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Abstract

Background: T cell receptor (TCR) molecules are involved in the adaptive immune response as they distinguish
between self- and foreign-peptides, presented in major histocompatibility complex molecules (pMHC). Former
studies showed that the association angles of the TCR variable domains (Vα/Vβ) can differ significantly and change
upon binding to the pMHC complex. These changes can be described as a rotation of the domains around a
general Center of Rotation, characterized by the interaction of two highly conserved glutamine residues.

Methods: We developed a computational method, DynaDom, for the prediction of TCR Vα/Vβ inter-domain and
TCR/pMHC orientations in TCRpMHC complexes, which allows predicting the orientation of multiple protein-
domains. In addition, we implemented a new approach to predict the correct orientation of the carboxamide
endgroups in glutamine and asparagine residues, which can also be used as an external, independent tool.

Results: The approach was evaluated for the remodeling of 75 and 53 experimental structures of TCR and
TCRpMHC (class I) complexes, respectively. We show that the DynaDom method predicts the correct orientation of
the TCR Vα/Vβ angles in 96 and 89% of the cases, for the poses with the best RMSD and best interaction energy,
respectively. For the concurrent prediction of the TCR Vα/Vβ and pMHC orientations, the respective rates reached
74 and 72%. Through an exhaustive analysis, we could show that the pMHC placement can be further improved by
a straightforward, yet very time intensive extension of the current approach.

Conclusions: The results obtained in the present remodeling study prove the suitability of our approach for
interdomain-angle optimization. In addition, the high prediction rate obtained specifically for the energetically
highest ranked poses further demonstrates that our method is a powerful candidate for blind prediction. Therefore
it should be well suited as part of any accurate atomistic modeling pipeline for TCRpMHC complexes and
potentially other large molecular assemblies.
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Background
An early event in the T cell mediated immune response
is the recognition of pathogenic peptides contained in
major histocompatibility complex (MHC) molecules.
The capability of the vertebrate immune system to dis-
tinguish between a vast variety of pathogenic- and self-
peptides is achieved by a tremendous population of dif-
ferent T cell variants (i.e., in a magnitude estimated from
106 to 107), which differ from each other in the T cell re-
ceptor (TCR) [1–3]. Such a diversity results from the
combination of two membrane anchored TCR chains (α
and β), which are encoded by gene segments joined in a
process known as v(d)j recombination [4]. As depicted
in Fig. 1, each chain consists of two immunoglobulin-
like domains, the variable domain (further referred to as

Vα and Vβ) and the constant domain. The v(d)j combin-
ation process occurs during the T cell maturation in the
thymus, where variable (v) and joining (j) gene segments
are combined while nucleotides are randomly intro-
duced within the variable domains (V). In the case of
the Vβ domain, an additional short segment is inserted
in between the v and j segments, further increasing the
TCR diversity (d). The binding interface of the TCR to
the peptide-MHC molecule complex (pMHC) is formed
by loops named as complementary determining regions
(CDR), and each chain of TCR contains three CDRs.
While the primary structure of CDR1 and CDR2 loops
evolved together with the MHC molecules [5], the se-
quence of CDR3 loops is determined by the v(d)j recom-
bination and thus exhibits a higher diversity [6].
The number of resolved bound and unbound TCR

structures has drastically increased to 200 in the Protein
Data Bank [7] during the past few years. Nevertheless,
considering the vast variety of TCRs and the high poly-
morphism of the MHC molecules, the development of
reliable structural methods is of crucial importance in
order to complement time consuming experimental
structural techniques [8]. Such modeling approaches can
help in the field of rational TCR design/optimization
(e.g., adoptive T cell cancer therapy) [9, 10], in the con-
text of vaccine design [11, 12], and in the development
of a consistent theory for T cell signal transduction,
which is still not fully understood [13].
Over the past two decades, many theoretical method-

ologies have been developed and applied to model and
predict TCRpMHC interactions.
The main focus in the area has been on the prediction

of the MHC/peptide interaction without explicit consid-
eration of the T-cell receptor as the experimental study
of MHC-peptide binding has been a very active field
since the mid-90s whereas the systematic investigation
of the T cell response started about a decade later. In
addition, MHC-peptide binding is a necessary prerequis-
ite for the T cell response and thus has by itself already a
highly predictive value. Therefore various sequence and
structure based prediction tools have been developed of
MHC-peptide binding in the past decades [14, 15]. Next
to MHC-peptide specific structure-based prediction
methods such as EpiDock, PREDEP, pDOCK, DynaPred,
or DockTope [16–20], also general molecular docking
approaches were applied [21, 22].
The first atomistic model of a TCRpMHC complex

was built in 1995 by Almagro et al. using homology
modeling and molecular dynamics techniques [23], be-
fore the first X-ray structures of a TCR (1tcr [24]) and of
a TCRpMHC complex (1ao7 [25]) were solved in 1996.
Later, Michielin et al. realized a homology model of the
T1 TCR structure bound to the photoreactive PbSC pep-
tide and to the murin Kd MHC class I molecule, using

Fig. 1 Representation of the TCRpMHC complex (PDB-ID 2bnq). The
MHC class I molecule is depicted in green (i.e., α1, α2, and α3 chains). The
β-microglobulin is colored in cyan and the peptide bound to MHC in
magenta. The two chains of TCR, α and β, are represented in blue and
red colors, respectively. In the present application, the domains shown as
transparent are removed from the structure, and only the two variable
domains of TCR (i.e., Vα and Vβ), the α1 and α2 chains of MHC as well as
the peptide are modeled. In addition, the two centers of rotations CoRβ
and CoRμ, are respectively represented by an orange and a black
colored ball
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the 1ao7 crystal structure of the TCRpMHC complex as
a template [8]. The authors applied a methodology com-
bining the MODELLER program with simulated anneal-
ing techniques [26], and suggested a rational homology
model, which was refined based on previous mutation
studies [27]. Further developments of the approach led
to the TCRep 3D method [28], which was recently ap-
plied in the context of rational TCR design [10]. In
addition, Haidar et al. enhanced the affinity of the A6
TCR to TAX:HLA-A2 for about 100-fold using a
structure-based model [29]. More recently, Pierce et al.
[30] developed an approach based on their scoring func-
tion ZAFFI and on the Rosetta interface mutagenesis
tool [31] to identify relevant point mutations that could
increase the affinity of a TCR to a pMHC complex in
the field of therapeutic immunology. The method
allowed to optimize the DMF5 TCR to bind the ELAGI-
GILTV:HLA-A2 complex with a remarkable ~400-fold
higher affinity. The same group also developed TCRFlex-
Dock, a method to model a pMHC ligand onto a TCR
that takes advantage of the Monte Carlo-based Rosetta-
Dock protocol [32, 33]. For a benchmark test set of
twenty structures [33], the prediction of near native
models was reached in 80% of the cases. The TCRFlex-
Dock method was recently applied to predict models of
TCRs bound to MHC like ligands such as CD1 and
MR1 [34]. In that work, the authors showed that the use
of multiple docking starting positions significantly im-
proves the performance of the prediction.
In order to achieve an accurate molecular model of

TCRpMHC complexes, it is necessary to consider sev-
eral topological aspects of this sophisticated system.
First, a precise description on an atomistic level is re-
quired, since small alterations in the TCR’s or in the li-
gand’s sequence can drastically affect the transduced
signal [35]. As it was shown in other studies, mutations
in the receptor or in the ligand can modify the binding
affinity and thus the relative placement of the two units
of the complex [36–39].
A second aspect to consider is the variation of the Vα/

Vβ inter-domain angle within the TCR, as this is a sys-
tem specific feature, and as it can adapt upon binding of
the pMHC. The analysis of the inter-domain angle be-
tween the Vα and Vβ TCR domains as well as its influ-
ence on the binding of pMHC was analyzed in several
computational studies, which compared broad sets of
TCR structures. Notably, by applying the pseudo-dyad
method, McBeth et al. suggested that the resulting ob-
served differences between the free and the MHC bound
forms of TCRs constitute a feature of the receptor to
adapt to different ligands, thus allowing cross reactivity
[40]. Dunbar et al. analyzed a non-redundant set of
TCRs with the ABangle methodology [41], which de-
scribes both the Vα- and the Vβ-orientation in an

absolute manner, by considering a torsion angle, four
bend angles and one distance as descriptors [42]. In the
context of rational TCR-like antibody design, the authors
found that antibodies adopt angles comprised in a differ-
ent range than the one observed for TCRs. In our previ-
ous work [43], we analyzed the relative Vα- and Vβ-
orientation by reducing the variable domains to cuboids,
which served as basis for a distance based clustering.
We observed that TCRs belonging to the same clono-
type associate in the same angular cluster. Furthermore,
we identified a Center of Rotation (further referred to as
CoRβ and depicted in Fig. 1) and determined its location
in the middle of a conserved interaction between two
glutamine residues, one in the Vα and one in the Vβ do-
main. The various inter-domain angles in the evaluation
set could be obtained through a rotation around this
center. Recent studies, including ours, further empha-
sized the large range of values that the TCR Vα/Vβ
inter-domain angle can adopt [40, 43, 44] and thus its
influence on the positioning of the ligand binding CDR
loops. These results suggest that next to the orientation
of the pMHC ligand with respect to the TCR [24, 25, 36,
45, 46], also the Vα/Vβ inter-domain angle should be ex-
plicitly taken in account to assess an accurate homology
modeling of TCRpMHC complexes. This last comment
is in agreement with recent observations about the dy-
namics of the TCRpMHC system and the influence of
the TCR on the pMHC structure [44, 47]. In addition, it
was shown for antibodies that the consideration of the
VH/VL angles for homology modeling can increase the
accuracy considerably [41, 48, 49]. In this context, Dun-
bar et al. identified key structural parameters, which pro-
vide a comprehensive description of the movement of
the VH and VL domains with respect to each other [41].
Based on these features and on their respective values in
the available antibody structures, Bujotzek et al. trained
a predictor for the association of the two domains [48].
The authors further concluded that the consideration of
the association angles is crucial for the prediction of
highly accurate homology models of antibodies [49].
Along the course of the present study, we pointed out

a third topological aspect that can have an impact on
the success of TCRpMHC complexes modeling. The Vα/
Vβ orientation directly depends on the proper inter-
action of two specific glutamine residues. During protein
structure elucidation by X-ray crystallography, the am-
biguous electron densities of nitrogen and oxygen atoms
can hamper the correct assignment of these two ele-
ments. In the case of asparagine and glutamine residues,
this often leads to misassigned atoms in the carboxa-
mide group of the side chain. The detailed investigation
of high-resolution structures shows that approximately
20% of these residues are assigned in a wrong flip state,
leading to a non-optimal hydrogen bond network [50–
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53]. The respective orientation of asparagine and
glutamine residues has a dramatic impact on most of
molecular modeling techniques [53], and should be
corrected by considering their direct environment. Due
to this significance, several approaches have been devel-
oped in order to address this issue. Among those, the
most popular ones are HBPLUS (X-PLOR package) [52],
NETWORK (WHAT IF package) [53], Reduce (Mol-
Probity package) [50, 54, 55], NQ Flipper [51, 56, 57],
the Independent Cluster Decomposition Algorithm
(ICDA) [58], Protonate 3D [59], Protoss [60, 61], and the
Computational Titration method [62].
Despite the great improvements in TCRpMHC com-

plex modeling achieved during the past decades, some
of the critical aspects described above are still not taken
into account. To the best of our knowledge, none of the
currently available methodologies explicitly include the
adaption of the Vα/Vβ inter-domain angles, although
these have a direct impact on the disposition of the CDR
loops, and as a consequence, on the contact between the
TCR and the pMHC ligand.
In what follows, we present a new method, DynaDom,

for the prediction of TCR Vα/Vβ inter-domain and
TCR/pMHC association angles. We implemented our
approach into the DynaCell suite [63], a general force-
field-based molecular modeling program developed in
our group. Our new method uses an extendable multidi-
mensional rigid body optimization approach based on
the work by Mirzaei et al. [64]. The implementation is
specifically designed in a way that allows for an arbitrary
definition of rigid bodies and for the inclusion of local
flexibility on different levels (e.g., from the domain to
the residue level) into the modeling pipeline (Fig. 2). As
a first application, we evaluate here the DynaDom
method for the remodeling of a large set of TCR and
TCRpMHC complexes. This evaluation intends to deter-
mine the general capability of a rotation-based algorithm
and the relevance of our CoR-concept [43] for the suc-
cessful prediction of association angles. Notably, we
demonstrate here that it is possible to distinguish be-
tween correct and wrong models by solely using the
force-field-based interaction energy computed between
the different units of the complex. This is indeed very
promising for future blind homology modeling of
TCRpMHC complexes and others, especially if a suffi-
cient amount of experimental data is not available for
the training of an application-specific, knowledge–based
scoring function.

Methods
The new DynaDom prediction method presented here is
based on the concepts developed for our previous ana-
lysis of the structural features of TCRpMHC complexes
[43] and uses the same theoretical framework as defined

therein. In ref. [43], we performed a comprehensive and
systematic analysis of the Vα/Vβ inter-domain angles in
a set of 85 structures, by representing each domain as a
unified cuboid (for a brief summary of the methodology,
see Additional file 1: Text S1A). The main results of that
former work can be summarized as follows: i) we
showed that the TCR complexes of the analysis set can
be grouped into six structural clusters, by solely using
the Vα/Vβ inter-domain angle as a descriptor; ii) we
identified a conserved center of rotation that determines
the orientation of the Vβ domain with respect to Vα
(further referred to as CoRβ); iii) we pointed out that this
center of rotation (CoRβ) is characterized by the inter-
action of two highly conserved glutamine residues (Q;
one per variable domain), forming a stable hydrogen
bond linkage between Vα and Vβ.
In the present work, we intend to translate this struc-

tural knowledge gained in ref. [43] into a computational
pipeline to model TCR and TCRpMHC complexes. We
hereafter detail our strategy by first describing the gen-
eral concepts of DynaDom and the extension of the cen-
ter of rotation concept to the case of TCRpMHC
complexes. Then, we describe the theoretical framework
of our rigid body optimization algorithm and give a de-
tailed description of the overall prediction pipeline. Fi-
nally, we define the particular data set used in the
present test application of DynaDom for the remodeling
of TCR and TCRpMHC complexes.

General concepts of DynaDom
The DynaDom modeling approach is based on the uni-
fied cuboid description of a given molecular assembly by
assigning one cuboid to each structural domain, as ap-
plied to the TCR Vα and Vβ domains in ref. [43]. In the
case of TCRpMHC complexes the Vα, Vβ, and pMHC
units are represented by three independent cuboids. To
further reduce the dimensionality of the problem, we
use the Vα domain as internal, fixed coordinate frame
(see ref. [43], Fig. 2, and Text S1.A of Additional file 1
for details). In this frame, the placement of the Vβ and
pMHC units can be simply described by a series of
translation and rotation operations around a given point
of the cuboid. For the placement of Vβ with respect to
Vα, we here chose this point as the previously identified
center of rotation, CoRβ (Fig. 1). In a similar manner, we
define here a center of rotation for the placement of
pMHC units, which we shall refer to as CoRμ.
The binding of the pMHC ligands onto TCRs has been

suggested to occur in a generally diagonal mode [46],
based on the analysis of the early structures of this com-
plex [24, 25, 36]. More recently, Rudolph et al. introduced
a general unified method to measure the binding angle of
TCRs with respect to their ligands and determined the
angular range of 24 complexes [45]. The latter method,
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Fig. 2 TCR and TCRpMHC complexes modeling pipeline. Center column: standard pipeline (see Methods) for the remodeling of the TCR Vα/Vβ
association angles and for the pMHC positioning with respect to the TCR. Blue highlighted steps are performed in both modeling pipelines: only Vβ
and combined Vβ/pMHC placement. Green highlighted steps are performed only if the pMHC is included in the remodeling process. The left and the
right columns illustrate the individual steps of the pipeline. Steps with numbers circled in black: TCR Vα/Vβ association angle modeling pipeline, steps
with numbers circled in green: combined Vβ/pMHC modeling pipeline. Steps 3 to 7 are performed for each of the 11 starting conformations. The
protein domains represented in blue, red, and green color correspond to the Vα, Vβ, and pMHC units, respectively. In step 1 (both for TCR and
TCRpMHC modeling), the different protein domains are described by unified cuboids and assembled. The illustration of steps 2 and 5 show the Q-flip
correction/optimization. At step 2, each glutamine residue is optimized with respect to its direct environment only (only the corresponding variable
domain is accounted for). Whereas in step 5, the two glutamine residues are optimized simultaneously, thus accounting for the whole TCR environment.
In step 4 (only for TCRpMHC modeling), the pMHC unit is pre-placed, translated away from the TCR and optimized with respect to the fixed TCR variable
domains. At step 6 (both for TCR and TCRpMHC modeling), the position of all cuboids as well as the orientation of the glutamine residues are optimized
concurrently. The latter illustrations show the structure before and after optimization, with the target crystal structure depicted in gray

Hoffmann et al. BMC Structural Biology  (2017) 17:2 Page 5 of 19



based on a general rotational axis, is however too general
to describe all the transformations of a pMHC complex in
a three-dimensional space. We thus adapted our previ-
ously introduced cuboid method [43] and measured the
three Euler angle components of the TCR/pMHC orienta-
tion. Equivalently to the determination of CoRβ (see Add-
itional file 1: Text S1A for details), we define here a center
of rotation for the orientation of the pMHC cuboid rela-
tive to the Vα domain (CoRμ; Fig. 1). Unlike CoRβ, CoRμ

does not correspond any conserved residue and lies at the
center of the peptide binding groove of the pMHC com-
plex. As CoRβ and CoRμ are solely defined by the Vβ and
pMHC coordinates, we further use their location as rota-
tional centers for the rigid body optimization. These loca-
tions will be named as CoRβ- and CoRμ-based rotational
centers, respectively.
Our strategy for the modeling of TCRpMHC com-

plexes intuitively resembles the plausible biological
process: i.e., first the association of the two TCR variable
domains, then the approach of the pMHC complex to-
wards the TCR CDR loops (Fig. 2). We thus assume here
that the general orientation of the TCR variable domains
is determined prior to the binding of the pMHC ligand,
and then further adjusts upon binding. As a conse-
quence, comprehensive sampling of possible Vα/Vβ ori-
entations is crucial and can determine the success of the
modeling attempt. Based on our former analysis [43], we
define here 11 starting orientations for the association of
the two TCR variable domains. Such number of different
initial conditions is intended to cover the large range of
Vα/Vβ inter-domain angles and to avoid artificial local
minima. It also increases the probability that at least one of
the obtained Vα:Vβ complexes is close enough to the final
bound conformation such that it can effectively bind the
pMHC ligand (for details about the choice of the 11 start-
ing orientations see Additional file 1: Text S1B).
To determine the starting orientation of the pMHC cu-

boid, we analyzed the Vα/pMHC angles associated with all
structures considered in our set (see subsection Structural
data sets). The crystal structure 3e3q [65] showed the low-
est angular deviation with respect to the others and was
chosen as reference structure. Based on the normal vector
to the plane defined by the MHC β-sheet backbone atoms
of 3e3q we derived a translation axis for the pMHC.
The 11 starting structures for the TCRpMHC model-

ing pipeline are obtained such that for each of the 11
starting Vα/Vβ orientations, the pMHC ligand is placed
in a general position (based on the pMHC orientation in
3e3q) and afterwards translated away from the TCR
along the 3e3q-based translation axis. For each of these
structures one cuboid is defined around each domain,
i.e. Vα, Vβ, and pMHC.
The relative position of these cuboids is then opti-

mized iteratively along a succession of operations

defined by our pipeline algorithm, for each of the 11
starting conformations of a given complex (Fig. 2). Our
pipeline is built in a modular manner, such that beside
the interaction between the different subunits, it is pos-
sible to explicitly model the flexibility of some relevant
parts of the molecular system. As we detailed in the
Introduction, the center of rotation between Vα and Vβ
(CoRβ) is characterized by the specific interaction of two
glutamine residues (Q). However, because of the ambigu-
ous character of the Q side chain, the assignment of the
atoms (Q-flip state) in crystal structures often happens to
be wrong. Furthermore, the central location of these two
residues in the complex makes them particularly sensitive
to variations in the Vα/Vβ inter-domain angles. For these
reasons, our pipeline also includes a Q-flip correction/
optimization module, which is applied alongside with the
general optimization of the whole complex.
For the modeling of one TCRpMHC complex, our

pipeline algorithm thus results in a total of 11 structures,
each of them originating from the corresponding start-
ing orientation of the TCR variable domains. These
structures are optimized and finally ranked according to
their interaction energy.

Rigid body optimization
We implemented our method within the DynaCell suite
of programs [63] using a rigid body energy minimization
approach based on the work by Mirzaei et al. [64] to-
gether with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm as implemented in the GNU scientific
library (libGSL; version 1.15 double) [66]. Details about
the applied settings of the algorithm and a discussion
about its convergence are presented in Additional file 1:
Text S1C. Mirzaei et al. introduced the original algo-
rithm focusing on the RBEM problem for molecular
docking [64]. The approach is specifically designed for
an efficient rotation of the rigid bodies around a center
of rotation and is particularly well suited for our applica-
tion. However, the original method only allows for a
simultaneous optimization of the relative position of
only two rigid bodies. We therefore extended it such
that the simultaneous optimization of the orientation of
an arbitrary number of rigid bodies is possible.
We implemented the method in a generalized, modular

way, allowing for the individual design of application specific
optimization pipelines, based on a given combination of the
different functions during runtime. Each pipeline step con-
sists in the assembly of sub-process operators (SOs), which
evaluate an objective function and the corresponding gradi-
ent to further perform the resulting coordinates transforma-
tions. Each SO manipulates the coordinates of a subset of
atoms and calculates the value of the objective function
within a given environment (i.e., including the whole system
or only part of it). So far, we implemented three different
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families of SOs. We shall briefly describe them below, while
a more detailed presentation can be found as Supporting In-
formation (Additional file 2: Text S2).
The first family of SOs consists of the basic operators for

the rigid body rotation and translation. The objective func-
tion of these operators is computed from the non-bonded
interactions between the rigid bodies of interest (not the
intra-cuboid interactions). The operators modify the three
parameters for the rotation and one for the translation of
the rigid body, either simultaneously or independently.
Next to these general operators, we implemented a

specific carboxamide group rotation operator. This oper-
ator is valid for both asparagine and glutamine residues.
It only modifies one parameter, namely the dihedral
angle that defines the orientation of the side chain’s car-
boxamide group. The rotation axis is set along the
carbon-carbon bond next to this functional group (i.e.,
Cβ-Cγ and Cγ-Cδ for an asparagine and a glutamine
residue, respectively). The objective function accounts
for all bonded energy terms within the corresponding
side chain and non-bonded energies within the system
(i.e., including the intra-cuboid interactions). This sub-
process operator can be used within our prediction pipe-
line algorithm or independently, and we shall refer to as
Q-flip correction tool in the following.
Finally, we implemented a rigid body position restraint

operator to prevent unrealistically large translational
motions and hence to avoid irrelevant conformations.
The objective function in this case consists of a har-
monic potential applied on the distance between a given
reference and a mobile point. The harmonic penalty is
applied if the distance is greater than the defined thresh-
old. For the present modeling of TCRpMHC complexes,
CoRβ and CoRμ are used to restrain the positions of the
Vβ and pMHC cuboids, respectively. The threshold
values are set to 7.5 Å for Vβ and to 13.0 Å for pMHC.

TCRpMHC prediction pipeline
The standard modeling pipeline for the prediction of the
Vβ orientation in Vα/Vβ complexes of TCRs as well as
the orientation of both Vβ and pMHC in TCRpMHC
complexes is summarized in the central panel of Fig. 2.
The illustration of the steps (left and right panels of the
figure) applied during the modeling of the TCR alone
are shown in black circles, while the steps used for the
modeling of the TCRpMHC complexes are circled in
green color. In addition, an animation of the modeling
process is available as Supporting Information (Additional
file 3: Movie S1). We hereafter provide a detailed descrip-
tion of this pipeline for the modeling of one given
TCRpMHC complex, based on the steps depicted in
Fig. 2.
A modeling attempt starts with the representation of

each subunit (Vα, Vβ, and pMHC) as a cuboid and their

placement in the reference coordinate frame (Fig. 2, step
1: complex assembly).
After this initial assembly, the Q-flip state of the central

glutamine residues located at the CoRβ is corrected inde-
pendently in each of the two TCR variable domains, by ac-
counting only for the interactions within the corresponding
domain, Vα or Vβ (Fig. 2, step 2: separate Q correction). At
that stage, we only intend to correct the possibly wrong as-
signment of the Q-flip state in the crystal structure. The
interaction with the Q in the opposite domain is not yet
considered, as the correct Q-Q assembly is crucially
dependent on the final Vα/Vβ association angle, which is
still unknown at this stage of modeling. As a consequence,
only two orientations are considered, the original one and a
rotation of 180°. The orientation presenting the lowest en-
ergy is selected and further refined by performing 30 steps
of BFGS energy minimization. As here only one parameter
needs to be optimized, the optimization process is straight-
forward and 30 steps are sufficient to reach convergence
(for a more detailed discussion of the chosen BFGS settings
see Additional file 1: Text S1C).
Based on these two preparation steps, 11 starting orienta-

tions of the TCR variable domains are constructed (Fig. 2,
step 3: conformational angle adaption) and the pMHC lig-
and is placed in a general position and translated away from
the TCR (Fig. 2, step 4: pMHC pre-placement). Details
about this step are discussed in the “General concepts of
DynaDom” sub-section and in the Additional file 1: Text
S1A/B. The position of the pMHC is pre-optimized with
respect to the fixed Vα and Vβ domains, for a maximum of
150 BFGS steps. This step intends to mimic an approach of
the pMHC from far towards an already formed TCR as-
sembly. As the position of only one rigid body is optimized
here, most of the optimizations converge in less than 150
steps. For the few optimizations that do not meet the BFGS
convergence criteria, the energy still drops in few steps and
reaches a stable plateau (for a more detailed discussion of
the chosen BFGS settings see Additional file 1: Text S1C).
As this step constitutes a preparation for the main
optimization (step 6), these structures are considered as
converged and the modeling pipeline proceeds.
Next, the orientation of the central Q residues is explicitly

sampled in the context of the whole TCR assembly (i.e., ac-
counting for the intra- and inter-subsystems interactions)
with a fine step of 18°, leading to 400 different orientations
(Fig. 2, step 5: Q-Q bifurcation correction). The orientation
with the lowest energy is then selected and further mini-
mized for a maximum of 30 steps and used in the next step.
This ensures a proper orientation of the Q residues with re-
spect to each other for the current Vα/Vβ orientation. Here
again, considering the straightforward parameter space to
be optimized and the explicit sampling performed ahead
with a fine angle increment, 30 steps are sufficient to reach
convergence.
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The core step of the DynaDom algorithm takes place
after these preparation steps. At this stage, the position
of Vβ and pMHC as well as the orientation of the two
glutamine residues are concurrently optimized (Fig. 2.,
step 6: Simultaneous rigid body optimization). The
minimization is first conduced for a preliminary 50
steps. Then step 5 is repeated to ensure optimal Q-Q
placement and interaction at the center of rotation CoRβ

with respect to the adjusted global conformation of the
complex. Step 6 is finally repeated for a maximum of
2950 steps. Here again, most of the minimizations con-
verge in a few hundred steps. The rare cases in which
the BFGS algorithm did not converge were systematic-
ally analyzed, showing that in each case, the energy
strongly decreases in a few steps and oscillates around a
minimum value (see Additional file 1: Text S1C for a de-
tailed discussion). Therefore, these rare cases were also
considered as converged in the present work.
Finally, the quality of the current model (i.e., originat-

ing from the ith starting conformation out of 11 in the
present application) is evaluated by computing the com-
plex binding energy (Ei,bind) as:
Ei,bind = Ei, complex − (Eα + Eβ + Eμ),

where Ei, complex is the total energy of the complex and
Eα, Eβ, and Eμ are the energy terms of the individual
complex components Vα, Vβ, and pMHC (notice that
these last quantities are constant for each prediction run
and are thus computed only once). The energy is evalu-
ated using the OPLS-AA force field [67, 68]. As the
current application is a remodeling attempt, we add-
itionally computed the all-atom positional root mean
square deviation (RMSD) with respect to the crystal
structure for each of the 11 final models.
The ranking of the 11 final models is performed ac-

cording to their binding energy. For the current remod-
eling application, we define an energy criterion to assess
the success of the remodeling attempt as CE. The energy
criterion is fulfilled if the model having the best binding
energy also bears an RMSD lower than 2 Å with respect
to the original crystal structure. To gain more insight
into the performance of our DynaDom method, we de-
fine a second success criterion based on the RMSD, CR,

which allows us to evaluate the performance of the
structural modeling by assessing the structural deviation
of the model from the corresponding experimental
structure. This structural criterion is fulfilled if at least
one of the 11 final models has an RMSD lower than 2 Å
with respect to the original crystal structure.

Structural data sets
We selected 75 biological units (BUs) originating from
48 different crystal structures contained in the set that
we previously analyzed in ref. [43].

In that study, we observed that the different BUs
within a given crystal structure can slightly differ from
each other (RMSD < 1 Å), especially in the exact location
of side chain atoms. This is presumably due to the rela-
tively high intrinsic flexibility of the complexes or the
limited resolution in some of the structures (differs from
1.5 to 3.5 Å). To evaluate the robustness of our method
and its capability to tackle such inaccuracies, we in-
cluded all BUs in our two main datasets. The inclusion
of all BUs also results in a larger data set and, as no
training of a scoring function is performed (DynaDom is
a force-field based approach as described in the previous
subsections), introduces no bias to the method itself. In
addition, the current datasets only contain structures in
which all atoms that are involved in the modeling
process were experimentally resolved. Although these
atoms or residues could be easily modeled, this would
potentially introduce a bias in the set, which we prefer
to avoid here. As summarized in Table 1, the TCRpMHC
crystal structures selected for this work belong to two
different species (i.e., 17 murine and 31 human) and 22
different TCR clono-types (mutations not accounted).
The coordinates of each structure were aligned with re-
spect to the conserved residues of the Vα domain, as de-
scribed in ref. [43] and in the previous subsections. The
TCR constant domains, the MHC α3 domain, and the β-
microglobulin were systematically removed from the
structures as well as all non-protein atoms (the dis-
carded domains are represented with transparent colors
in Fig. 1). Hydrogen atoms were added and topologies
were created for the OPLS-AA force field [67, 68] using
the pdb2gmx tool (Version 4.5.6) [69].
We further derived three different data sets. First, to

evaluate the performance of our method for the remod-
eling of the association angle of the TCR Vα and Vβ do-
mains, we removed the pMHC ligand in each structure.
This resulted in a set of 75 Vα/Vβ complexes, which we
shall refer to as DST in the following. In addition, we
created a second data set, in which only the first BU in
the PDB file of the corresponding structure was included
(48 structures, further referred to as DST

* ). Then, to per-
form the remodeling of TCRpMHC complexes, we se-
lected among the 75 BUs only the structures containing
an MHC class I molecule. The resulting third data set,
named as DSC, contains a total of 53 TCRpMHC com-
plexes. We disregarded MHC class II molecules in the
DSC set to ensure a proper comparison between the
samples. A third set could have been dedicated to MHC
class II molecules. However, we sustained from remodel-
ing also that set as the results obtained for the MHC
class I complexes already showed that further
optimization of the pipeline, beyond this publication, is
necessary for accurate pMHC placement. In addition,
the size of the MHC class II set (22 structures) would
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have been very small for a robust analysis. Further de-
tails about each data set are listed in Table S1 of the
Supporting Information (Additional file 4: Table S1).

Results and discussion
The structural prediction of immunologically relevant
molecular assemblies has focused the interest of a wide
range of methodological developments over the past de-
cades, especially in the field of antibody-antigen interac-
tions [41, 48, 49, 70]. Compared to the effort made so
far in antibody modeling, the number of predicted
TCRpMHC structures is still relatively small, as we dis-
cussed in the Background section. In the case of anti-
bodies, it was recently shown by some of us, that
statistical learning techniques can efficiently predict the
VH/VL association angles [49]. Such very appealing ap-
proaches are based on experimentally observed struc-
tural features and require a large amount of existing
data. In the particular case of antibodies, over 2000 crys-
tal structures are already available, thus allowing the ap-
plication of such knowledge-based methodologies.
Considering the relatively small amount of TCR struc-
tures referenced in the Protein Data Bank (i.e., about
200), such a road can unfortunately not be envisaged for
the prediction of association angles in TCR complexes.
As a consequence, we developed here a solely force-field
based optimization strategy for TCR and TCRpMHC
complexes modeling. Such a force-field based approach
can potentially be applied to other similar systems, even
if a sufficient amount of experimental data is not avail-
able for the training of a specific scoring function.
As we extensively described in the Background and in

the Methods sections, this new algorithm, named as
DynaDom, is derived from our previous comprehensive
analysis of the Vα/Vβ TCR variable domain association
angles [43]. The main conclusions that arose from this
former work can be summarized as follows: i) TCR com-
plexes can be classified into structural clusters, differing
significantly in their Vα/Vβ inter-domain angles, ii) the
angular differences between the structural clusters can

Table 1 Description of the structural dataset DST and the
subset DSC
PDB DSa TCR-Name Sb Lc Rd

1ao7 T/C A6 H I [25]

1fo0 T/C BM3.3 M I [75]

1fyt T HA1.7 H II [76]

1j8h T HA1.7 H II [77]

1kj2 T/C KB5-C20 M I [78]

1mi5 T LC13 H I [79]

1mwa T/C 2C M I [80]

1nam T/C BM3.3 M I [81]

1oga T/C JM22 H I [82]

1qse T A6 H I [35]

1u3h T TCR172.10 M II [83]

2bnq T/C 1G4 H I [37]

2bnr T/C 1G4 H I [37]

2e7l T/C 2C m6 [T7] M I [84]

2esv T/C KK50.4 H I [85]

2f53 T/C 1G4 c49c50 H I [38]

2f54 T/C 1G4 AV-wt H I [38]

2gj6 T/C A6 H I [73]

2iam T E8 H II [86]

2ian T E8 H II [86]

2nx5 T/C ELS4 H I [87]

2oi9 T/C 2C [T7-wt] M I [84]

2ol3 T/C BM3.3 M I [88]

2p5e T/C 1G4 c58c61 H I [39]

2p5w T/C 1G4 c58c62 H I [39]

2pxy T 1934.4 M II [89]

2pye T/C 1G4 c5c1 H I [39]

2vlk T/C JM22 H I [90]

2vlr T/C JM22 H I [90]

3c5z T B3K506 M II [91]

3c60 T YAe62 M II [91]

3c6l T 2 W20 M II [91]

3d39 T/C A6 H I [92]

3d3v T/C A6 H I [92]

3dxa T/C DM1 H I [93]

3e2h T/C 2C m67 [T7] M I [65]

3e3q T/C 2C m13 [T7] M I [65]

3ffc T/C cf34 H I [94]

3gsn T/C RA14 H I [95]

3h9s T/C A6 H I [96]

3kpr T/C LC13 H I [97]

3kps T/C LC13 H I [97]

3kxf T/C SB27 H I [98]

Table 1 Description of the structural dataset DST and the
subset DSC (Continued)

3mbe T TCR 21.30 M II [99]

3mv8 T/C TK3 Q55H H I [100]

3pwp T/C A6 H I [101]

3qiu T 226 TCR M II [102]

3qiw T 226 TCR M II [102]

a) T: Structure only in dataset DST. T/C: Structure in both datasets, DST and DSC
b) Species (S): H human, Mmouse
c) Ligand type (L): MHC class I or II. See Additional file 4: Table S1 of the
Supporting Information for details about the MHC alleles and the
different peptides
d) References
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be described by a simple rotation around a center of ro-
tation (CoRβ, see the Methods section and Fig. 1 for de-
tails), and iii) the CoRβ is characterized by two highly
conserved glutamine residues, which contribute to the
interaction between the TCR Vα and Vβ domains via a
stabilizing hydrogen bond network.
For the remodeling of TCRpMHC complexes, the Dyna-

Dom method uses a unified cuboid description of the
three different units of this complex (i.e., Vα, Vβ, pMHC).
The optimization of the total system is performed by a
rotation-based algorithm, which is based on our Center of
Rotation concept (i.e., CoRβ and CoRμ, as described in the
Methods section). In our previous analysis study, we ob-
served that the Vα/Vβ association angle spectrum is much
larger in unbound TCRs than in structures bound to the
pMHC [43]. Pierce et al. further emphasized that for the
prediction of TCRpMHC complexes from unbound units
[33] the side chains of the CDR loops must adapt to their
environment in order to allow for a proper interaction be-
tween the different units of the complex. Therefore, the
inclusion of local side chain flexibility at the domain inter-
face would most likely be a necessary extension for the
prediction of TCRpMHC structures from unbound or
homologous TCR and pMHC structures by homology
modeling techniques. Our generalized, modular imple-
mentation ensures that the additional inclusion of local
flexibility is straightforward. However, the adaptation of
the algorithm would require additional extensive evalu-
ation efforts, which would go beyond the scope of the
present work and will be part of future investigations.
Nevertheless, in the present work we already tested such a
feature by the inclusion of local side chain flexibility for
the two Q-Q residues at the CoRβ, which we found to be
crucial for the prediction success as we shall discuss in the
following subsections.
The current version of our pipeline algorithm, results

from an extensive series of evaluations intended to as-
sess the effect of the different parameters. Hereafter, we
present and discuss our main findings together with the
actual evaluation of the method. We first discuss the
optimization of the orientation of the glutamine residues
(Q-flip correction) located at the interface between the
two TCR variable domains (i.e., at the Center of Rotation
CoRβ of Vβ with respect to Vα), based on the original
experimental structures. Then, we analyze the effect of
such a Q-flip correction together with the use of re-
straints on the remodeling of Vα/Vβ TCR and
TCRpMHC complexes. Along this analysis, we compare
the results obtained using either an energy or a structure
based selection criterion (i.e., CE or CR, respectively, as
defined in the Methods section). This comparison in-
tends to state if an atomistic force field energy based cri-
terion could be used for future blind homology
modeling of TCRpMHC complexes. We finally suggest

further possible routes of improvement for our method-
ology, based on the analysis of the few cases in which
the remodeling process did not lead to a satisfactory
structure.

Glutamine orientation correction
The interface between the Vα and Vβ domains of TCRs
is characterized by the interaction of two highly con-
served glutamine (Q) residues [43]. While this Q-Q
interaction appears to be of critical importance, the flip
state of these residues is often wrongly assigned in ex-
perimental crystal structures, due to the ambiguous
character of the carboxamide group electron density
[50–53]. In the context of this work, we analyzed the flip
state of the Q residues among the crystal structures con-
tained in our set of 75 Vα/Vβ complexes (i.e., data set
DST). Only 72.7% of the structures present a correct as-
signment of the Q-flip state. The details of this analysis
are listed in Table S2 of the Supporting Information
(Additional file 5: Table S2).
As discussed in the Background section, many model-

ing tools exist to correct the orientation of glutamine
and asparagine residues in a given crystal structure.
Among those, we tested Reduce [50, 54, 55] and Protoss
[60, 61] on our DST set. The application of the Reduce
and Protoss programs leads to an improvement of the
glutamine flip state in our set, reaching 94.6 and 97.3%
of correctly assigned Q-flip states, respectively. Analysis
of the failed cases showed that they featured an inter-
action of the Q residues in an initial bifurcated orienta-
tion (i.e., associated in a perpendicular manner). Manual
inspection showed that in these cases the perpendicular
orientation allowed for optimal interactions with the rest
of the domains and should therefore be the most stable
in the functional receptor (i.e., not a further artifact of
the carboxamide assignments in the experimental struc-
tures). As the Reduce and Protoss programs only allow
parallel orientations, these cannot successfully predict
such particular interactions. Because of this limitation
and the below discussed observation that the Q-flip state
can change upon the association of the Vα/Vβ domains,
we decided to implement an independent Q-flip correc-
tion approach using our already implemented rigid body
operators, such that it can directly be included into our
pipeline. This represents a first probing of the modular
character of our implementation, which we shall follow
towards the future inclusion of local flexibility.
We evaluated the performance of our method for the

Q-flip correction in the crystal structure of the DST set.
We present here the most relevant findings of our ana-
lysis, while a more detailed discussion can be found as
Supporting Information (Additional file 6: Text S3), to-
gether with the entirety of our observations per struc-
ture (Additional file 5: Table S2, Additional file 7: Table
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S3, and Additional file 8: Table S4). Using the DynaDom
correction module, 100.0% of the structures could be
assigned in the good Q-flip state. An example of a suc-
cessful Q-flip correction is depicted in Fig. 3b for the
2f53 crystal structure. This higher performance obtained
by our method with respect to the other programs
comes from the optimization-based methodology that
we implemented. While standard tools only consider
two possible parallel conformations per residue (i.e., the
original and the flipped state), DynaDom performs an
explicit sampling of the carboxamide group using adjust-
able angular step sizes, followed by an energy
minimization step during which the atomistic environ-
ment of the residue is taken into account. Such a

protocol allows the system to escape local minima in
order to find the most favorable conformations of the Q
residues in their environment. For this reason, the Dyna-
Dom approach can also lead to a proper paring in the
case of the two systems that present a bifurcated Q-Q
interaction.
In a second step, we assessed the steps of our pipeline

at which this correction should be performed. For this
we applied our tool on the two TCR variable domains
independently and compared the results with the same
calculation performed in the Vα/Vβ complex environ-
ment (Additional files 7: Table S3 and Additional file 8:
Tables S4). In this analysis, we observed different pre-
dicted Q-flip states if the corrections were applied on

Fig. 3 Remodeling of the 2f53 structure. a Superposition of the 11 Vβ starting orientations with respect to the Vα domain (represented in blue
color). The average conformation of Vβ is shown in red color. b Hydrogen bonds of the conserved Q-Q interaction at the CoRβ position. Left: mis-
assigned conformation in the experimental crystal structure. Right: proper orientation of the Q residues after application of the Q-flip correction.
The picture shows that the interaction between the two residues has been improved as well as the interaction of the residues with their respect-
ive environment. c Modeling of the ternary TCRpMHC complex. The Vα, Vβ, and pMHC units are represented in blue, red, and green colors, re-
spectively. The reference crystal structure is depicted in gray color. Left: initial assembly of the complex. Right: final model with an RMSD of 0.61 Å
with respect to the crystal structure. Magnifications lenses: conformation of the conserved Q-Q interaction between the Vα and the Vβ domain
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the single domains or on the final complexes. This ob-
servation emphasizes the impact of the environment of
the glutamine residues on their respective conformation.
For this reason, our standard pipeline algorithm per-
forms the Q-flip state correction at two different steps.
First, the glutamine residues are optimized accounting
only for their respective domain environment (i.e., Vα or
Vβ). This allows for a proper orientation of the glutam-
ine residue prior to the complex assembly, thus eliminat-
ing potential errors originating from the experimental
structures. It is noteworthy that this feature will be par-
ticularly relevant if homology modeled structures are
built. Then, further optimizations are performed in the
complete environment during the Vα/Vβ complex
optimization to adapt the Q residues to the final relative
orientation of the Vα and Vβ TCR domains.

Modeling of the TCR variable domain complexes without
pMHC
We tested our DynaDom methodology first for the re-
modeling of the Vα/Vβ association angles in the
complete DST set. In particular, we performed a series of
evaluations to assess the relevance of two criteria in our
algorithm pipeline: the use of the Q-flip correction and
the application of a distance restraint between Vα and
Vβ. Furthermore, we analyzed the performance of our
method according to two selection criteria. For a given
remodeling experiment, DynaDom produces 11 models,
which are ranked by their RMSD or energy score (see
Additional file 9: Figure S1 Fig. and the description in
the Methods section). The remodeling experiment is
then counted as successful if the RMSD of the selected
model with respect to the original crystal structure is
lower than 2 Å.
Our results are summarized in Table 2 and the differ-

ent evaluation settings that we considered are generally
labeled as MT plus a bit string, which encodes for the
use or not of the Q-flip correction and the restraint (e.g.,
MT10 labels the remodeling of a TCR complex by apply-
ing the Q-flip correction but no distance restraint). The
last MT

* 11 test corresponds to the MT11 settings per-
formed for the DST* data set, which contains only the
first BU of each experimental structure.
Considering the CR criterion, the remodeling proced-

ure already reaches a very high positive prediction rate
of 94.7%, even if no Q-flip corrections or restraints are
used (MT00). This rate further increases to 96.0% if the
Q-flip correction is switched on (MT10), while no
change is observed if the distance restraint is used alone
(94.7% in the MT01 case). As a consequence, the final
prediction rate, with both parameters switched on, also
reaches the remarkable rate of 96.0% (MT11). Only three
outliers are observed, originating from the 3dxa and
from the 1mwa crystal structures. The relatively low

resolution of the 3dxa structure (i.e., 3.5 Å) can partially
explain this failure. Furthermore, our modeling process
only considers the Vα and Vβ domains of the TCR com-
plex. It is possible that the two constant domains of the
complex play an important role in these three outlier
cases. Regarding the additional experiment performed
on the DST

* data set (MT
* 11), the results in Table 2 show

that the differences in the achieved accuracies with re-
spect to MT11 are only marginal. This confirms that the
inclusion of the BUs does not bias the overall results
and demonstrates the robustness of our algorithm with
respect to small variations in the structures, thus
highlighting the suitability of the approach in a future
homology modeling pipeline.
In the perspective of a blind homology modeling ex-

periment of TCR complexes, no reference crystal struc-
ture would be available and only an energy-based
criterion could be considered for structure selection (i.e.,
CE). Based on such a CE criterion, our remodeling at-
tempt reaches a prediction rate of 84.0% even if no Q-
flip corrections or restraints are applied (MT00). The
prediction rate increases with both, the independent use
of the Q-flip correction and the distance restraint to
85.3 and 88.0% for MT10 and MT01, respectively. If both
parameters are used (MT11), the prediction reaches the
remarkable rate of 89.3% and even 89.6% for the MT

* 11
data set. This last result is very promising for the further
applications of the DynaDom method in a real structure
prediction setting.
It appears that the use of the distance restraint has a

stronger impact on the prediction rate obtained accord-
ing to the CE criterion than it has for the CR criterion.
This could be attributed to the observation that without
distance restraint, the algorithm can yield structures in
which the two TCR domains are placed in an unrealistic

Table 2 Prediction accuracy for the Vα/Vβ association angles
modeled without pMHC

ESa Variantsb CR
c CE

d

Q R # % # %

MT00 off off 71 94.7 63 84.0

MT01 off on 71 94.7 66 88.0

MT10 on off 72 96.0 64 85.3

MT11 on on 72 96.0 67 89.3

MT
*11 on on 47 97.9 43 89.6

aEvaluation setting label
bVariants: Q = glutamine carboxamide group orientation correction, R = rigid
body position restraint
cAbsolute and relative prediction rate according to the RMSD based criterion
(i.e., CR) in data set DST (75 structures). In the particular case of MT

*11, the
prediction was performed on the DST

* set (48 structures, without biological
units). For each prediction run, the 11 models are ranked by RMSD and a
success is counted if the selected structure has an RMSD value lower than 2 Å
d Same as c) using the energy criterion to rank the 11 structures and select
the best. The prediction is considered as successful if the selected structure
has an RMSD value lower than 2 Å
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conformation, which nevertheless has a lower interaction
energy (see Additional file 10: Figure S2). Such unphys-
ical associations are far from the original crystal struc-
ture and are intrinsically discriminated by an RMSD
based selection criterion.
Next to the analysis of the best conformations accord-

ing to the CE and CR criteria we also analyzed the overall
performance of the algorithm regarding the quality of all
predicted conformations. In Fig. 4, we present the per-
centage of structures having an RMSD value lower than
1, 2 and 3 Å, depending on the algorithm settings (i.e.,
MT00, MT01, MT10, and MT11) among all 75*11 models
produced by our DynaDom procedure. In this context
we also further analyzed the impact of the Q-flip correc-
tion by classifying the resulting models into two groups,
with respect to their original Q-flip state in the experi-
mental structures as paired (51*11) and mispaired
(20*11). Notice that 4*11 structures lack the presence of
Q residues at CoRβ and were therefore not included in
the respective analysis. The histograms (Fig. 4) show that
an overall percentage of about 80% of the models feature
an RMSD lower than 2 Å and thus fulfill our success cri-
terion. This demonstrates the robustness of the pre-
sented algorithm and thus its relevance as one step in a
comprehensive structure prediction pipeline. By further
analyzing the influence of the Q-flip correction on the
prediction rates, it can be observed that the overall pre-
diction success is higher for structures in which the Q-Q
orientation is already correct in the X-ray structure
(paired structures). For these structures 85% of the
models have an RMSD value lower than 2 Å, whereas
the rate drops to 75% for the mispaired structures. This
might be due to the relatively smaller size of the latter
data set, as an investigation of a possible correlation

between the crystal structure resolution and the quality
of the final models did not yield any significant
outcome.
Regarding the percentage of structures having an

RMSD value lower than 2 and 3 Å for both sets, paired
and mispaired, the results are practically independent on
the defined settings and only a slight trend towards an
improved performance can be observed if the Q-flip cor-
rection is applied. This low impact on the overall struc-
tures is most likely due to the large surface area of the
total TCR domain interface and thus the high number of
other interactions, which drive the overall optimization
of the domains orientations. The use of the Q-flip cor-
rection has, however, a remarkable effect on the quality
of the resulting structures once the cutoff is lowered to
1 Å. The percentage of models featuring such a low
RMSD indeed increases from 47 to 60% for the mispaired
structure set, if the correction is switched on. These obser-
vations reveal the importance of a correct orientation of
the conserved Q residues at the Center of Rotation CoRβ

for an accurate modeling of the TCR variable domain as-
sociation and the need for their correction if they are
wrongly assigned in the template structure.
Overall, this series of remodeling essays highlights the

quality of our methodology. It also further emphasizes
the applicability of a force field interaction energy-based
criterion, which is very promising in the perspective of a
homology modeling setting, as it shows that high-quality
structures can be identified by this means.

Modeling of the pMHC position with simultaneous TCR
variable domain placement
Regarding the successful results obtained for the remod-
eling of TCR Vα/Vβ assemblies discussed in the

Fig. 4 Percentage of structures among the 75*11 models with an RMSD value lower than 3, 2 and 1 Å. The total set of 75*11 structures is
separated into structures for which the Q residues were originally paired or mispaired within their corresponding crystal structure. Each histogram
box corresponds to a different setting of the modeling procedure, i.e. with only distance restraint (MT01), only Q-flip correction (MT10), both
(MT11), or none of them (MT00). The percentage of structures with an RMSD value lower than 3, 2 and 1 Å are presented on the left, middle, and
right plots, respectively. The right plot shows that for the structures presenting an originally wrong orientation of the Q residues, the Q-flip correc-
tion significantly improves the quality of the resulting model (i.e., MT10 and MT11)
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previous subsection, we shall now assess the perform-
ance of the DynaDom method to remodel TCRpMHC
complexes. Here, the calculations were performed on
the smaller set of structures DSC, which contains a total
of 53 biological units. Our results are listed in Table 3
and the labeling of the test settings follows the nomen-
clature introduced above (i.e., MC label and a bit string
for the use or not of Q-flip correction and distance
restraint).
An example of successfully predicted complex is

depicted in Fig. 3c for the structure 2f53. In the figure,
the Vα, Vβ, and MHC units are respectively colored in
blue, red, and green. The two images represent the com-
plex before and after optimization (on the left and on
the right hand side of the figure, respectively). The mag-
nifying glass shows that the Q-flip state is efficiently cor-
rected and one can observe that the final model
successfully fits the reference crystal structure (depicted
with gray color in the picture).
Regarding the prediction rates according to the CR

and CE criteria in Table 3, the percentages obtained for
the remodeling of TCRpMHC complexes reach a less
striking prediction rate, though still relatively high (i.e.,
73.6 and 71.7% according to the CR and CE criteria, re-
spectively). For the prediction based on the CR criterion,
the success rate appears to be independent on the use of
Q-flip correction and distance restraints. A similar trend
is observed with the CE criterion. In this case, the use of
one or both of the parameters only marginally increases
the prediction rate. As for the modeling of TCR variable
domains alone, the use of an energy based criterion
yields very satisfactory results compared to a structure
based one. This point also confirms the robustness and
thus the suitability of our method for a blind homology
modeling of TCRpMHC complexes.

Detailed performance analysis for the TCRpMHC
prediction
Regarding the overall, nearly equal, performances of the
different settings in Table 3, it clearly appears that the
drop of the prediction rate for the remodeling of
TCRpMHC complexes with respect to the modeling of
only the TCR variable domains is barely dependent on
the use of Q-flip correction and distance restraints. The
former parameters only affect the relative orientation of
the Vα and Vβ domains. This observation indicates that
the lower performance observed for the remodeling of
TCRpMHC complexes might originate from an incor-
rect placement of the MHC molecule. We thus per-
formed additional analyses to gain more insights into
the shortcomings of the current approach and to identify
potential routes for future improvement of our algo-
rithm. To further confirm that the issues encountered
in the remodeling of TCRpMHC complexes are solely
due to the prediction of the pMHC positions with re-
spect to the TCR, we analyzed the impact of the ini-
tial placement of the pMHC ligand on the remodeling
of TCRpMHC complexes. In this context, we shall
only consider the models obtained according to the
RMSD based criterion (CR).
In the following series of test evaluations (T), we only

consider the initial orientation of the TCR domains as
found in their crystal structure (i.e., the remodeling pro-
cedure does not start from the 11 starting conforma-
tions, but only one). This was done to eliminate any
potential biasing errors originating from the TCR do-
main modeling. Next to that, we used the settings of the
final modeling pipeline: i.e.,Vβ optimization, Q-flip cor-
rection, and position restraints were systematically ap-
plied during these tests. As we described in the Methods
section and depicted in Fig. 2, our modeling protocol in-
cludes a translation of the pMHC unit along a given axis
to separate pMHC from the TCR, thus avoiding strong
initial forces due to unphysical steric hindrance. This
feature is one parameter that we shall analyze in the fol-
lowing tests (i.e., by switching it on or off ). For each test
setting, a rigid body optimization of the pMHC around
its starting position was performed. Finally, for the first
two test evaluations (T1 and T2), the MHC rigid body
was initially placed in its crystal structure orientation,
while for the last test (T3), this unit was oriented accord-
ing to the general zero conformation discussed in the
Method section (i.e., the orientation used in the standard
pipeline). The results and details of each test evaluation
are presented in Table 4.
In the first test evaluation (T1) in which the pMHC

units are oriented according to their respective crystal
structure orientation and no initial translation is per-
formed, the prediction rate reaches 100.0%. Although
such a result could be expected as we start from the

Table 3 Prediction accuracy for the combined prediction of the
Vα/Vβ and TCR/pMHC association angles

ESa Variantsb CR
c CE

d

Q R # % # %

MC00 off off 39 73.6 37 69.8

MC01 off on 39 73.6 38 71.7

MC10 on off 39 73.6 38 71.7

MC11 on on 39 73.6 38 71.7
aEvaluation setting label
bVariants: Q = glutamine carboxamide group orientation correction, R = rigid
body position restraint
cAbsolute and relative prediction rate according to the RMSD based criterion
(i.e., CR) in data set DSC (53 structures). For each prediction run, the 11 models
are ranked by RMSD and a success is counted if the selected structure has an
RMSD value lower than 2 Å
dSame as c) using the energy criterion to rank the 11 structures and select the
best. The prediction is considered as successful if the selected structure has an
RMSD value lower than 2 Å
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experimental conformations, it proves that our algo-
rithm does not lead to any conformational artifacts. The
additional application of the initial translation step for
the pMHC ligand (T2) results in a drastic decrease of
the prediction rate to 71.7%, slightly lower than the re-
sult obtained using our standard protocol (i.e., 73.6% in
the MC11 case). For the final test (T3), in which the
translated pMHC was placed according to our standard
protocol, the prediction rate of our algorithm dramatic-
ally drops to 58.5%, which is significantly lower than for
the final pipeline setting (73.6%).
These results show that the translation procedure and

the preplacement of the pMHC ligand in a single general
starting position constitute the accuracy limiting steps of
our pipeline. In addition, we confirm here that the use
of various starting positions for the Vβ domain clearly
outperforms the case in which a single conformation is
considered, even if the latter corresponds to the experi-
mental crystal structure (i.e., 73.6% versus 58.6% for the
MC11 and T3 cases, respectively). At first glance this is a
surprising result. However, it clearly appears that the
simultaneous optimization of both the TCR domains
and the pMHC molecule as performed for the MC11,
but not the T3 setting, is highly beneficial for the
performance of the algorithm as it allows for an alter-
nating adaption of the flexible units with respect to
each other (Additional file 3: Movie S1). This leads to
a smoother optimization path, thus lowering the
probability for being trapped in a local minimum. Dif-
ferent starting positions further lower this probability
as multiple paths are sampled.
Consequently, one straightforward way to improve our

results should be to use multiple starting conformations
for the pMHC ligand, in accordance with the 11 Vβ pre-
placement orientations. To evaluate this procedure, we

chose one structure (PDB-ID 1oga) for which the model-
ing process failed in the last T3 test settings. For this struc-
ture, the three Euler angle components defining the
pMHCs CoRμ-based rotational center were systematically
varied by 5° and all 27 resulting starting poses were con-
structed. In accordance with the other test settings, the Vβ
domain was here again placed in its crystal structure
orientation. The results for the 27 resulting models are
listed in the Supporting Information (Additional file 11:
Table S5). The results improved considerably as this time
five structures were obtained with an RMSD lower than
2 Å, thus satisfying our success criterion. Notably, these
five models also show the lowest interaction energy
among the 27 predicted structures. This last test clearly
confirms the necessity of more advanced sampling proto-
col for the MHC molecule orientation in our modeling
strategy to avoid the complex geometry to fall in an un-
favorable local minimum. This is in agreement with the
observations made by Pierce et al. [33] and demonstrates
once again the importance of starting from multiple initial
conformations. However, a straightforward combination
of the 11 starting conformations of the TCR Vβ domain
together with the 27 initial orientations of the pMHC unit
would lead to a total of 297 structures to optimize per
TCRpMHC complex, thus resulting in a dramatic increase
of the computational cost.
Therefore, the presented algorithm provides excellent

results and can readily be used for the optimization of
the Vα/Vβ association angles. It also yields a fairly good
prediction rate for the prediction of TCRpMHC com-
plexes association. However, for the simultaneous
optimization of both, the TCR domains and the place-
ment of the pMHC in the latter case, further improve-
ments and evaluations will be necessary prior to its
practical use as one step in a real structure prediction
pipeline. Considering the general, modular character of
our implementation, also different approaches could be
combined with the current method to tackle this issue.
Among those, basin-hoping techniques [71] have proven
to provide good results for the rigid body optimization
of tryptophan zippers [72], and Monte Carlo-based rigid
body sampling was recently applied by Pierce et al. for
the placement of MHC like ligands alone [33, 34].
Despite the numerous tests that would be required for the
combination of such techniques, this route represents a
promising strategy for the future of our methodology.

Conclusions
In this work we presented a new procedure, DynaDom, for
the optimization of protein domain-domain orientations,
which was designed for and evaluated on the special case of
remodeling T-cell-receptor-peptide-MHC complexes. The
approach is based on several rigid body optimization and

Table 4 Prediction rates of the test evaluations

ESa MHC initial MHC CR
d

orientationb translationc # %

T1 crystal no 53 100.0

T2 crystal yes 38 71.7

T3 general yes 31 58.5

For each test the Q-flip correction as well as the use of distance restraint are
systematically applied. The TCR Vβ domain is placed in its original crystal struc-
ture orientation and is optimized. The tests are performed for each of the 53
structures present in the DSC data set and the MHC rigid body position is opti-
mized in each case
aEvaluation setting label
bThe initial orientation of the MHC unit is chosen either according to the
original crystal structure or using the general zero orientation as for the
standard version of our pipeline (see Methods Section for more details)
cInitial translation of the MHC unit to avoid steric hindrance, necessary if the
MHC rigid body is not placed according to the crystal structure orientation
(see Methods Section for more details)
dAbsolute and relative prediction rate according to the RMSD based criterion
(i.e., CR) in data set DSC (53 structures). For each prediction run, a success is
counted if the resulting model has an RMSD value lower than 2 Å with respect
to the crystal structure
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restraining routines, and uses atomistic force field-based
energy calculations. The individual optimization functions
are combined in an application-specific pipeline. The
method yields remarkable results for the remodeling of
TCR Vα/Vβ association angles with prediction rates of 89–
96% (RMSD< 2 Å) depending on the evaluation criterion.
The present study shows that it is possible to predict

the TCR Vα/Vβ association angles on the basis of struc-
tural modeling only, without the need for a specially tai-
lored experimental data dependent scoring function. It
also demonstrates that the previously identified Center
of Rotation concept [43] can be readily used for the
structural prediction of the association angles.
Another striking result arising from this work is the

observation that, by simply considering the best-energy
conformation for each structure, high prediction rates of
89.3% for the Vα/Vβ association angles could be ob-
tained. This is only marginally lower than the prediction
rates obtained for the models with the smallest RMSD.
This shows that ranking the modeled structures solely
by their force field-based interaction energy allows the
identification of high quality structures and demon-
strates not only the robustness of the method, but also
its suitability as part of a general structure prediction
pipeline for TCRpMHC structures.
In a second step, we applied the concept to the simultan-

eous optimization of the TCR Vα/Vβ association angles
and the pMHC positions on the TCR. However, due to effi-
ciency considerations we used a simplified placement
method for the pMHC, which resulted in lower prediction
rates of 72–74%. This result is still in the predictive range,
but not as high as for the TCR domain optimization. Add-
itional preliminary investigations showed that the main rea-
son lies indeed in the initial placement method of the
pMHC ligand and that by simply using multiple initial con-
formations for the pMHC placement, already significant
improvements in the placement accuracy are possible.
However, a systematic optimization of the method for
pMHC placement would require further significant evalu-
ation studies, which would go beyond the scope of this
manuscript and which will be the topic of future studies to-
gether with the application of DynaDom to the blind hom-
ology modeling of TCRpMHC complexes. In general, the
presented approach is very well suited to serve as basis for
the development of such a method for the prediction of
atomistic models of TCRs or TCRpMHC complexes taking
inter-domain angles into account. Due to the modular de-
sign of our program, a straightforward combination and
concurrent optimization of multiple features is possible, as
already demonstrated in this work by the concurrent
optimization of the Vβ orientation, the pMHC orientation,
and the adaption of the glutamine residues connecting the
two TCR chains. Thus, the future implementation of partial
or full flexibility of side chains or protein backbone regions,

which then could be simultaneously optimized while the
rigid body positions are adapted, should be straightforward.
In addition, including other domains of the complex, such
as the TCR constant domains would also be possible. This
could help to study e.g. scissoring effects observed for the
constant domains [73] or to investigate TCR signaling,
which was elsewhere discussed to be induced by conform-
ational changes in the constant domains [74].
Finally, it is worth noting that the DynaDom strategy

is not limited to TCRpMHC assemblies. The combin-
ation of the different modules can indeed be easily
modified to fit the requirement of other rigid body based
predictions of a large variety of biomolecular assemblies.
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