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Abstract

Background: Over the last two decades, many approaches have been developed in bioinformatics that aim at one
of the most promising, yet unsolved problems in modern life sciences - prediction of structural features of a protein.
Such tasks addressed to transmembrane protein structures provide valuable knowledge about their
three-dimensional structure. For this reason, the analysis of membrane proteins is essential in genomic and
proteomic-wide investigations. Thus, many in-silico approaches have been utilized extensively to gain crucial
advances in understanding membrane protein structures and functions.

Results: It turned out that amino acid covariation within interacting sequence parts, extracted from a evolutionary
sequence record of α-helical membrane proteins, can be used for structure prediction. In a recent study we discussed
the significance of short membrane sequence motifs widely present in nature that act as stabilizing ’building blocks’
during protein folding and in retaining the three-dimensional fold. In this work, we used motif data to define
evolutionary interaction pattern pairs. These were obtained from different pattern alignments and were used to evaluate
which coupling mechanisms the evolution provides. It can be shown that short interaction patterns of homologous
sequence records are membrane protein family-specific signatures. These signatures can provide valuable information
for structure prediction and protein classification. The results indicate a good agreement with recent studies.

Conclusions: Generally, it can be shown how the evolution contributes to realize covariation within discriminative
interaction patterns tomaintain structure and function. This points to their general importance for α-helical membrane
protein structure formation and interaction mediation. In the process, no fundamentally energetic approaches of
previous published works are considered. The low-cost rapid computational methods postulated in this work provides
valuable information to classify unknown α-helical transmembrane proteins and to determine their structural similarity.

Keywords: Membrane proteins, Motif, Evolutionary interaction pattern pair, EIPP, Structural similarity,
Protein family affiliation

Background
Membrane proteins shape a special kind of proteins. They
feature vital necessary functions in cellular processes of
organisms. Fore more essential biological functions such
as: photosynthesis, transport of ions and small molecules,
signal transduction and light harvesting this are exam-
ples of processes which are realised by membrane pro-
teins. The analysis of membrane proteins was shown to
be an important part in the comprehension of complex
biological processes in the context of proteomics and
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genomics [1]. Generally, membrane proteins are poorly
soluble and cover a wide intra-cellular concentration
range. The inaccessibility of many proteomics methods
makes membrane protein analyses still an experimentally
challenging field [2]. Hence, the number of known three-
dimensional structures is relatively small, with 437 non-
redundant membrane protein chains currently available
[3-5]. Consequently, there is a necessity for approaches
that allow to predict structural and functional features
of unknown membrane proteins. A variety of meth-
ods have been developed to predict structural features
from sequence, such as α-helical membrane-spanning
helices and extra/intra-cellular domains (i.e. TMHMM
[6,7], PHDhtm [8], MEMSAT3 [9]) as well as membrane-
spanning β-strands of transmembrane β-barrel proteins

© 2015 Grunert and Labudde; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: sgrunert@hs-mittweida.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Grunert and Labudde BMC Structural Biology  (2015) 15:6 Page 2 of 13

(i.e. BOCTOPUS [10]). Furthermore, a major step toward
ab initio protein structure prediction has been made
through the development of new techniques for map-
ping energetic interactions in proteins. Here, Lockless
and Ranganathan demonstrated [11] a statistical energy
function as a good indicator of thermodynamic coupling
in proteins. They also showed how sets of interacting
residues form connected pathways in the protein fold.
An existing basis for efficient energy conduction within
proteins has been shown. They called their approach sta-
tistical coupling analysis (SCA) that provides the basis
for further works in this area. Other approaches dealing
in turn with key information to predict protein struc-
tures, which can be obtained from homologous sequences
and their evolutionary variation because: “The diversity
of biologic phenomena arises from the complexity and
specificity of biomolecular interactions. Nucleic acid and
protein polymers encode and express biologic information
through the specific sequence of polymer units (residues).
The sequences and corresponding molecular structures
are under selective constraints in evolution [12]”.
Due to the growth of available protein sequences, many

statistical methods have been developed, to compute
protein three-dimensional structures from evolutionary
context. Diverse contributions were involved to develop
sophisticated methods to identify additional key residues
that are involved in protein structure and function, espe-
cially residues that are strongly conserved within each
subfamily but differ between subfamilies [13]. Previous
works of Marks et al. [14,15] indicate that rich evo-
lutionary information from genomic sequences can be
efficiently mined, leading to information on evolutionary
couplings between residues. Morcos et al. [16] have used
information about strong constraints on their sequence
variability, induced by the three-dimensional structures
of homologous proteins. They developed an efficient
direct-coupling analysis (DCA) [17,18] implementation to
evaluate the accuracy of contact prediction for a large
number of protein domains. Later on, Hopf et al. [19] pre-
sented a maximum entropy approach to infer evolution-
ary covariation in pairs of sequence positions of a given
protein family. Generated atommodels from derived pair-
wise distance constraints were finally used to predict
the full spectrum of protein structures, functional inter-
actions and evolutionary dynamics of unknown three-
dimensional structures for 11 transmembrane proteins.
A novel approach by Kamisetty et al. [20] utilizes an
approximation method to obtain more accurate con-
tact predictions for estimating residue-residue contacts
in protein structures. Compared to previous methods,
higher accuracy was achieved by integrating structural
context and sequence co-evolution information. Hence,
their method allow more accurate contact predictions
from fewer homologous sequences.

Furthermore, in genome-wide membrane protein
sequence analyses, numerous short conserved sequence
motifs were identified [21]. These motifs support the
understanding of the features that are important for estab-
lishing stability and functionality of the folded membrane
protein in the membrane environment. Additionally,
as addressed in [22], the analysis of sequence motifs in
proteins with similar function or structure might help
to identify essential functional sites and locations, which
contribute to structural stability. Thus, sequence motif
analysis can be helpful for numerous applications, e.g.
the investigation of mutant proteins, the understanding
of protein dynamics and potential effects of mutagens.
During evolutionary progress the spatial structure of pro-
teins is generally stronger conserved than the sequential
amino acid composition. Adapted to the field of sequence
motif analysis, structure-forming motifs point to their
general importance in α-helical membrane protein struc-
ture formation and interaction mediation [1]. Moreover,
hubs and consecutive motifs with high occurrence in
certain membrane protein families can be classified as
important for family-specific functional characteristics
[23]. Finally, the combination of interaction information
and sequence motifs with evolutionary variation can be
used for three-dimensional structure prediction.
In our work we obtained key information from homolo-

gous sequences to separate and predict membrane protein
structures in the context of interacting patterns and their
evolutionary variation. Patterns as motif representatives
are investigated regarding evolutionary covariation. Inter-
action information contributes to detect interacting pat-
terns with evolutionary background. Here, we report the
development of an algorithm that is involved in the extrac-
tion of interaction pattern pairs that are evolutionarily
influenced. These were used for the investigation of dif-
ferent mutation types, which are provided by evolution to
maintain structure and function. Agreeing with previous
works we can state that the evolution provides basic build-
ing blocks to maintain structure and function. Related
to this, family-specific interaction pattern information
were used to predict unknown α-helical transmembrane
protein structures. We have also tested our method at
an already predicted structure of previous work of Hopf
et al. [19]. Finally, our approach is not based on recently
developed methods like SCA or DCA, but the processing
of interaction and secondary structure data for predict-
ing rich helical structure parts leads to the attachment to
previous works.

Methods
In the first step, known crystal structures of α-helical
membrane proteins were investigated. Structural informa-
tion were derived from PDBTM [24]. Currently available
known α-helical membrane proteins were assigned to
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Table 1 The analysed dataset

Protein Familya PDBTMb TMPadc Contactsd

PF01036 (Bac_rhodopsin)e 130 102 6417

PF00230 (MIP)f 44 40 2814

aAnalysed proteins to corresponding protein family. bNumber of known
structures available from PDBTM [24]. cNumber of proteins with interaction
information available from TMPad [29]. dNumber of helix-helix contact
information available for PDBTM assigned TMPad proteins.
eBacteriorhodopsin-like proteins. fMajor Intrinsic Proteins.

their protein families [25] using Pfam mappings. We have
tested our method at two selected families with homol-
ogous sequences that contribute to generate coupling
statistics (Table 1).

Evolutionary co-variations from pattern alignments (PAs)
Hopf et al. hypothesized and confirmed in their work
[19], that the evolution conserves interactions between
residues that are important to maintain structure and
function. This is done by constraining the sets of muta-
tions that are accepted at interacting sites. To find these
constraint interactions within different sequence patterns,
we generated PAs using a novel algorithm that detects
evolutionary covariation. Aspects of this algorithm are
given in this section. However, before elucidating the
application of our algorithm, we want to give a short
summary on the general definition of short sequence
motifs, as well as the aspects of motif detection and
information extraction. Consequently, the next steps are
involved in motif extraction out of α-helical structures.
Like described in previous work of [26] a motif can be
written in a generalized, regular expression-like form of
XYn, where X and Y correspond to amino acids separated
by n−1 highly variable positions. For the general purpose,
short sequence motifs have been extracted that contribute
to build the α-helical structure in the transmembrane
environment. Here, a naive text search algorithm was
applied for motif extraction. More precisely, the algorithm
mainly utilises a sliding sequence frame strategy. Begin-
ning from the start position of the sequence, different
window sizes are used to extract the underlying subse-
quence. Each subsequence is transcribed into its regular
expression XYn. More specifically, at each sequence posi-
tion i and i + n the algorithm returns the N-terminal
residue X and the C-terminal residue Y. Note, that X and
Y denote any of the 20 canonical amino acids. Redun-
dant duplications were removed. It is known that amino
acids are positioned with an average of 3.6 residues per
turn in TM-helices [27] and it is also known that motifs
with different length are favoured for TM-helix packing
[1,28]. Based on this, the number of n − 1 variable posi-
tions ranges within 2 ≤ (n − 1) ≤ max, where max
is the maximum helix length of a protein family. Along,
for a given protein each motif representative pattern was

searched in all helices. If a pattern was found, the initial
pattern (IP) is stored. Here, the IP represents the pattern
according to which all others are aligned. To detect evolu-
tionary covariation and to minimize the statistical noise,
we have aligned patterns from other structures of the same
protein-family.We ensured that these patterns, called sub-
words (SWs), have up to one mutated variable position
and a length of nSW ≤ nIP. To avoid redundancy and to
minimize computational processing time, already aligned
SWs were ignored. Each PA returns possible evolution-
ary covariation at the variable position of the aligned IP.
A representative PA example is shown in Figure 1/Pattern
Alignment.

Specific evolutionary interaction pattern pairs (EIPPs)
To close the information gap when individual patterns
interact with each other, we have decided to derive inter-
action data information from a known database. Gen-
erally, such databases allow a rapid and simple access
to the required data. Helix-helix interaction information
were derived from TMPad, the TransMembrane Pro-
tein Helix-Packing Database [29]. TMPad is an integrated
repository of experimentally determined structural folds
derived from helix-helix interactions in α-helical mem-
brane proteins. Here, geometric descriptors of helix-helix
interactions, topology, lipid accessibility, ligand and bind-
ing sites information are provided by TMPad. Currently,
1,107 protein entries, 4,061 protein chains and 17,413
helix-helix interactions are available. Contact informa-
tion were enriched by Contacts of Structural Units (CSU)
[30] derived from Weizmann Institute of Science, which
provides different experimental data after the analysis of
inter-atomic contacts of structural units of the protein
data base (PDB) [31] entries. Now it is able to create
a context between structure and helix-helix interaction
information adapted to representative patterns of discrim-
inative sequence motifs. After successfully integration of
the TMPad-information to find EIPPs, helix-helix inter-
actions were registered. An Interaction pattern pair was
extracted when a contact is given only at a variable pattern
position. We have ensured that at least one pattern of a
given pair hasmutations at the variable position. To obtain
a statistical overview about themost occurring interacting
motif pairs, the corresponding occurrence was recorded
for each XYn − XYn. EIPPs are specific within the investi-
gated membrane protein family. Such pairs can be consid-
ered as family-specific signatures due to their responsibil-
ity to build and stabilize the proteins structure by taking
into account of the evolutionary space. Each EIPP was
labelled with the corresponding protein in which the EIPP
was found. Pattern interaction networks were created for
final visualization and to support the understanding, how
the evolution maintains attractive interaction within an
EIPP. Furthermore, the existence of family-specific EIPPs
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Figure 1 The workflow for evolutionary interaction pattern derivation up to final structure similarity determination. A: The main process
to derive family-specific EIPP records. This includes the protein data aggregation from known membrane protein structures and the detection of
evolutionary covariation based on pattern alignments (PAs). Together with interaction data information from TMPad [29], we obtain interacting
patterns with evolutionary background, which are important for maintaining structure and function. B: The evaluation process includes to obtain
α-helical sequence information from unknown membrane protein structures using by TMHMM [6,7]. Finally, signature EIPPs can be searched in
unknown structures with final structure similarity determination to known structures.

was evaluated by a protein separation task. An evaluation
dataset of the investigated Pfam-families PF01036 and
PF00230 was derived (Table 2). Redundancy reduction
was performed by assuring the family-specific number of
transmembrane helices. Transmembrane helical informa-
tion were obtained using TMHMM Server v. 2.0 [6,7].
Basically, TMHMM performs a prediction of intra/extra-
cellular regions and integral membrane helices based on
sequence. Beside per-residue predictions TMHMM also
lists underlying per-residue assignment probabilities as an
indicator of prediction uncertainty. TMHMM results do
not always exhibit the expected typical number of 7 TM-
helices (Bacteriorhodopsin-like protein) and 6 TM-helices
(Major Intrinsic Proteins) in the evaluation dataset, which
leads to the reduction of the evaluation dataset. Even-
tually, not all sequences of the evaluation dataset were
included in the process. Known structure representatives
were also removed.

For the further step, protein clusters consisting of all
family representative unknown structures were merged,
to form a cloud and subsequently sampled. For each
cloud member, family-specific EIPPs were applied on
TMHMM predicted helices disregarded by mutations
and under consideration of different degrees of freedom.
Here, a threshold determines the number of approved
variable positions within EIPPs. Matches were registered
and marked in the respective helices and sequence

Table 2 The evaluation dataset

Protein Familya Proteinsb Helicesc

PF01036 (Bac_rhodopsin)d 438 3066

PF00230 (MIP)e 6420 38520

This dataset consists of protein family-specific representatives with unknown
structures. aAnalysed proteins to corresponding protein family. bNumber of
proteins available from evaluation dataset. cNumber of investigated membrane
helices. dBacteriorhodopsin-like proteins. eMajor Intrinsic Proteins.
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similarity of the incurred interacting ranges compared to
known structures was calculated. In addition, the family-
specificity of EIPPs leads to family-specific classifiers
and thus to the ability to detect an family affiliation
of unknown structures that contain mutation affected
homologous sequence parts. Here, it is important to men-
tion that this task is not aimed at developing a new and
better approach to classify proteins like Pfam does it with
their Hidden Markov models. We will only demonstrate
the specificity of mutation affected interacting sequence
parts of a given protein family.

Results and discussion
EIPPs were derived from known crystal structures of
different membrane protein families. PAs provide evo-
lutionarily induced variable positions within EIPPs. Like
previously described, evolutionary covariation have been
detected in EIPPs. In some cases, aligned SWs with up to

one mutated position are responsible for multiple covari-
ation within an EIPP member. One could have given the
evolution more leeway and aligned SWs could have been
designed with more than one mutated position, because
it is a fact that the evolution allows more variance at
the variable pattern positions to maintain structure and
function. Our results show that the evolution provides
basic building blocks, which are significant for the trans-
membrane environment like described in previous works
[1,21,23]. The evolution itself determines the sequence
variability and thus the variance of the variable pattern
positions. If we consider each EIPP member as a basic
building block we obtain a global view for this interacting
sequence part in relation to a single residue. Thereby, we
bypass the analysis of each residue to obtain structurally
interacting units. The visualization of generated pattern
interaction networks (Figure 2) supports the understand-
ing, which pattern pairs of different length are generally

Figure 2 Examples of spatially interacting sub-sequences with respect to their corresponding pattern interaction network. A: More
specifically, KI6 and AM7 representative patterns (right) interact with AL8 (left). All patterns have mutations. Mutational positions are marked with X.
Possible amino acid replacements for AL8 representative (left) are coloured and arrows point to the respective X position. Black arrows point to the
respective X position of the KI6 and AM7 representatives. With this interaction network we can track, which substitutions occur during the
evolution, without influence on the interaction. B: The top and side view illustrations of Bacteriorhodopsin trimer (PDB-Id:1brr) are indicating where
the interacting patterns are present in the helices of chain A. Generally, spheres illustrate residue-residue contacts. Red coloured spheres illustrate
variable positions (X).
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involved in spatial interaction by taking into account
the evolutionary background. We obtain important infor-
mation about variable pattern positions that are sub-
jected to amutation without influencing attractive pattern
interactions. The application of interaction tree schemes
can lead to better indicators in laboratory mutagen inves-
tigations. More specifically, this supports the investigation
of mutational variants causing different diseases like e.g.
Nephrogenic diabetes insipidus.
Incidentally, for reasons of incomplete TMPad infor-

mation not all position specific mutations are an inte-
gral part of our EIPPs. Only EIPP related mutations
were collected if any contact could be detected from
TMPad. Regarding this tree information, different known

structures of PF01036 were analysed for EIPPs. The inves-
tigation of Rhodopsin-like proteins represents a major
subject of research. Here different structure-function
studies were performed [32,33]. Further, the investigation
of active core fluctuations, the folding core and kinetics
and the involved residues have been treated extensively in
previous studies [34-36]. In this work, Bacteriorhodopsin-
like protein structures were used to evaluate the derived
EIPPs. Representatives of the statistically most interact-
ing motifs were searched. Furthermore, long motif XYn
(n = 9) representative patterns show a greater tendency
to interact more frequently than short ones, because of
the larger number of possible residue-residue interac-
tion combinations. The examples given in Figure 3 show,

Figure 3Mutation interaction types. Four mutation interaction types are present. Labelled spheres indicate which amino acid at specified
position is present related to PDB-Id. A: Simple evolutionary replacements (red) around the blue and green interacting residue spheres. B:
Interacting AL9 motifs (blue and green) with evolutionary residue substitution without loss of interaction. Mutations at one or at both interaction
partner are possible. B1: Asp115 at the second position of AL9-motif pattern representative AD115GIMIGTL interacts with Ala91 or Pro91 of AL9-motif
pattern representative A[SD]85WLFTT[AP]91LL . This is made possible by the same orientation of Ala91 and Pro91 towards its interacting counterpart.
B2: Analogously, fourth position of AL9-motif pattern representative AFT[MA]56YLSMLL is designed variable with Ala56 or Met56 and interacts with
Asp85 or Ser85 reason by same orientation in space. C: If contact information will be lost by mutation, the responsible destabilizing amino acid will
be compensated by another position, in order to maintain attractive residue pair interaction [16]. C1/C2: Ile148 and Val148 at fifth position of
AL9-motif pattern representative AMLY[VIA]148LYVL (blue) are able to interact with Ala114 at sixth position of LI8-motif representative
LAL111VGA114DGI (green). C3: Mutation with Ala148 causes that contact will be lost reason by to short distance to Ala114 counterpart. Here, Leu111 at
third position of LI8-motif compensates the destabilizing amino acid. Evolution aims at maintaining stabilizing interactions. D: Trp137/142 is an
evolutionary coupling residue which interacts with Ile129 or Val124 by full changeable residue environment around Trp137/142. This means that the
evolutionary degree of freedom allows it to change all variable positions of an interacting pattern by keeping the conserved interaction residue.
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how different EIPPs comprise structural tasks and spa-
tial interactions. Specifically, the evolution presents how
EIPPs contribute to emerge different evolutionary muta-
tion types. These types describe the sequence variability
on a closer way, which has no significant influence on the
protein structure and function.
These are described in more detail below:

1. Simple residue replacements that are not involved in
any interaction. Tend to be an important block
within an EIPP member, thus the structure can be
folded without any task to build important spatial
contacts (Figure 3A).

2. Contact specific mutations within evolutionary
patterns. An amino acid with the responsibility to
build a spatial contact to another helix will be
replaced by an amino acid without modifications of
the residue-residue interaction network. This can
only be realized using amino acids with similar
properties of the replaced residues. Here, the length
and the spatial orientation play a major role to be a
suitable replacement. As injunctive contact example
shown in Figure 3B1: The replacement of Pro91
(PDB-Id: 1brr) with Ala91 (PDB-Id: 1q5j) within the
AL9-motif representative A[DS]85WLFTT[PA]91LL
has no influence to maintain the injunctive contact to
their counterpart D115 within the AL9-motif
representative AD115GIMIGTGL. The extended
contact (Figure 3B2) between helix-helix interaction
at positions 85 and 56 shows how evolutionary
sequence variability contributes in such a manner that
both interaction residues can be replaced by another
without loosing the family-specific important contact.
Here, Asp85 (PDB-Id: 1brr) is replaced by Ser85
(PDB-Id: 1mgy) within the AL9-motif representative
A[DS]85WLFTT[PA]91LL. It has no influence to
maintain the injunctive contacts to their counterparts
Met56 (PDB-Id: 1brr) and Ala56 (PDB-Id: 1pxs) within
the AL9-motif representative AFT[MA]56YLSMLL.

3. Morcos et al. [16] explained the simplicity between
evolutionary substitutions and residue-residue
contacts. “If two residues of a protein or a pair of
interacting proteins form a contact, a destabilizing
amino acid substitution at one position is expected to
be compensated by a substitution of the other
position over the evolutionary time-scale, in order for
the residue pair to maintain attractive interaction”.
For in-depth discussions and evaluations see [16].
These results can be seen in our frequently
interacting motif pair AL8-LI8. shown in Figure 3C.
C1/C2: Here, the fifth variable position of AL9-motif
representative AAMLY[VAI]148LYVL. Val148 and
Ile148 have a coupling with Ala114 of the LI8
representative LAL111VGA114DGI. C3: Mutation at

position 148 with tiny Ala148 leads to the loss of
contact to Ala114. Here, Leu111 compensates the loss
of contact by interacting with tiny
Ala148.

4. A fundamental change of variable motif positions
right down to contact specific position. Thereby,
common amino acids take place to cope the complete
change. Such amino acids are e.g. tryptophane (Trp)
with the important role in membrane proteins as
described in previous work [37].

In the following, a summary on how to use EIPP data
for structure prediction is given. As a proof of concept,
116,810 EIPPs (PF01036) and 63,283 EIPPs (PF00230)
(Table 3) were extracted from known structures of the cor-
responding protein families (see Additional file 1). Here,
the number of EIPPs is given by interacting patterns with
different lengths. These include interactionmembers with
permanently assigned positions and members that are

Table 3 Number of EIPPs derived from 130
Bacteriorhodopsin-like and 44Major Intrinsic Protein
structures

Variable positions EIPPs EIPPs

PF01036 PF00230

2 5754 4988

3 7656 5930

4 8784 6326

5 9864 6398

6 10382 6594

7 10302 6087

8 10529 5470

9 9692 4936

10 8727 4196

11 7797 3428

12 6545 2748

13 5538 2129

14 4569 1533

15 3498 1031

16 2530 645

17 1867 375

18 1278 218

19 801 131

20 437 68

21 187 35

22 64 12

23 8 4

24 1 1
∑

116810 63283



Grunert and Labudde BMC Structural Biology  (2015) 15:6 Page 8 of 13

Figure 4 Classification result for Bacteriorhodopsin-like (PF01036) representative unknown structures. 372 of 438 representative proteins
have been correctly assigned to PF01036. The greater the evolutionary degree of freedom (x-axis), the more variability occurs within PF01036-EIPPs.
This leads to more classified proteins. On the other side, EIPPs become more unspecific for a membrane protein family which leads to wrong
classified. In this case, PF01036-EIPPs were covered in 85 PF00230-proteins.

evolutionarily influenced. The rediscovery of EIPPs in
unknown membrane protein structures of different fami-
lies leads to the separation and finally to the determination
of a membrane protein family affiliation. However, this is
influenced by the evolutionary degree of freedom within
EIPPs. With increasing variability of the variable position
and under considering of the number of amino acids of a
given interacting pattern, EIPPs can be recovered in other
membrane protein families. That means, the greater the
number of amino acids of a EIPP and the lower the evolu-
tionary degree of freedom, themore specific is a EIPP for a
membrane protein family. This has a significant impact on
correctly classified proteins. In this context, the recovery
of EIPPs in unknown membrane protein structures leads
to the following classification results as shown in Figures 4
and 5.

Here, 372 of 438 (PF01036) and 5,993 of 6,420 (PF00230)
representative proteins have been correctly assigned to
their families under the consideration of the evolution-
ary degree of freedom. Caused by the increase of variable
positions, EIPPs became more non-specific for a mem-
brane protein family and more proteins are incorrectly
assigned. Misclassified indicate no EIPPs in the inves-
tigated membrane helices and thus no sequence simi-
larity due to heterologous sequence parts. The reason
is the restriction to allow only single mutations within
aligned SWs. This leads to the fact that not all posi-
tions are considered by our algorithm. Sequence homol-
ogy causes generated EIPPs to be a part of current
unknown structures of the investigated protein family.
Generally, our classification result shows that unknown
structures can be assigned to a membrane protein family

Figure 5 Classification result for major intrinsic protein (PF00230) representative unknown structures. 5,993 of 6,420 representative
proteins have been correctly assigned to PF00230. The greater the evolutionary degree of freedom (x-axis), the more variability occurs within
PF00230-EIPPs. This leads to more classified proteins. On the other side, EIPPs become more unspecific for a membrane protein family which leads
to wrong classified. In this case, PF00230-EIPPs were covered in 14 PF01036-proteins.
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Figure 6 Structural colouring of EIPP covered helical ranges with high similarity to unknown Bacteriorhodopsin-like (PF01036)
structures. Side and top-down view of the top three known structures with the highest similarity to the unknown representative. Blue, green and
red coloured cartoon residue ranges are present. PF01036 family-specific EIPPs were detected in A: D5H9B4_SALRM B: Q9HH34_HALSI C:
BACR1_HALSS and they are similar to known structures with PDB-Id A: 3ddl, B: 1vgo and C: 1uaz. All figures were rendered with PyMOL.

by our described method. Furthermore, registered EIPPs
were marked and compared to known structures. As
shown in Figures 6 and 7, the three representatives are
present. These have a high structural similarity to known
protein structures of the families (PF01036, PF00230).
D5H9B4_SALRM, Q9HH34_HALSI and BACR1_HALSS
are the top three representatives, where the most
PF01036-EIPPs have been detected in TM-helices.
G7RII8_ECOC1, AQP5_MOUSE and PIP27_MAIZE are
three freely selected PF00230-structures with high simi-
larity. Further similarity results are given in the attached
Additional file 2.
The appropriate statistic is present in Tables 4 and 5.

Considered as a whole, predicted helical ranges and finally
the whole unknown structure can be compared struc-
turally to similar known structures. For D5H9B4_SALRM
this means, that 91.2% of the helical ranges be covered by
PF01036-EIPPs. Followed by Q9HH34_HALSI with 90.5%
and BACR1_HALSS with 85.2% structural similarity.
Analogously, G7RII8_ECOC1with 90.2%, AQP5_MOUSE
with 85.2% and PIP27_MAIZE with 83.8% are covered

by PF00230-EIPPs. A further evaluation has been
performed. Hopf et al. have predicted [19] the unknown
structures of ADR1_HUMAN with structural similarity
to Bacteriorhodopsin (Pfam: PF01036, PDB-Id: 3hao) and
LIVH_ECOLI with structural similarity to permease pro-
tein BtuC (Pfam: PF01032, PF00005, PDB-Id: 1l7v) in
their work. We have used both structures and considered
these as unknown structures. Transmembrane α-helical
information predicted by TMHMM were applied to the
classification task. ADR1_HUMAN could successfully be
assigned to PF01036 and LIVH_ECOLI to PF00005. For
ADR1_HUMAN this means that six of seven helices were
structurally predicted with 100% similarity. The helical
range of helix number 6 (H6) was covered by EIPPs with
86.4%. Besides, helical ranges of LIVH_ECOLI have high
similarity to known structures of PF00005 (H1: 72.7%,
H2: 50.0%, H3: 100%, H4: 90.9%, H5: 72.7%, H6: 94.1%,
H7: 100%). This confirms the structure prediction result
of Hopf et al. addressed to the structural similarity of
ADR1_HUMAN to Bacteriorhodopsin and LIVH_ECOLI
to permease protein BtuC.

Figure 7 Structural colouring of EIPP covered helical ranges with high similarity to unknownMajor Intrinsic Protein (PF00230) structures.
Side and top-down view of the three known structure examples with the highest similarity to the unknown representative. Blue, green and red
coloured cartoon residue ranges are present. PF00230 family-specific EIPPs were detected in A: G7RII8_ECOC1 B: AQP5_MOUSE C: PIP27_MAIZE and
they are similar to known structures with PDB-Id A: 2o9e, B: 3d9s and C: 2b5f. All figures were rendered with PyMOL.
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Table 4 Structurally similar helical ranges of unknown PF01036-structures

D5H9B4_SALRM Q9HH34_HALSI BACR1_HALSS

Helix Amino acids Similarity Helix Amino acids Similarity Helix Amino acids Similarity

1 23 95.6% 1 23 82.6% 1 23 73.9%

2 20 95% 2 23 91.3% 2 23 78.2%

3 18 88% 3 23 95.6% 3 23 0%

4 18 100% 4 23 86.9% 4 20 90%

5 23 91.3% 5 20 100% 5 20 70%

6 23 95.6% 6 23 91.3% 6 23 69.5%

7 23 73.9% 7 23 86.9% 7 23 82.6%

For each Bacteriorhodopsin-like protein, the number of amino acids of individual TMHMM predicted helices are given. Similarity values describe consistent helical ranges, which are covered by EIPPs.
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Table 5 Structurally similar helical ranges of unknown PF00230-structures

G7RII8_ECOC1 AQP5_MOUSE PIP27_MAIZE

Helix Amino acids Similarity Helix Amino acids Similarity Helix Amino acids Similarity

1 23 100% 1 23 73.9% 1 23 86.9%

2 23 86.9% 2 23 73.9% 2 23 82.6%

3 23 100% 3 23 73.9% 3 23 78.2%

4 23 78.2% 4 18 94.4% 4 20 100%

5 23 78.2% 5 23 73.9% 5 23 78.2%

6 18 100% 6 18 94.4% 6 18 77.7%

For each Major Intrinsic Protein, the number amino acids of individual TMHMM predicted helices are given. Similarity values describe consistent helical ranges, which are covered by EIPPs.
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Moving forward, we discuss the structural similarity
results. EIPPs as interacting structural blocks are specific
within a membrane protein family and for the folding of
each TM-helix within a membrane protein. To recover
EIPPs on a unknown structure sequence, EIPPs must
occur in the helix that reflects the known structure. In
this case, we had to fall back on TMHMM, a known
secondary prediction tool. This dependence means that
the discussed approach does not perform better than the
best secondary prediction tool. On the other side, EIPPs
provide TM-helical information from known structures.
This leads to the possibility chance to refine secondary
structure prediction tools and can be discussed in fur-
ther works. Finally, our method can be used to improve
sequence-based methods for classification and protein
homology detection.

Conclusion
In this work, we have demonstrated an approach for
extracting short, spatially interacting amino acid sub-
sequences - so called evolutionary interaction pattern
pairs (EIPPs) - from known crystal structures of α-helical
membrane protein families and underlying sequence
data of protein family members. Finally, it is outlined
how EIPPs can be utilized to predict protein structure.
Here, covariation withinmotif representative homologous
sequence patterns have been detected using a pattern
alignment algorithm. In combination with interaction
information from TMPad [29], EIPPs were obtained and
employed to generate interaction trees. Thereby, we are
able to show how different interacting patterns differ
evolutionarily. Moreover, they have been evaluated using
known structures of Bacteriorhodopsin-like proteins and
discussed in detail. Here, different mutation types emerge
to create an evolutionary instrument to realise sequence
variability within a protein family. Furthermore, EIPPs
have been used to generate family-specific classifiers. Rep-
resentative proteins with unknown secondary structure
have been used to predict α-helical sequence informa-
tion using TMHMM [6,7]. Finally, family-specific protein
separation has been performed and the structural simi-
larity to known structures of the related protein family
has been calculated. Addressed to structure similarity, our
method describes how different interacting patterns with
evolutionary background contribute to register a pro-
tein family affiliation. We are also able to determine the
most similar unknown to known structures of a given
α-helical membrane protein family. We also produced a
good agreement with recently published studies that the
evolution provides basic building and interacting blocks
for maintaining structure and function. Due to sequence
homology such blocks are repeated and we have proven
structural conservation. The contemplation of a sequence
from the perspective of such blocks facilitates the

understanding how membrane protein structures of a
family are constructed. Last but not least, low-cost rapid
computational methods can be developed to support,
extend or refine classification and prediction methods for
membrane proteins.

Additional files

Additional file 1: EIPP data. Includes derived EIPP information from
families (PF00230, PF01036) with tab separated values. Can be viewed with
a simple text editor. Each line consists of 7 columns: source pattern, source
RegEx, destination pattern, destination RegEx, source helix, destination
helix, corresponding PDB-Ids.

Additional file 2: Similarity results. Includes two text files for each
protein family (PF00230, PF01036). Each file shows prediction results in the
context of the evolutionary degree of freedom (EDF). For each protein,
original and predicted helical range information are given. The end of a file
shows the prediction winners.
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