibits significant variation in structural com-
plexity, comprising 200 families, five classes, nine folds
and 12 super-families. Nevertheless, O seemed robust
compared to Z score, as indicated by a net increase in the
TPR and a net decrease in the FPR in four level classifica-
tion. Out of 600 possible protein pairs (each of the 200
families is represented by three domains), we can study
505 pairs sharing a Family; for the rest, DaliLite cannot
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(e)

Figure 3

Proteins from the DS362 dataset with a common (a) Fold Ifaf and 1r73, sequence identity = 8%, (b) Super-fam-
ily 1bw5 and Ihcr, sequence identity = 1 1% and (c) Family Icix and lkgh, sequence identity = 21%, for which Z
score does not identify structural similarity but Q does.
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dataset.

detect significant structural similarity. A few of the
domain pairs, despite a common Family, were not deemed
significantly similar by DaliLite (Additional file 4, Table
3), but were correctly predicted by Q. Figure 7 gives a few
illustrative domain pairs. In addition, a single poly-pep-
tide chain can have multiple domains. Such domains
have a different classification, if they impart independent
functional or structural features, e.g., antibiotic resistant
protein domains (d1bl0al and d1bl0a2), biotin repressor
protein domains (d1biaal and d1biaa2) and the hypo-
thetical transporter protein domains (d1v43al and
d1v43al). DaliLite cannot handle such domains and fails
to detect any structural similarity among them. Clearly, Q
is more suited for the purpose of classification, where it
would at least detect a common level from the top of the
classification hierarchy.

Discussion

We have described a computationally inexpensive
method for structure classification. For a protein pair with
an equal number of SSEs, the method compares structures
in terms of structural and sequence-based descriptors
characterising the constituent SSEs. The extent of dissimi-
larity, computed from these descriptors, is used to predict
the structural levels from the SCOP hierarchy that the pair
shares. Protein pairs sharing a Class and Family are distin-
guished by high and low values, respectively, of a dissim-
ilarity coefficient, Q. However, pairs sharing the
intermediate levels, i.e., Fold and Super-family are not
clearly segregated. This can be explained by the Russian
doll effect inherent in SCOP and other structure classifica-
tion schemes [7], where the same sub-structure that con-
stitutes a protein fold exists in the super-family nested
within that fold [24].

Table 2: Statistical Significance of DaliLite Z score and Q in identifying different SCOP structural levels for the DS362 dataset

SCOP Level Mean Meany,,, t-test F-test Max Min
z Q z Q p-valuegygo p-valueggo z Q z Q
Class 2.68 091 0.07 0.55 10-16 10-! 7.50 1.60 2.00 0.44
Fold 372 0.77 0.17 0.46 10-16 108 8.50 122 2.00 0.27
Super-family 3.63 0.72 0.16 0.42 10-16 10-! 0.23 6.90 1.06 2.00
Family 6.28 0.39 0.43 0.20 107 0.31 11.90 0.95 2.00 0.08

The statistical significance of difference in the mean of the normalized coefficient of dissimilarity (€2) and DaliLite Z score in terms of Student's two-
sided t-test at 95% confidence interval. The small p-values from the t-test indicate a significant difference in the mean value of the two scores for the
respective shared SCOP level. The p-values for the F-test reported at 95% confidence interval indicate that the two-sided t-test is valid based on
the assumption of equality of the two sample variances. Meany,,,, = normalised mean.

Page 7 of 16

(page number not for citation purposes)



BMC Structural Biology 2009, 9:60

http://www.biomedcentral.com/1472-6807/9/60

Table 3: Descriptive statistics for Q and Z scores for the DS362 dataset
SCOP Level SD SDporm VMR CE TPR FPR
z Q z Q z Q z Q z Q z Q
Class 0.75 0.17 0.07 0.12 0.21 0.03 0.27 0.19 0.88 0.87 0.31 0.35
Fold 1.62 0.14 0.16 0.09 0.70 0.03 0.43 0.18 0.75 0.69 0.74 0.46
Super-family 0.93 0.16 0.10 0.10 0.24 0.04 0.26 0.22 0.74 0.70 0.35 0.34
Family 221 0.18 0.22 0.11 0.78 0.09 0.35 0.46 0.17 0.81 0.00 0.07

Statistics for Q and Z scores for the protein pairs sharing a common SCOP level. The true positive rates (TPR) and false positive rates (FPR) are
calculated based on the threshold range derived from the respective normalised Mean + SD. Variance to Mean Ratio (VMR) and Coefficient of Error
(CE) statistics give an estimate of how general the thresholds could be and how accurate the suggested thresholds are, respectively. Bold-face type
indicates where Q) performs better than Z score in assigning pairs to a common Fold and Family. SDy,,,, = normalised standard deviation.

An inverse correlation was observed between Q and the
similarity score Z assigned by DaliLite. We show, how-
ever, that QO is more useful for structure classification than
Z score. The latter varies more for the protein pairs sharing
a SCOP structural level, making it less reliable for struc-
ture classification, especially for the Fold and Super-family
levels. A two-sided t-test shows that the mean values for Q
and Z score for the protein pairs sharing a common struc-
tural level are significantly different. If Q is used, rather
than Z score, for assigning a common SCOP level, one can
anticipate a six- to eight-fold reduction in the variability of

assignment and a 4% to 10% reduction in the chance of
making an error (CE). It has also been shown that, for a
given set of proteins, the threshold range defined around
the mean value of Q more often yields correct structure
level assignment compared to the Z score (TPR and FPR in
Table 3). However, if Q is used, (instead of Z score) 10%
more of the predictions for a common Family from the

existing SCOP families may be incorrect.

The overlapping threshold range of Q and Z score for the
Fold and Super-family levels can be attributed, in part, to
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Figure 5
Sensitivity analysis of TPR and FPR of () (A) and Z score (B) for the DS362 dataset.
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Figure 6

Sensitivity analysis of TPR and FPR of Q (A) and Z score (B) for the DSF600 dataset.

the inherent classification caveats that exist in SCOP.
Whilst remote homologies exist between the super-fami-
lies of distinct folds, distant relationships may exist at the
Fold level. In addition, significant structural variations
within the super-family and uncharacterised proteins
make it difficult to classify a protein within the current
SCOP hierarchy. Often such issues lead to singleton folds,
super-families and families. In this context, a recent study
discussed improvements to the existing SCOP schema
[11] and proposed a redefinition of the Fold level and

specific criteria. We have observed that more than 60% of
the proteins populating the overlapping threshold range
are from the Homeodomain-like super-family (SCOP
unique identifiers (sunid) = 46689) and the second larg-
est of the folds DNA/RNA-binding 3-helical bundle (sunid =
46688). The Homeodomain-like super-family has seven sin-
gleton families out of 17, whereas the parent fold has nine
singleton super-families out of 14. Partners from most of
the pairs belong to one of these singleton super-families
or folds. Therefore, for classification of pairs in the over-
lapping regions, redefined thresholds augmented with the

organisation of the Super-family level, but did not suggest
Table 4: Statistical Significance of DaliLite Z score and Q in identifying different SCOP structural levels for the DSF600 dataset
SCOP Level Mean Meany,,m, t-test F-test Max Min
z Q z Q p-valueggo p-valueggo z Q z Q
Class 2.96 I.11 0.12 0.64 10-16 10-16 9.80 1.65 2.00 0.16
Fold 5.01 1.03 0.39 0.30 10-10 10-5 9.60 1.57 2.00 0.80
Super-family 4.79 1.05 0.24 0.54 [0-! 10-2 13.00 1.33 2.20 0.72
Family 13.10 0.40 0.40 0.30 10-16 10-! 29.60 1.32 2.00 0.00
The statistical significance of difference in the mean of the normalised coefficient of dissimilarity (2) and DaliLite Z score in terms of Student's two-
sided t-test at 95% confidence interval. The small p-values from the t-test indicate a significant difference in the mean value of the two scores for the

the assumption of equality of the two sample variances. Meany,,,, = normalised mean.

respective shared SCOP level. The p-values for the F-test reported at 95% confidence interval indicate that the two-sided t-test is valid based on
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Table 5: Descriptive statistics for Q and Z scores for the DSF600 dataset

SCOP Level sD SDorm VMR CE TPR FPR
z o) z o) z Q z o) z o) z o)

Class 111 0.16 014 010 04l 002 037 014 08 08 032 0.8

Fold 175 0.1 023 0I5 06l 0.0l 034 0.1l 059 087 0.7 020

Super-family 264 015 024 025 145 002 055 014 028 037 019  0.Ié

Family 5.61 034 020 026 239 029 042 08 045 079 013 039

Statistics for the classification performance of Q and Z scores for the protein pairs sharing a common SCOP level in the DSF600 dataset. Columns

have the same meaning as those in Table 3.

sequence identity may be used. A common fold may be
predicted for those pairs with sequence identity less than
10% and 0.45 < Q < 0.55 and for those with sequence
identity of 10% or above and 0.31 < Q2 £0.45 a common
super-family may be predicted. Those pairs for which
redefined thresholds are not applicable, Q alone may be
used for the prediction. It would be possible to check the
usefulness of these redefined thresholds upon a major
rearrangement of singleton elements in the SCOP hierar-
chy.

Nevertheless, Q would still reduce classification space for
a given protein and reduce the workload for manual clas-
sification.

There are a few outliers (49 pairs) outside the suggested
thresholds (Q = 0.31) for classification to the Family level
(see Additional file 5, which lists selected PDB codes and
names). The classification sub-tree for these pairs reveals
that most of them belong to the singleton family of the
singleton super-family from the parent fold. For example,
the pair 1hry-118y, Q = 0.52, is from the HMG-Box family.
The pair liur-1faf, Q = 0.57, is from the super-family
Chaperone J-domain, a singleton super-family containing
only family of the same name. This applies to other pairs
in which one partner is 118y (pairs with 1i11, 1j46, 1j3c,
1hme, 118y, 1k99, 1xbl and 1lhry) or liur or 1faf. Some
other outlier pairs include the protein 1tc3 or 1res (pairs
with 1har, 1jko, 1jj6, 1lijw), from the family Recombinase
DNA-binding domain that represents mainly the fragments
of a whole DNA-binding protein. The structural data for
these proteins are in the form of synthetic DNA-protein
complexes, which would be different depending on the
complexed DNA sequence, structure determination
method, and the experimental conditions. Therefore, we
presume that for the classification of such fragments con-
siderable expert knowledge would have been taken into
account by the SCOP curators. Using €, to improve the
structure classification of such proteins, information
about the structure determination method and nature of
the ligand (e.g., DNA, metal ion, etc) should be taken into
account. Nevertheless, although these proteins have a

DNA-binding domain, they exhibit distinct functions fol-
lowing binding to a specific sequence of DNA, e.g., open-
ing a double helix, relaxing the twist in the DNA during
replication, participation in the transposition and recom-
bination. Future rearrangement of the sub-tree of the
Homeodomain-like super-family is conceivable. Therefore,
Q) may potentially help curators in manual assignment.
Analysis of the outliers would probably help curators in
deciding specific elements to describe the lower levels of
the hierarchy.

For classification of the DSF600 dataset, we observed
some outliers, arising from the factors discussed above. In
addition, however, we also observed a few pairs where
one of the domains is either a mutant, or a domain for
which structural data is derived independently of the
entire protein using a different experimental technique or
a domain which was resolve structurally in an unbound
state or bound to a ligand. Q returns very low structural
dissimilarity among such variations of the same domain,
whereas the Z score fails to detect any structural similarity,
despite sequence identity above 90%. Figure 8 shows
some of the examples of such domain pairs. In compari-
son to the twilight zone proteins used in the first assess-
ment, the DSF600 dataset contained some homologous
proteins. This was advantageous to both Q and Z score,
giving a lower FPR. However, at the Super-family level
there is a decrease in TPR, presumably due to the existence
of super-families with high structural similarity [25]. In
addition, to the structure of the SCOP hierarchy, the
higher homology within the DSF600 dataset might have
increased the overlap between the threshold range for Q
and Z score to predict the Fold and Super-family levels.
These observations suggest that compared to Z score, Q is
robust to the structural diversity as well as to the evolu-
tionary relatedness of the DSF600 domains.

A few possibilities arise from our results. The most impor-
tant is the identification of various levels in the structural
hierarchy based on a set of descriptors without a strict
requirement for high sequence identity. This makes the
method applicable to twilight zone proteins. Since multi-
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(b)

(d)

Domain pairs from the DSF600 dataset with a common family. DaliLite did not detect any significant structural simi-
larity among the pairs, whereas Q not only detects the structural similarity but also predicts correctly that the pairs share a
family level.(a) dlgrja2 and d2eula2, (b) dlcbha_-d2cbha_, (c) dlgl0i_-dIwo9a_ and (d) dlcfwa_, dldcda_ and dldfxa_.

ple algorithms and heuristics are not involved, our
method does not inherit errors. Presuming that protein
folds and families evolve from a common ancestor, our
approach may also be useful in studying the emergence of
protein fold families [26]. Q could be used to assess
model quality for structure prediction by homology and
fold recognition. In addition, Q facilitates classification of
newly determined protein structures, by reducing the clas-
sification space to only those structure levels to which the

other paired proteins belong. Therefore, the presented
methodology can contribute to the existing classification
schemes by minimising the need for expert knowledge
and manual efforts. A significant correlation is observed
between Q and DaliLite Z score. O, which is not based on
any expert knowledge and is purely dependent on the
quality of the descriptors used, is found to be more useful
than DaliLite for structure classification. As structural sim-
ilarity may imply functional similarity, our methodology
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()

Figure 8

Pairs of structural variants of the same domain from the DSF600 dataset. No Z-score was assigned to such pairs. (a)
dIf4sp_(red) and d2alca_(cyan) (sequence identity = 86%, Q2 = 0.30) are the DNA-binding domain of an ethanol regulon tran-
scription factor. The former is DNA bound and the latter is in an unbound state. (b) dldeca_(red) and dlhrti_(blue) (sequence
identity = 20%, Q = 0.21) are the anti-coagulants domains. The structure of the former is derived as an independent domain
through solution NMR, while the latter is the part of a complex structure, which was determined through X-ray diffraction. (c)

Two variants (dlvgha_ and d2vgha_) of an anti-coagulant heparin binding domain possess high sequence identity.

may find utility in structural class recognition and func-
tion prediction [6,27,28].

In its current state, the proposed approach works with
structures consisting of an equal number of SSEs. How-
ever, on the DSF600 dataset, we have shown its applicabil-
ity to larger domains and with multi-domain proteins.

The SCOP classification is based on the classification of
domains and multiple classification sub-trees are possible
for a multi-domain protein. Q can potentially identify
such sub-trees. Nevertheless, our approach could be
extended to include a combinatorial algorithm guided by
the structural descriptors to identify a common core for
two domains consisting of a different number of SSEs. It
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would then be possible to apply our approach to classify
large proteins for which the domain boundaries are still
unknown. Also, this would help to group proteins with a
common core at the Super-family or Fold level, thereby
minimising the thinning of classification hierarchy [29].

Conclusion

The automation of hierarchical structure classification is
important, due to the increasing number of structurally
resolved, but unclassified, protein structures. Hierarchical
structural classification is prone to inconsistencies, even
within the same classification scheme, due to the differ-
ence in the amount of information available to define var-
ious levels and the limited availability of expert
knowledge. Also, over time, the classification changes to
accommodate new information, either at the level of
structure, evolution or function, e.g., classification of a
multi-domain protein under different classification sub-
trees, and identification of new relationships with differ-
ent proteins. In order to cope with the growth in the struc-
tural data, automated classification of newly resolved
structures to the SCOP hierarchy has been recognised as
important. Yet the implemented automated protocol cur-
rently within SCOP works at the sequence level and the
final, structure-based classification still relies on expert
human knowledge, possibly because structural compari-
son is not as reliable as methods for sequence compari-
son. In addition, structure comparison is, in general,
computationally expensive, involves heuristics and possi-
bly accumulates errors inherited from various secondary
algorithms. Hence, a simple approach is needed that can
complement the sequence-only automation of classifica-
tion within SCOP. In this work, we have reported a step
towards such an approach.

Methods

The Datasets

A set of 362 proteins (DS362, Additional file 6) compris-
ing three SSEs, either helices or strands or both, was
derived from the SCOP database [20] version 1.69. The
majority of these proteins were single domain proteins. In
the case of multi-chain proteins, the first chain was used.
The domain boundaries used within a chain were those
defined by SCOP. Proteins with invalid DSSP (Definition
of Secondary Structure of Proteins) secondary structure
assignments [30] or for which DalilLite could not generate
a distance matrix were removed. Proteins for which
DaliLite did not detect similarity (Z score <2.0) with any
other protein in the dataset were also removed. To avoid
bias arising from using sequence similar protein pairs,
those detected by DaliLite to have sequence identity above
35% were removed. This generated 1,661 pairs of proteins
(205 unique proteins), spanning to four Classes (496
pairs), seven Folds (133 pairs), ten Super-families (472
pairs) and 23 Families (368 pairs) from SCOP. A pair is

http://www.biomedcentral.com/1472-6807/9/60

assigned to one of these four structural levels based on the
deepest common structural level between them. For
example, proteins in each of the 472 pairs share classifica-
tion up to the super-family level, but have been assigned
to different families.

There were 192 pairs in the dataset with no common level.
Analysis of these pairs revealed 67 unique proteins, of
which five proteins (1bha, 1m8l, 1m5i, 11g7 and 2a3d)
were classed in SCOP under the Not a true Class structural
level and one protein (1ijp) to Membrane and Cell Surface
Proteins and Peptide, a loosely defined SCOP class. These
six proteins occurred in about 95% of pairs with no com-
mon level. Exclusion of all the pairs having one of these
six proteins as one of the partner did not affect the distri-
bution of pairs sharing a given structural level (as above).
Therefore, the 192 pairs with no common level were not
considered further.

An additional dataset of 600 domains (DSF600, Addi-
tional file 7) classified in the SCOP database version 1.73
was derived from the complete set of SCOP domain map-
pings available from the ASTRAL compendium [31]. We
did not use the ASTRAL SCOP domain mappings up to
40% sequence identity, because not enough families were
left with at least three domains from different proteins.
Using ASTRAL mappings up to 95% sequence identity did
not affect the classification results. No intermediate
sequence identities were tried. However, to avoid redun-
dant domains, we considered only a single chain of a
homomeric protein. To evaluate the proposed methodol-
ogy on larger domains consisting of more than three SSEs,
we include domains comprising up to six SSEs. Three
domains were chosen randomly from each of the 50 arbi-
trarily selected families represented exclusively of
domains comprising three, four, five or six SSEs. In this
manner, the dataset represents 200 families, enabling us
to focus on classification at the Family level. We took care
to select domains only from true SCOP structural classes.
The selected domains represent both single and multi-
domain proteins.

Structural Descriptors

Structural and sequence-based one-dimensional represen-
tations of three-dimensional (3D) protein structure have
been used for a wide variety of purposes [27,32-35]. Here
we use descriptors, which, instead of characterising a pro-
tein as a whole, characterise the backbone geometry of the
constituent SSEs. The secondary structure assignments
were obtained from DSSP. Descriptors were calculated
using the C, co-ordinates of the residues constituting a
SSE. These descriptors were grouped into two categories:
pair-wise descriptors and individual descriptors. For any
two SSEs i and j in a protein "a", two real-valued pair-wise
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descriptors were the separation, p{]‘- between the centres

of mass (Additional file 1, Eqn. S.4), and the relative ori-
a

entation, 91]» ,

in terms of the angle between the axes pass-
ing through the terminal C, atoms of the two SSEs

(Additional file 1, Eqn. S.5), represented as vectors V; and

V]‘-

Three individual descriptors for each SSE are calculated.
The average solvent accessibility, J, is the arithmetic mean
of the solvent accessibilities assigned by DSSP to each of
the residues. The total number of residues constituting a
SSE is the length descriptor, 7, and the SSE type is a binary
descriptor, x: 0 if a-helix, 1 otherwise. Figure 9 illustrates
these descriptors with reference to a 3D structure. The
sequence identity values were assigned by Dali's pair-wise
comparison algorithm.

Coefficient of Dissimilarity

For a pair of proteins a and b, Q is defined as the Eucli-
dean distance between the structural and sequence-based
descriptors of the two proteins. The root mean square dif-
ferences (RMSD) with respect to the structural and
sequence-based descriptors are derived. For example, for a

pair of proteins a and b, with three SSEs each namely, 1, 2,

and 3, the RMSD of every pair-wise SSE distance ( p™)

is calculated (Additional file 1, Eqn. S.6) and normalised
(Additional file 1, Eqn. S.7). Similarly, the normalised
RMSD values for other descriptors are used to compute
Q,, (Eqn. 1). A higher value of Q indicates greater dissim-
ilarity. Classification to a level in the SCOP hierarchy
based on Q is evaluated.

nrmsd nrmsd nrmsd nrmsd nrmsd nrmsd
Qab = \/pab + Gab +Nap + 5ab +SSap + Lengy,

The coefficient of dissimilarity Q, for two proteins a and
b is defined as the Euclidean distance between a and b in
terms of RMSDs of different structural and sequence-
based descriptors calculated for the constituent pairs of
SSEs.

Z Score

The Dali Z score is an optimised similarity score defined
as the sum of equivalent residue-wise C,-C, distances
among two proteins [4]. Consecutive equivalent residues
define so called equivalent structural patterns, generally
overlapping hexa-peptides. For the two proteins the larg-
est value of Z score corresponds to the optimal set of resi-
due equivalence obtained by permuting the equivalent
structural patterns by Monte Carlo optimisation. A higher

http://www.biomedcentral.com/1472-6807/9/60

Figure 9

Pictorial representation of the structural descriptors:
separation (p), orientation (), solvent accessibility
(0) and length (7)) of the constituent SSEs.

value of Z score indicates greater similarity. A Z score
below 2.0 is considered as spurious similarity and can be
dis-regarded.
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Additional material

Additional file 1

Equations and statistics. This file contains the equations and the defini-
tions of statistics used in the study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S1.pdf]

Additional file 2

Confusion metrices - the DS362 dataset. This file contains the confusion
matrices used to calculate the True Positive Rate (TPR) and False Positive
Rate (FPR) reported for the DS362 dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S2.pdf]
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Additional file 3

Confusion metrices - the DSF600 dataset. This file contains the confu-
sion matrices used to calculate the True Positive Rate (TPR) and False
Positive Rate (FPR) reported for the DSF600 dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S3.pdf]

Additional file 4

Classification performance of 2 and Z score on proteins comprising
three to six SSEs. The pairs of domains from DSF600 data were analysed
separately based on the number of comprising SSEs. This file contains the
descriptive statistics, statistical significance and ROC graphs for Q2and Z
score when used to classify domain pairs comprising three to six SSEs, to
various structural levels. Selected domain pairs for which the structure
similarity was detected by 2 but not by Z score are also listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S4.pdf]

Additional file 5

Selected outliers of the pairs sharing a Family. This file lists selected
outlier protein pairs from the DS362 dataset belonging to a common
SCOP Family.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S5.pdf]

Additional file 6

List of domains in the DS362 dataset. This file lists PDB identifiers for
single and multi-domain proteins from the DS362 dataset. In the case of
multi-domain proteins the PDB identifier refers to the first chain.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-S6.pdf]

Additional file 7

List of domains in the DSF600 dataset. This file lists the SCOP identi-
fiers for domains consisting of three, four, five and six SSEs from the
DSF600 dataset.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-60-57.pdf]
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