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Abstract
Background: Accurate protein loop structure models are important to understand functions of many proteins. 
Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein 
loop structure prediction.

Results: We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking 
approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the 
models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a 
set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We 
apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space 
composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone 
dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which 
are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best 
decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection 
accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native 
conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one 
near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in 
the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used 
consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based 
methods.

Conclusions: By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and 
fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a 
loop model set.

Background
Protein loop structure modeling is important in struc-
tural biology for its wide applications, including deter-
mining the surface loop regions in homology modeling
[1], defining segments in NMR spectroscopy experiments
[2], designing antibodies [3], and modeling ion channels
[4,5]. Typically, the protein loop structure modeling pro-
cedure involves the following steps [6,7]. First of all, the
structural conformation space is sampled to produce a

large ensemble of backbone models satisfying certain
conditions such as loop closure, clash-free, and low score
(energy). Secondly, clustering algorithms are applied to
select representative models from these backbone mod-
els. Thirdly, side chains are added to the representative
models to build all-atom models and their structures are
further optimized by score minimization. Finally, the
models are assessed and the "best" ones will be selected as
the predicted conformations.

In many loop modeling methods [6-13], sample loop
conformations are constructed by dihedral angle buildup
or fragment library search [14]. Recently, Mandell et al.
[15] developed a kinematic closure approach, which can
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construct loop conformations within a 1A resolution.
Nevertheless, scoring functions used to guide loop mod-
eling vary widely. Rohl et al. [8] optimized the Rosetta
score using fragment buildup. Fiser et al. [9] used a hybrid
scoring function by summing up CHARMM force field
terms and statistically derived terms. Xiang et al. [10]
developed a combined energy function with force-field
energy and RMSD (Root Mean Square Deviation) depen-
dent terms. They also developed the concept of "colony
energy" that has been used by Fogolari and Tosatto [16] as
well, for considering the loop entropy (an important com-
ponent in flexible loops) as part of the total free energy.
Olson et al. [17] used a multiscale approach based on
physical potentials. An efficient grid-based force field has
been employed by Cui et al. [18]. Jacobson et al. [6], Zhu
et al. [7], Rapp and Friesner [11], de Bakker et al. [12],
Felts et al. [13], and Rapp et al. [19] employed physics-
based energy schemes with various solvent models. Soto
et al. [20] found that using the statistical potential DFIRE
[21] as a filter prior to all-atom physics-based energy
minimization can improve prediction accuracy and
reduce computation time. DFIRE has previously proven
to be successful by itself for loop selection [21]. All these
methods have led to recent significant progress in gener-
ating high-resolution loop models and several loop pre-
diction servers are now available (see [22], for example).

In practice, the value of computer-generated protein
loop models in biological research relies critically on their
accuracy. While efficiently sampling the protein loop
conformation space to produce sufficient number of low-
energy models to cover conformations with good struc-
tures remains a challenging issue, another critical prob-
lem is the insensitivity of the existing protein scoring
functions. These scoring functions are developed to esti-
mate the energy of the protein molecule. The insensitivity
of the scoring functions leads to difficulty in distinguish-
ing the native or native-like conformations from the erro-
neous models, and thus restricts the loop structure
prediction accuracy. Therefore, selecting the highest
quality loop models from a number of other models is a
critical step in solving the protein loop structure predic-
tion problem.

The scoring functions play a significant role in protein
structure assessment and selection. Although a number
of scoring functions are currently available for protein
loop model evaluation, there is no generally reliable one
that can always distinguish the native or near native mod-
els. Every existing scoring function has its own pros and
cons. Recently, the strategy of using multiple scoring
functions to estimate the quality of models and improve
selection was proposed in protein folding and protein-
ligand docking [23-27]. Multiple, carefully selected scor-
ing functions are integrated and selection improvements
can be achieved by tolerating the insensitivity and defi-

ciency of every individual scoring function. Thus, the
multiple scoring functions method can usually lead to a
better performance than an individual scoring function.

Similar to structure prediction in an overall protein, the
scoring functions that have been used in loop modeling
can be categorized into knowledge-based [8,21,28-30]
and physics-based [13,31-35]. The knowledge-based
scoring functions are typically derived from protein
structural databases such as the PDB and thus incorpo-
rate empirical criteria to distinguish the native structure
from the misfolds. By contrast, the physics-based scoring
functions are developed based on first principle concepts,
where electrostatic, Van der Waals, hydrogen bonds, sol-
vation, and covalent interactions are taken into account.

There are problems in theoretical justification of both
the physics- and knowledge-based scoring functions for
protein structure modeling. Ideally, a physics-based scor-
ing function would be evaluated with quantum mechan-
ics, in which case the score could reflect the true energy.
In computation practice, quantum mechanics is wildly
intractable due to the size of protein molecule. As a com-
promise, the physics-based scoring functions (force
fields) are developed mainly based on classical physics to
approximate the true energy of a protein molecule. On
the other hand, the knowledge-based functions derive
their rules from the existing experimental structure data,
typically by applying the inverse Boltzmann law. How-
ever, because compared to the unknown structures, the
known structures are in an extremely small fraction, the
data used to develop knowledge-based functions are
potentially undersampled [36,37]. Moreover, studies have
shown that inter-residue interactions may not be consid-
ered as independent factors [38,39], which violates the
assumption of inverse Boltzmann law. In consequence, all
these aspects led to inaccuracy or insensitivity factors in
the existing scoring functions for protein loop modeling,
as is true in overall protein structure modeling. That is, in
practice, the native conformation usually does not exhibit
the lowest score when it is put among the models gener-
ated by the computer simulation program [40]. Moreover,
in the low score regions, a conformation with a relatively
higher score may in fact be a more reasonable structure
than the one with a lower score. The score-RMSD plots in
Figure 1 show that in the decoy set of 1onc(70:78), the
best model (0.17A RMSD from the native) never yields
the lowest score in DFIRE [21], triplet backbone dihedral
potential [28], OPLS-AA/SGB [31,32], Rosetta [41], or
DOPE [42], which strongly indicates insensitivity in each
individual scoring function.

In this paper, we present a Pareto Optimality Consen-
sus (POC) method based on the Pareto optimality [43]
and fuzzy dominance theory [44] to take advantage of
multiple scoring functions for ranking protein loop mod-
els. The rationale is to identify the models at the Pareto
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optimal front of the function space of a set of carefully
selected scoring functions and then to rank them based
on the fuzzy dominance relationship relative to the other
models. For protein loop structure ranking, we employ
five knowledge- or physics-based scoring (energy) func-
tions: DFIRE [21], our triplet backbone dihedral potential
[28], OPLS-AA/SGB [31,32], all-atom Rosetta [41], and
DOPE [42]. All of these scoring functions have shown
efficiency in loop modeling in the literature [6-8,21,28].
We apply our approach to the loop decoy sets generated
by Jacobson et al. [6]. The loops in Jacobson's decoy sets
are regarded as "difficult" targets [21,35]. There are fre-
quent Pro and Gly occurrences in these loops. Cys are
treated separately in both reduced and oxidized forms to

take the formation of disulfide bridges into account. The
loop positions are random to make possible encountering
of all sorts of situations. Jacobson's decoy sets have been
frequently used as a benchmark for loop prediction and
effectiveness of scoring functions [20,21,35]. The original
loop decoy sets include targets whose native protein
structures have certain exceptional features such as high
or low pH values when crystallized, explicit interactions
between the target loops and heteroatoms, and low reso-
lution crystal structures in target loop regions with large
measured B-factors [6]. Jacobson et al. also provide a fil-
tered list of decoy sets by eliminating targets with the
above exceptional features. Since none of the scoring
functions we used makes assumptions of these excep-

Figure 1 RMSD-Score Plot of 1onc(70:78) Decoy Set in Various Scoring Functions
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tional features, we only consider the filtered decoy sets in
this paper. In addition to Jacobson's decoy sets, we apply
our method to more recent decoy sets for 294 loops cho-
sen from 44 chains in 38 membrane proteins [45]. We
also compared the POC method with the hydrophobic
potential of mean force (HPMF) approach for loop model
selection as well as other multiple scoring functions rank-
ing strategies [23], including Rank-by-Number, Rank-by-
Rank, Rank-by-Vote, and regression-based methods.

Methods
The consensus Strategy
Although each scoring function may have certain insensi-
tivity and inaccuracy, combining multiple, carefully
selected scoring functions may effectively tolerate the
deficiencies existent in the single scoring functions. For
example, as shown in Figure 1, models yielding lowest
score in one individual scoring function have higher
scores than the best model in other scoring functions.
However, the multiple coordinate plot in Figure 2 shows
that the decoys commonly yielding low scores in all scor-
ing functions are the best decoys in the 1onc(70:78) decoy
set. As a result, efficiently integrating multiple good scor-
ing functions may lead to resolution improvement in
selecting the best decoys in the decoy set.

The Pareto Optimality Consensus Method
The rationale of the POC method is to rank a model
according to its Pareto-dominance relationship to the
other models in the model set. The first step of the POC
method is to identify models with Pareto-optimality. The
definition of the Pareto-optimality [43] is based on the
dominance relationship among models in the model set.

A model u is said to dominate another model v (u a v) if
both conditions i) and ii) are satisfied:

i) for each scoring function fi(.), fi(u) ≤ fi(v) holds for 
all i;
ii) there is at least one scoring function fj(.) where fj(u) 
<fj(v) is satisfied.

By definition, the models which are not dominated by
any other models in the model set form the Pareto-opti-
mal solution set. A Pareto-optimal model possesses cer-
tain optimality compared to the other ones in the model
set.

Once the Pareto-optimal models are identified, the next
step in the POC method is to rank these models, so that
the model that exhibits most optimality over other mod-
els in the model set will have the best rank. A simple solu-
tion, which is used in several evolutionary algorithms for
multi-objective optimization [43], is to count the number
of models in the model set that each Pareto-optimal
model dominates. Then the Pareto-optimal model that
dominates most other models is top-ranked. The major
disadvantage of this simple solution is that it cannot
accurately measure the significance of the dominance
relationship between two decoys. Figure 3 shows an
example of 3 models in a two-dimensional functional
space, where A dominates both B and C while B and C do
not dominate each other. The simple solution is not able
to distinguish between the dominance relationships A a B
and A a C, although A seems to have a "stronger" degree
of dominance to C than to B.

To more accurately measure the dominance relation-
ship, we adopt a fuzzy scheme [44] for model ranking.
First of all, a function g(fi(x)): [min(fi(x)), max(fi(x))] T [0,
1] is used to normalize each scoring function fi(x). Then,
a bounded division operation, ÷, is defined as

Figure 3 Example of Fuzzy Pareto Dominance
Figure 2 Multiple Scoring Functions Coordinate Plot of Decoys in 
1onc(70:78) Decoy Set

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1onc
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1onc


Li et al. BMC Structural Biology 2010, 10:22
http://www.biomedcentral.com/1472-6807/10/22

Page 5 of 14
Finally, the fuzzy Pareto dominance relation between
two models u and v can be written as follows: model u
dominates model v by degree μa where

for all normalized scoring functions g(fi(.)). Similarly,
model u is dominated by model v by degree μp where

for all normalized scoring functions g(fi(.)). In our cur-
rent POC method, we use a linear membership function,
min(x, y)/y, as suggested in [44], and the fuzzy scheme
does not bias to any individual scoring functions.

For the example shown in Figure 3, μa(A, C) = 1.0, μp(A,
C) = 0.083, μa(A, B) = 1.0, and μp(A, B) = 0.167. As a
result, A shows a more significant dominance to C than
to B in the fuzzy dominance scheme.

The ranking value for model xi, r(xi), is computed as

which will be used to rank the Pareto-optimal models.
For ranking of the whole model set, we firstly identify the
Pareto-optimal models and rank them according to fuzzy
Pareto dominance relationship. Then, we remove the
Pareto-optimal models, identify the Pareto-optimal mod-
els for the rest of the models, and assign ranks to them.
The procedure is repeated until there are no more models
left in the model set.

Results
Effectiveness of the Pareto Optimal Models
Because in the POC method, selection and ranking are
based on Pareto optimality, the quality of the Pareto-opti-
mal models is critical. The Pareto-optimal models
include not only those optimums in individual scoring
functions, but also the non-dominated ones yielding cer-
tain optimality in the (linear or non-linear) combination
of various scoring functions. In our computational exper-
iment, five scoring functions, including Rosetta, DDFIRE,
DOPE, triplet backbone dihedral, and OPLS-AA/SGB,
are selected to form the function space. Figure 4 shows

that the average number of the Pareto optimal decoys is
around 20% or less of the total number of decoys in the
Jacobson's decoy sets for 4- to 12-residue targets. As
shown in Figure 5, the Pareto optimal decoys have effi-
cient coverage of the best decoy or one close to the best
decoy in a target's decoy set. In more than 82% of the loop
targets, the Pareto-optimal decoys include the best decoy
of the target, whereas in more than 97% of the loop tar-
gets, the Pareto-optimal decoys include decoys within
0.1A RMSD to the best one. Moreover, 501 out of 502 tar-
gets include decoys within 0.4A RMSD cutoff to the best
decoy. Figure 6 shows the RMSD distribution of the
decoys in the sets corresponding to the 9-residue loop
targets as well as the coverage of the Parento optimal
decoys. One can find that in most of the 9-residue targets,
the very best decoy is in the Pareto-optimal decoy set,
which typically contains only 5%~20% of the decoys from
the original decoy set. This indicates that the selected
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Figure 4 Average number of decoys and average number of Pa-
reto-optimal decoys for loop targets ranging from 4- to 12-resi-
due in Jacobson's decoy sets. Only a small fraction (3~22%) of the 
decoys of a loop target are Pareto-optimal decoys.

Figure 5 Number of the targets whose Pareto-optimal decoys 
contain at least one decoy within certain RMSD cutoff from the 
best decoy. The Pareto-optimal decoys can effectively cover the best 
decoy or one close to the best decoy in a target's decoy set.
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scoring functions can efficiently identify a much smaller
set of decoys that contains the best decoy or one very
close to the best.

Efficiency in Identifying Near-Native Structures
We applied the POC method to the decoy sets generated
by Jacobson et al. The decoy set for each target contains
very good models (MODEL 1 and MODEL 2) derived
from the native structure by optimizing the OPLS-AA/
SGB force field as well as other models generated by hier-
archical comparative modeling [6].

By considering a decoy with RMSD less than 0.5A as a
near-native one, a false positive is a non-near-native
decoy with a high rank. Figure 7 shows the overall per-
centages of the targets in which the top-ranked decoy is a
false positive and the top-5-ranked decoys are all false
positives in the 502 loop targets as scored by POC and
the individual scoring functions. One can find that each
individual scoring function we employed has rather high
accuracy, yielding less than 50% false positive rate in
ranking a near-native decoy as the top decoy. However, by
integrating these scoring functions using fuzzy domi-
nance, the POC method leads to 37.3% less false positives
than the best individual scoring function in identifying

the top-ranked decoy as a near-native. More significantly,
the POC method has 64.6% less cases where the top-5-
ranked decoys do not include a near-native model than
those of the best individual scoring function.

We use the receiver operating characteristic (ROC)
curves to evaluate the ranking performance of each indi-

Figure 7 Number of False Positives. Number of cases where the top-
ranked decoy is a false positive and the near-native structures are 
missed in the top-5-ranked decoys in 502 loop targets in the POC 
method and individual scoring functions

Figure 6 Effectiveness of the Pareto optimal decoys. The best decoy with minimum RMSD, or one very close to the best decoy (< 0.1A) are within 
the Pareto optimal decoys in 9-residue loop targets
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vidual scoring function as well as the POC method for
each loop target, according to the method described in
[46] for ranked data. ROC curves display the true positive
rate versus the false positive rate. The area under the
ROC curve (AUC) is determined from these ROC curves.
An AUC of 1.0 indicates perfect ranking of the top N
decoys whereas an AUC of 0.5 is representative of a ran-
dom ranking. The higher an AUC value, the better the
ranking performance. Figure 8 shows the ROC curves for
evaluating the top-10-ranking of decoys in 1ivd(244:252)
and 153 l(98:109). One can find that the POC method
yields larger ROC AUC than individual scoring functions.
Moreover, Table 1 shows the average ROC AUC values of
individual scoring functions and POC in Jacobson's decoy
sets and the membrane protein loop decoy sets, where
Rosetta and DFIRE are the most effective individual scor-
ing functions, respectively. POC yields even higher AUC
value than Rosetta and DFIRE, as well as other scoring
functions, in both cases. The OPLSAA score is not evalu-
ated in membrane protein loop decoy sets because hydro-
gen atoms in the decoys are not available.

Figure 9 presents the average RMSDs of the best of the
top-5-ranked decoys in POC method compared to the
individual scoring functions in Jacobson's decoy sets for
4- through 12-residue loop targets. The POC method
outperforms the individual scoring functions on 4-
through 11-residue loop targets and is at least as good as
the best individual scoring function (Rosetta) in 12-resi-
due ones. The average RMSDs of the best of the top-5-
ranked decoys selected by the POC method are rather
close to the baseline formed by the average RMSD values
of the best decoys in loop targets of various lengths. More
interestingly, for each individual scoring function, there is
strong correlation between the selected model's RMSD
and the length of the loop target. By contrast, in the POC
method, the dependence on the quality of the selected
decoys with the length of the loop is hardly noticeable.

Figure 10 shows the RMSD of the top-ranked decoy by
the POC method as well as the individual scoring func-
tions in 11-residue loop targets. One can notice that the
individual scoring functions behave differently on various
loop targets. There is no superior individual scoring func-
tion that can always select the native-like decoy. An indi-
vidual scoring function may find the native-like decoys in
some loop targets but miss the good ones in the other tar-
gets. By integrating these scoring functions, the POC
method often coincides with the scoring function with
correct decoy selection and rarely agrees with a scoring
function pointing to an erroneous decoy. More interest-
ingly, the top-ranked decoy in POC method is often bet-
ter than all the top-ranked decoys in individual scoring
functions, as shown for the loop targets 5pti(7:17),
1mla(9:19), 2eng(124:134), and 1aru(297:307).

Respectively, Figures 11 and 12 show the false positive
rates using different RMSD cutoffs and the percentage of
targets with a top-ranked decoy within 1A RMSD from
the native in the membrane protein loop decoy sets. One
can find that DFIRE yields the best overall performance
compared to the other individual scoring functions. Simi-
lar to our results in Jacobson's decoy sets, POC yields
lower false positive selections than the best individual

Figure 8 ROC Curves for Decoys in 1ivd(244:252) and 153 
l(98:109). In these ROC curves, the true positives are the number of 
top-N ranked decoys with RMSD less than or equal to r, the false posi-
tives are the number of top-N ranked decoys with RMSD greater than 
r, the false negatives are the number of decoys with RMSD less than or 
equal to r but having rank greater than N, and the true negatives are 
the number of decoys with rank greater than N and RMSD greater than 
r. In our ROC plots, r is the 10th best RMSD in a decoy set and N is the 
cutoff variable. The ROC curves generated by the POC method yield 
higher AUC values than those of the individual scoring functions.
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scoring function in the membrane protein loop decoy
sets.

We also applied the POC method with the native struc-
ture mixed in the decoy sets generated by Jacobson et al
[6]. Similar effectiveness of the POC method can be
found in [Additional file 1].

Discussion
Comparison to Regression-based Consensus Method
A popular approach to take advantage of multiple scoring
functions is to build a consensus scoring function by
combining the individual scores using linear regression
[24]. However, the disadvantage of the regression-based
consensus scoring function method is that it will over-
look some models with certain optimality when the
Pareto optimal front of the scoring function space is con-
cave. Figure 13 shows a schematic illustration of a con-
cave search space of two scoring functions S1 and S2.
When a set of weights are determined by regression, a

contour line is formed and the minimum solution of the
consensus function corresponds to a model on the Pareto
optimal front, which is the tangent point of the contour
line and the model solution space. However, there exists
no contour line that can produce a tangent point with the
feasible solution space in the region BC in the Pareto
optimal front. This is because before a tangent point is
reached in BC, the contour line becomes a tangent at
another point at AB or CD zones, which yields a lower
overall consensus function value. In other words, models
in the concave region BC will never be selected in a con-
sensus scoring function method, although these models
show certain Pareto-optimality relative to others in the
model set. Some regions in the Pareto optimal front may
still be unreachable even if nonlinear regression is used to
combine various terms.

Figure 14 shows the performance comparison between
a regression-based method using Support Vector Regres-
sion (SVR) [24] and POC in Jacobson's decoy sets. Linear

Table 1: Average ROC-AUC Comparison in Jacobson's Decoy Sets and the Membrane Protein Loop Decoy (MPD) Sets

POC Rosetta DFIRE DOPE Triplet OPLSAA

Jacobson 0.780920 0.752171 0.741472 0.737116 0.747701 0.608012

MPD 0.640534 0.592584 0.635511 0.612899 0.606396 N/A

Figure 9 Average RMSD of the best models selected from 5-top-ranked decoys in Jacobson's loop sets ranging from 4 to 12 residues.
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SVR is regarded as a convex optimization method [47]. In
the training process of the SVR method, for loops of a
certain length, we randomly divided the loops into two
roughly equal sets. We used one set as a training set and
predicted the other set. Then we used the other set as the
training set to predict the previous training set. For train-
ing and predicting, we used the libSVM library [48] with

Figure 11 Comparison of false positive rates in POC and individ-
ual scoring functions using different RMSD cutoffs in membrane 
protein loop decoy sets

Figure 10 RMSD of the best-ranked decoy in 11-residue loop targets of Jacobson's decoy sets

Figure 12 Percentage of targets in the membrane protein loop Figure 13 Deficiency of Regression-based Consensus Method. Pa-
reto-optimal Models at the Concave Pareto Optimal Front Are Un-
decoy sets where the top-ranked decoy is within 1.0A from the 

native reachable in a Regression-based Consensus Scoring Function
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linear kernel and default parameters. One can find that
SVR is close to or slightly outperforms the best individual
scoring function in most cases. However, POC outper-
forms SVR in all lengths of targets in Jacobson's decoy
sets.

Another major drawback of the regression-based con-
sensus method is its dependence on the size, composition
and generality of the training set used to derive the
weights. Similar to the vote-based or rank-based consen-
sus methods, POC does not require a training procedure.
The selection and ranking solely depend on evaluation of
the dominance relationship among the decoys.

Comparison to Rank-by-Number, Rank-by-Rank, and Rank-
by-Vote Methods
The vote-based consensus method is another strategy of
multiple scoring functions selection method, which takes
advantage of the observation that similar models voted by
more scoring functions tend to be more accurate than
those having fewer votes. However, the disadvantage of
vote-based consensus methods is that it is very sensitive
to the artificially-set vote threshold value [23,27]. Also,
the vote-based consensus method has difficulties in situa-
tions when the scoring functions strongly disagree with
each other. As a result, the vote-based consensus meth-
ods are usually inferior to the consensus score methods
and are generally not recommended [23].

Table 2 shows the decoy selection comparison of the
POC method and other consensus strategies [23], includ-
ing rank-by-number, rank-by-rank, and rank-by-vote, in
Jacobson's decoy sets of 502 loop targets. The rank-by-
number is a straightforward consensus method, where all
decoys are ranked according to the average normalized
score values given by all scoring functions. The rank-by-
rank strategy ranks the decoys according to their average
ranks in each individual scoring function. In rank-by-vote
strategy, a decoy will receive a vote by an individual scor-
ing function if its score is the top k% (k = 2 in the results
presented in Table 2) in the decoy set. Then, the decoys
are ranked according to the number of votes each decoy
received. Compared to the best individual scoring func-
tion, the rank-by-vote strategy has better selection accu-
racy in the top-ranked decoys and has similar
performance in the top-5-ranked decoys. In agreement
with [23], rank-by-number and rank-by-rank outper-
forms rank-by-vote in both top-ranked decoy and top-5-
ranked decoys. The POC method yields more aggressive
native-like decoy identification than rank-by-number and
rank-by-rank, particularly in selecting the top-5-ranked
decoys. This is due to the fact that the top-5-ranked
decoys produced by the POC method have broader rep-
resentation of the Pareto-optimal decoys than the other
consensus strategies.

Figure 14 Selection performance comparison between POC and SVR in identifying the top-5 decoys in Jacobson's decoy sets
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Comparison to Another Selection Method
Lin and Head-Gordon recently presented a new physics-
based energy function with an implicit solvent model, so-
called HPMF [35], which has shown improved native-like
loop discrimination capability from non-native decoys
compared to DDFIRE and OPLS-AA/SGB, particularly in
the long loop targets. Table 3 presents the average RMSD
of the top-ranked decoys in loop targets with lengths
ranging from 4 to 12 residues. The top-ranked decoys
selected by POC method yield better average RMSD than
those selected by HPMF in short, medium, and long loop
targets.

Result Analysis
In this section, we analyze, from the biological perspec-
tive, the results obtained for several loop targets. These
targets include 1fus(28:38), 1aac(16:20), and 1hbq(31:38).

For the test case of 1fus(28:38) loop target, Rosetta and
the triplet scoring functions select, as best scored, decoys
with RMSD > 3A from the native structure, albeit the
other scoring functions as well as POC can correctly
identify the decoy with best resolution. The decoy
selected by triplet has a better scoring torsion angle com-
bination, allowing for some favorable near residue neigh-
bor interactions depicted as black dashed lines in Figure
15. These are either local backbone to backbone or side-
chain to backbone hydrogen bonds. Our triplet scoring

function evaluates a loop only by its internal local inter-
actions. The cause this decoy is highly deviated from the
native loop structure is that it makes few tertiary contacts
with the rest of the protein, being rather detached from it
(as shown Figure 15), it is solvated and unfolded, and
therefore, cannot be stable. This is the reason for which
the triplet scoring function should be used in conjunction
with other distance-based potentials, a task that is
accomplished here by our consensus POC method, which
performs well for this target despite the triplet and
Rosetta failures.

On the other hand, Rosetta's best scored decoy has the
opposite problem: It makes some good contacts with the
protein frame but has a poor choice of backbone torsion
angle combinations. For example, the Thr37 residue has
the following backbone torsion angle combination: phi =
80°, psi = -45°, which falls on a region of the Threonine's
Ramachandran map that is disallowed due to local steric
clashes. The success of the POC method in this case is
justified by selectively relying on the other scoring func-
tions that have good performances.

A somewhat opposite example is provided by the
1aac(16:20) target, where only the triplet scoring function
selects decoys close to the native structure. All the other
scoring functions select decoys with inferior torsion angle
combinations. It seems that the distance-based scoring
functions cannot accurately evaluate the local backbone

Table 3: Selection Accuracy of the POC method compared to the HPMF Method

Loop Length HPMF POC

4 0.31A 0.27A

6 0.61A 0.34A

8 0.70A 0.53A

10 0.77A 0.49A

11 0.67A 0.39A

12 0.39A 0.32A

Table 2: Selection Accuracy Comparison of Various Consensus Strategies and Best Individual Scoring Function in 
Jacobson's Decoy Sets of 502 Loop Targets

POC Rank-by-Number Rank-by-Rank Rank-by-Vote Best Individual 
Scoring Function

Top-ranked decoy < 0.5A 409 397 399 379 357

Best Top-5-ranked decoys < 0.5A 470 444 445 412 413

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1fus
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1aac
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hbq
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1fus
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1aac
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interactions that are well described by our triplet torsion
angle scoring function. Despite scoring a loop by its inter-
nal interactions only, our triplet scoring function proves
itself as a valuable tool in the POC scheme. Our POC
method heavily relies on the triplet scoring function to
identify the near-native conformation in this case.

The only case, from all the 502 loop targets studied
here, where POC fails to capture a native-like structure
(within 0.5A cutoff ) on the Parento Optimal Front, is the
1hbq(31:38) loop. This also means that none of the indi-
vidual scoring functions can correctly identify a decoy
with native-like conformation as the top-ranked one.
1hbq(31:38) is a special case where the native loop energy
is a compromise between a poor loop internal energy and
a very favorable energy of interaction with the rest of the
protein. The loop internal energy is compromised by the
Leu37 residue with an unfavorable backbone conforma-
tion (phi = 54°, psi = 93°) that scores poorly in every
potential function. On the other hand, this residue partic-
ipates, together with its loop neighbor Phe36, in a net-
work of favorable hydrophobic interactions involving
many atoms from the protein frame. In Figure 16, the two
loop residues are shown enclosed by their external sur-
face, together with the protein frame atoms that are clos-
est to their side-chains. With the exception of a sulfur
atom, all the other surrounding atoms are hydrophobic
carbons. The two loop side-chains are hydrophobic
themselves and form a hydrophobic core that is very
favorable for the protein stability.

The best decoy selected by POC for this loop shows
many favorable contacts, including the hydrophobic
interaction between Phe36 and Leu37 side-chains. But
they are not buried in a protein hydrophobic core in this
case. Also, this decoy's surrounding surface, shown in
Figure 17, forms a central internal cavity that is not filled

with other protein atoms and is energetically unfavorable
for this reason. None of the scoring functions is able to
capture these important protein features, involving
hydrophobic cores and internal cavities, because they are
based on multiple-body cooperative interactions. As a
result, our POC method is misguided in constructing the
Pareto optimal front.

Limitations of the POC Method
Similar to the other consensus methods, a limitation of
the POC method depends on the accuracy of the scoring
functions involved in the consensus scheme. If the large
majority of the scoring functions have poor accuracy, the
consensus scheme is unlikely to select decoys with high

Figure 16 Analysis of the native loop 1hbq(31:38). The hydropho-
bic residues Phe36-Leu37 (enclosed by the surface) are buried in a sta-
ble protein hydrophobic core, being surrounded by many carbon 
atoms.

Figure 17 The best decoy selected by POC for target 1hbq(31:38). 
The decoy forms an unfavorable internal cavity that is not occupied by 
other protein atoms.

Figure 15 The optimal decoy selected by our triplet potential for 
loop 1fus(28:38). The decoy makes internal hydrogen bonds (black 
dashed lines) but few contacts with the protein frame.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hbq
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hbq
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1fus
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hbq
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1hbq
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resolution. The effectiveness of the POC method also
depends on the quality of the decoys generated. POC is a
selection and ranking scheme and thus it is unable to gen-
erate better decoys than the best one in a decoy set.

Another minor disadvantage of the POC method is the
decoy selection and ranking time when the decoy set is
large. For a set of N decoys, the Pareto-optimal decoys
selection and ranking time scaling is O(N2) because of the
requirement of evaluating pair-wise decoy dominance
relationship, whereas the ranking time scaling in regres-
sion-based, rank-based, or vote-based consensus meth-
ods is O(N). However, compared to the training time in
regression-based method and the evaluation time for the
scoring functions, the decoy selection and ranking time
in the POC method is still rather small for a reasonable
size of the decoy set.

Conclusions
The POC method is shown to be effective in distinguish-
ing the best models from the other ones within Jacobson's
loop decoy sets and the membrane protein loop decoy
sets. It is clear that a combination of multiple, carefully-
selected physics- and knowledge-based scoring functions
can significantly reduce the number of false positives
compared to using an individual scoring function only.
Moreover, identifying the decoys at the Pareto optimal
front and ranking these decoys based on the fuzzy domi-
nance relationship against the other decoys in the set
have led to higher model selection accuracy in the POC
method than in the other consensus strategies including
rank-by-vote, rank-by-number, rank-by-rank, and regres-
sion-based methods. In addition to protein loop structure
prediction, the POC approach may also be used in appli-
cations of protein folding, protein-protein interaction,
and protein-ligand docking.

Our current POC implementation does not bias to any
individual scoring function. However, there may still be
improvement space for the POC method. For example,
the POC may couple with a training algorithm to mea-
sure the efficiency of a scoring function and then certain
bias to some scoring functions can be incorporated in
evaluating the fuzzy Pareto dominance relation. This will
be one of our future research directions.
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