Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fig. 5 | BMC Structural Biology

Fig. 5

From: Crystal structure of carbonic anhydrase CaNce103p from the pathogenic yeast Candida albicans

Fig. 5

The substrate tunnels of Δ29_ CaNce103p, ScNce103, CAS1 and Can2. a) Sequence alignment of Δ29_ CaNce103p, ScNce103, CAS1 and Can2. Active site residues are indicated by asterisks. The residues forming the substrate tunnels are colored as follows: green, subunit A; cyan, subunit B. Multialignment was performed using the program MultiAlin [27]. b) Superposition of the simulated substrate tunnels of Δ29_ CaNce103p, ScNce103, CAS1 and Can2. On the left side is a close-up view of the tunnels. On the right is the overall tetrameric structure of Δ29_CaNce103p with the substrate tunnels colored gray. Subunit A is green and subunit B is cyan. The tunnel profiles of each of the CAs are represented by colored lines: green (Δ29_CaNce103p), black (ScNce103), red (Can2) and blue (CAS1). c) Line graphs of the substrate tunnel profiles. Simulations of the substrate tunnels were performed using the program CAVER [30]. d) Close-up view of the entrance of the Δ29_CaNce103 active site. The image shows the solvent accessible surface colored by electrostatic potential (red for negative, blue for positive)

Back to article page