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Abstract

Background: Currently a huge amount of protein-protein interaction data is available from high throughput
experimental methods. In a large network of protein-protein interactions, groups of proteins can be identified as
functional clusters having related functions where a single protein can occur in multiple clusters. However
experimental methods are error-prone and thus the interactions in a functional cluster may include false positives
or there may be unreported interactions. Therefore correctly identifying a functional cluster of proteins requires the
knowledge of whether any two proteins in a cluster interact, whether an interaction can exclude other interactions,
or how strong the affinity between two interacting proteins is.

Methods: In the present work the yeast protein-protein interaction network is clustered using a spectral clustering
method proposed by us in 2006 and the individual clusters are investigated for functional relationships among the
member proteins. 3D structural models of the proteins in one cluster have been built — the protein structures are
retrieved from the Protein Data Bank or predicted using a comparative modeling approach. A rigid body protein
docking method (Cluspro) is used to predict the protein-protein interaction complexes. Binding sites of the docked
complexes are characterized by their buried surface areas in the docked complexes, as a measure of the strength
of an interaction.

Results: The clustering method yields functionally coherent clusters. Some of the interactions in a cluster exclude
other interactions because of shared binding sites. New interactions among the interacting proteins are uncovered,
and thus higher order protein complexes in the cluster are proposed. Also the relative stability of each of the
protein complexes in the cluster is reported.

Conclusions: Although the methods used are computationally expensive and require human intervention and

judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. In

addition indirect interactions through another intermediate protein can be identified. These theoretical predictions

might be useful for crystallographers to select targets for the X-ray crystallographic determination of protein
complexes.

Background

Because of the use of high throughput experimental
methods such as yeast two-hybrid screening [1], the
number of reported protein-protein interactions (PPI)
has increased dramatically. To extract meaningful
information from this interaction data set, clustering of
the interacting proteins is an established method. Patra
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et al.[2] have shown that functionally significant clus-
ters can be extracted from the dominant eigenvalues of
a modified contact matrix known as the Kirchhoff
matrix. Sen et al. [3] used an eigenmode analysis (a
type of spectral clustering) to cluster the interacting
proteins.

The BioGrid database has published different
versions of yeast protein interaction data with increas-
ing numbers of proteins and interactions [4]. Some
limited attempts have been made to construct spatial
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interaction clusters from this data. With early results
showing that such clusters have functional relation-
ships, such results may help to predict undiscovered
interactions among proteins in the same cluster [3].
However the protein interaction data obtained from
high-throughput screening methods such as the yeast
two-hybrid method [1] and affinity purification techni-
ques [5] are highly error-prone. Approximately, 30—
60% false positives and 40-80% false negatives have
been estimated for these methods [6,7]. Therefore pre-
dicting new interactions or drawing any conclusions
from this interaction dataset requires validation of the
interactions. Another complementary source of infor-
mation about the proteins is their individual structures.
If there were sufficient known structures of the pro-
tein-protein pairs they could provide direct validation
of the interactions. However, the number of such
known structures remains small, and certainly nowhere
near the number of interacting pairs that have been
reported. But there are relatively large numbers of
individual protein structures. Those, together
with improvements in docking methods make it possi-
ble to begin investigating the likelihood of forming
individual three dimensional pairs of structures [8].
Looking at the 3D structure of each protein, especially
the binding sites, in an interacting cluster can reveal
information that can aid in validating the pair-wise
interactions. Some questions that we set out to investi-
gate here are:

1. Whether two proteins prefer to interact?

2. If more than two proteins purportedly interact
with the same protein, can they interact concurrently
by binding two separate regions of the protein, or
does one exclude the other because their binding
sites substantially overlap?

3. What are the relative binding strengths of proteins
within a cluster?

We choose the yeast protein-protein interaction net-
work from the online database BIOGRID (http://www.
thebiogrid.org) [4]. The number of distinct proteins and
interactions in the dataset has increased manyfold since
the analysis by Sen et al. [3]. The current dataset (ver-
sion 2.0.55) has over five thousand proteins and more
than 145,000 interactions.

Methods

We applied an eigenmode analysis to cluster the protein
interaction network. We formed the Kirchhoff matrix
[2] M; the interaction matrix M:
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1 if i and j interact
M; = 0 if i andj do not interact (1)
n
- Y My, i=)
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Then, we performed eigenmode analysis of this matrix
M. This definition automatically leads to a singular
matrix (i.e. the determinant of the matrix M is zero)
that must be analyzed with Singular Value Decomposi-
tion [3].

Singular value decomposition (SVD)
We calculated all eigenvalues and eigenvectors of the
connectivity matrix by applying the SVD subroutine
available in the LAPACK library [9].

If A is any matrix of size mxn (with m>=n), then A
can be written as a product of three matrices:

A = UAVT(2)

where A is the square matrix of size nxn containing
nonnegative values A, Ay, ... ,A, along the diagonal and
zeros off diagonal, and U and V are two matrices of
sizes mxn and nxn, respectively, having orthogonal col-
umns, i.e.

m
Zizl UikUim = 5km (2)
and
m
Zizl Vikvin = Skn (3)
The Kirchhoff matrix M can be written as
M = VAUT 4)

where A is the diagonal matrix containing eigenvalues

Ay Mgy v Ay of M and U is the matrix formed from

eigenvectors of M. Thus, the elements M;; of the contact
matrix M can be expressed as

n

Mii = el )«kukiukj (4)

where uy; denotes the i component of the eigenvec-

tor corresponding to the k'™ eigenvalue. Equation 4 is

the eigenvalue expansion of the contact matrix. From
Equation 5, it follows:

Mii = Zkzl )«kuﬁi (5)
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The eigenvalues with the smallest indices correspond-
ing to the largest absolute values of A make the largest
contributions and smaller eigenvalues contribute succes-
sively less [3].

Cluster formation

For each eigenvalue there is a corresponding eigenvec-
tor. The significant components of an eigenvector com-
prise a cluster where each component corresponds to
one protein. The components with an absolute value
greater than 0.05 are assumed to be significant [3]. The
clusters for larger eigenvalues are thus the interesting
ones.

Interaction complex formation within a cluster

After the clusters are constructed, we need to choose a
cluster to do structural analysis. Figure 1 shows three
representative clusters (10, 14, and 15) for their moder-
ate size. Out of these, we chose cluster 14 for further
structural analysis. Then we attempt to predict the
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interaction complexes, predict new interactions, and
predict whether multiple interactions could occur con-
currently. The steps of this process are shown in the
flowchart in Figure 2. In part 2(a) of the figure, an inter-
acting partner protein structure is either retrieved from
the Protein Data Bank (PDB) [10] (http://www.rcsb.org),
or if there is no structure of the protein we predict the
structure by comparative modeling. Figure 2(b) shows
that once we have both structures of a putative interact-
ing pair, we then use docking to predict the structure of
the interaction complex.

Comparative modeling

To predict an interaction complex or predict a new inter-
action, we require the protein structures of both interact-
ing proteins. If the structure of a protein is not available
in the PDB, we use comparative modeling approaches
[11,12]. To predict the structure of the protein, we have
relied upon Zhang’s [-TASSER server [12-14] (http://
zhanglab.ccmb.med.umich.edu/I-TASSER/), which gave

YMLO32C
YGLOS8W  yOLOD1W
YLE00W YPL153C
YBR160W YPR119W YBR160W YGLO58W
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the red edge being the newly proposed interaction.

Figure 1 Examples of three clusters and their interactions with the nodes being the proteins and their names given (a) cluster 10 (b)
cluster 14 (c) cluster 15 (d) New core of cluster 14 after YML032C and YPL153C were removed is shown schematically with yellow being
YBR160W, purple YGLO58W, cyan YDL020C, and red YOLOOTW. All 6 edges of this tetrahedron correspond to pairs of proteins that interact, with
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the best protein models at the Critical Assessment of
Structure Prediction (CASP 7 and CASP 8), a commu-
nity-wide, worldwide experiment designed to obtain an
objective assessment of the state-of-the-art in structure
prediction [15-17]. The I-TASSER algorithm consists of
three consecutive steps: threading, fragment assembly,
and iteration. During threading, I-TASSER generates the
template alignments by a simple sequence Profile-Profile
Alignment approach constrained with the secondary
structure matches. Fragment assembly is performed on
the basis of threaded alignments and the target sequences
are divided into aligned and unaligned regions. The frag-
ments in the aligned regions are used directly from the
template structures and the unaligned regions are mod-
eled with ab initio simulations. Clusters of decoys are
generated with the use of a knowledge-based force field.
The cluster centroids are generated by averaging the
coordinates of all clustered decoys and ranked based on
the structure density. In the iteration phase, the steric
clashes of the cluster centroids are removed and the
topology is refined. The conformations with the lowest
energy are selected.

The I-TASSER server returns the best five models
with a c-score attached for each model. Also it returns
the top ten templates used in the threading. The c-score
is a confidence score that I-TASSER uses to estimate
the quality of the predicted model. The calculation of c-
score is based on the significance of the threading tem-
plate alignments and the convergence parameters of the
structure assembly simulations. When selecting one of
these models, we select the model that comes from the
largest cluster and has the best c-score. C-score is in the
range [5,2], where a higher c-score value signifies a bet-
ter model [14].

Docking

After we have both structures in an interacting pair we
use docking to predict the protein complex formed in a
protein-protein interaction. We use the Cluspro server
[18-23] for docking the interacting proteins to predict
the protein complex. Cluspro is the first fully automated
web-based program for docking proteins and was one of
the top performers at CAPRI (Critical Assessment of Pre-
dicted Interactions) rounds 1-12, the community-wide
experiment devoted to protein docking [24]. The Cluspro
server is based on a Fast Fourier Transform correlation
approach, which makes it feasible to generate and evalu-
ate billions of docked conformations by simple scoring
functions. It is an implementation of a multistage proto-
col: rigid body docking, an energy based filtering, ranking
the retained structures based on clustering properties,
and finally, the refinement of a limited number of struc-
tures by energy minimization. The server (http://cluspro.
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bu.edu/) returns the top models based on energy and
cluster size. We select one of the returned models after
considering the energy and the size of the cluster — pre-
ferring lower energies and larger cluster sizes. As the
Cluspro server implements rigid body docking, when a
partner protein in a complex is structurally flexible Clu-
spro is not so able to account for this flexibility.

Results

We perform the eigen-analysis on the yeast network
version 2.0.40 (5,226 proteins and 114,754 interactions)
and 2.0.41 (5,425 proteins and 121,664 interactions) and
find that the number of zero eigenvalues are 6 and 3,
respectively, which are very small compared to those
from the yeast network Sen et al. previously used [3]
(4,906 proteins, 19,037 interactions, and number of zero
eigenvalues 46). This decrease in the number of zero
eigenvalues is an indication of the completeness of the
yeast network.

The proteins and their interactions in clusters 10, 14,
and 15 are shown in Figure 1. We note that the number
of neighbors for each protein in each of these clusters
falls within a relatively small range. Those ranges are
278 — 288 for the proteins in cluster 10; 261 — 286 for
the proteins in cluster 14; and 265 — 286 for the pro-
teins in cluster 15.

We search the gene ontology database [25] for the
functions of the proteins in each cluster and find that
the proteins in each cluster have related functions
usually. This is consistent with previous findings [3,26].
Table 1 shows the functions of each of the proteins in
clusters 10, 14, and 15. The majority of the proteins in
clusters 10 and 14 are cell cycle related; while cluster 15
is related to protein folding and protein degradation.
We also attempt to determine the statistical confidence
regarding the functional coherency of the clusters. We
used FunSpec(http://funspec.med.utoronto.ca/) [27], a
web based cluster interpreter for yeast, to measure the
functional coherency of the clusters (see Table 2). Fun-
Spec assesses the degree of functional enrichment for a
given cluster by the hypergeometric probability distribu-
tion[28]. For each cluster, the probability (p-value) of
observing such an overlap by chance is calculated as:

le_z“m (6)

g

where, G = the size of the genome; C = the number of
genes in the genome having that attribute; n = the size
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Table 1 Functions of proteins in clusters 10, 14, 15 of yeast protein network-2.0.41

Protein Function Function type
name
Cluster 10
YBR160W  Catalytic subunit of the main cell cycle cyclin-dependent kinase Cell cycle
YGLO58W  Ubiquitin-conjugating enzyme (E2), involved in postreplication repair (with Rad18p), sporulation, telomere Protein repair/
silencing, and ubiquitin-mediated N-end rule protein degradation (with Ubr1p) degradation
YLR200W  Subunit of the heterohexameric Gim/prefoldin protein complex involved in the folding of alpha-tubulin, beta- Protein folding
tubulin, and actin
YOLOOTW  Cyclin, negatively regulates phosphate metabolism Cell cycle
YPR119W  B-type cyclin involved in cell cycle progression Cell cycle
(b) Cluster 14
YBR160W  Catalytic subunit of the main cell cycle cyclin-dependent kinase Cell cycle
YOLOOTW  Cyclin, negatively regulates phosphate metabolism Cell cycle
YPL153C Protein kinase, required for cell-cycle arrest in response to DNA damage Cell cycle
YML032C  Stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA Cell cycle
YDLO20C  Transcription factor that stimulates expression of proteasome genes Type Protein
degradation
YGLO58W  Ubiquitin-conjugating enzyme (E2), involved in postreplication repair (with Rad18p), sporulation, telomere Protein repair/
silencing, and ubiquitin-mediated N-end rule protein degradation (with Ubr1p) degradation
(c) Cluster 15
YGLO58W  Ubiquitin-conjugating enzyme (E2), involved in postreplication repair (with Rad18p), sporulation, telomere Protein repair/
silencing, and ubiquitin-mediated N-end rule protein degradation (with Ubr1p) degradation
YBR160W  Catalytic subunit of the main cell cycle cyclin-dependent kinase Cell cycle
YELOO3W  Subunit of the heterohexameric cochaperone prefolding complex which binds specifically to cytosolic chaperonin Protein folding
and transfers target proteins to it
YDL020C  Transcription factor that stimulates expression of proteasome genes Type Protein
degradation
YHR200W  Non-ATPase base subunit of the 19S regulatory particle (RP) of the 26S proteasome Protein
degradation
YPL153C Protein kinase, required for cell-cycle arrest in response to DNA damage Cell cycle

of the query cluster; k = the number of genes in the
cluster known to have that attribute [28].

Most of the p-values in Table 2 are quite small
(< 107®) for the three clusters we are reporting here.
These small p-values signify the relatively strong func-
tional coherency of these clusters. How small must a p-
value be in order for a cluster to be functionally coher-
ent? FunSpec uses 0.01 as a cut off, which is arbitrary.
For each of the clusters, we obtain p-values that are

much smaller than 0.01, indicating the highly probable
functional coherency of the clusters.

One of our goals in this paper is to test the validity of
a reported interaction by using structural information
about the interacting proteins in a cluster. Our idea is
simple: first, find the structures of the two interacting
proteins from the PDB [10]. If the experimental struc-
ture is not available in the PDB for any of the proteins,
we predict its structure by comparative modeling. For

Table 2 MIPS functional classification and GO(Gene Ontology) assignments of biological processes and molecular

functions for clusters 10, 14, and 15

Cluster # GO molecular function GO biological process MIPS functional classification
# proteins

10 5 Cyclin-dependent protein kinase Regulation of cyclin-dependent protein kinase Enzymatic activity regulation /
regulatory activity (5x10°) activity (6x10 ) enzymeRegulator (5x10°)
Tubinding (4x107) Negative regulation of phosphate metabolic Regulation of phosphate metabolism

process (9x107) (9x107%)

14 6 Recombinase activity ( 2x10°) Postreplication repair ( 1x10%)regulation of cell  DNA repair (3x10™)
DNA strand annealing activity cycle (5x107) G2/M transition of mitotic cell cycle
(3 x107) Response to DNA damage stimulus (7 x 10 (7x107

15 6 Protein serine/threonine/tyrosine Regulation of cell cycle (6x10*)Negative Proteasomal degradation (ubiquitin/

kinase activity (5x107°)

regulation of meiotic cell cycle (10 X107

proteasomal pathway) (2x10™)
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comparative modeling, we used both CABS modeling
[11] and I-TASSER [12-14]. However, the results shown
here come only from using I-TASSER. Once, we have
both structures, we dock them to predict the interaction
complex. We can repeat this method to verify individual
interaction in a cluster.

Here, we show an example of this approach. We find
the homologs for the six proteins in cluster 14 shown
in Figure 1. For the three proteins — YOL0O01W,
YPL153C, and YGLO58W — we retrieve the PDB struc-
tures having 100% identity as 2PK9 chain B, 1QU5
chain A, and 1AYZ chain A, respectively. For the other
three proteins — YBR160W, YML032C, and YDL020C
— the PDB homologs are 3EZR chain A (62% identity),
1KNO chain A (53% identity), and 1A1I chain A (43%
identity), respectively. For the latter three proteins, we
predict their structures using the I-TASSER server
[12-14]. I-TASSER reports the top five predictions for
each submitted protein sequence, according to the c-
score and the cluster size. We select the model that
has the highest c-score out of the five returned models
for each target sequence. I-TASSER also returns the
top ten templates that it used for threading. We report
the template that has the best sequence identity for
the target protein sequence. For each unknown struc-
ture, Figure 3 shows the top prediction, the closest
template, and the structural superposition of the pre-
dicted structure and the template. The c-scores for the
models of YBR160W, YDL020C, and YMLO032C are
0.65, 0.41, and -0.54, respectively. We also compute
the surface areas for each of the models and the
reported template by using NACCESS which is an
implementation of the methods described by Lee and
Richards [29] and Hubbard, Campbell and Thornton
[30]. The surface areas for the model for YBR160W
and its template (PDB id 2PK9A) are 15,727A% and
15,074A2, respectively which are similar. Also the sur-
face areas of the model of YDL0O20C and its template
(PDB id 1z1nx) are 33,655A2 and 33,482A2, respec-
tively. The similarity in these surface areas can serve as
a crude indication of the quality of the model returned
from the server. In cluster 14, there are nine interac-
tions. Four interactions involve YML032 whose model
returned from the I-TASSER server is not a globular
protein. This model is a very extended open structure.
As a result, it would appear to have significant struc-
tural flexibility and thus not be fully suitable for rigid
body docking using Cluspro. We have performed dock-
ing for the other five interactions. Results of docking
for these five interactions are shown in Figure 4. For
each interaction, the figure shows the surface views of
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the docked complexes. To measure how strongly these
docked complexes are bound, we have calculated the
buried surface area for each docked complex. Table 3
shows the buried surface area and the ratio between
buried surface area and total surface area of each of
the docked complexes.

YOLO01W has 100% sequence identity with 2PK9
chain B and the template used by I-TASSER to predict
the structure of YBR160W is 2PK9 chain A. This sug-
gests that there might be an interaction between
YOLO001W and YBR160W because of this known
dimeric structure. We docked the homolog (2PK9
chain A) of YOL001W and the model for YBR160W.
The docked complex, YBR160W.YOL0O01W, is shown
in Figure 4(f). The ratio of the buried surface area to
the total surface area for this complex is the largest
among all the dimers as shown in Table 3. Therefore if
we consider buried surface area relative to the total
surface area of a complex as a measure of the strength
of an interaction between two proteins, the complex
YBR160W.YOLOO1W is expected to be more stable
than the other dimers. This could also mean that
this new interaction between YBR160W and
YOLO01W would be stronger than the other pair-wise
interactions.

It is evident from Figure 4(a), 4(b) and 4(c) that pro-
tein YDL020C has at least two binding sites.
YBR160W and YOLOO1W both bind to YDL020C at
overlapping sites but YGL058W binds with YDL020C
at a completely different binding site. Thus, the inter-
actions YDL020C.YBR160W and YDL020C.YGLO58W
or YDL020C.YOL001W and YDLO020C.YGLO58W
could occur simultaneously. Figure 1(d) shows the new
core of cluster 14 with YMLO032C and its related inter-
actions removed and the newly discovered interaction
YBR160W.YOL001W included. The docked complexes
for these two set of mutually exclusive interactions,
YGLO58W.YDL020C.YBR160W and YGLO58W.
YDL020C.YOLO01W, are shown in Figure 5(a) and 5
(b) respectively. By analyzing the binding sites of
YOLO001W, we find that it has different binding sites
to bind with YBR160W and YOLOO1W, thus making
these two interactions concurrently possible. For a
similar reason, the interactions YDL020C.YOLOO1W
and YBR160W.YOL0OO1W can occur simultaneously.
The resultant trimers are shown in Figure 5(c)and 5
(d), respectively. All other pair-wise interactions (4d,
4e and 4f) in Figure 4 are mutually exclusive because
of shared binding sites of the interacting proteins.
Table 3 shows the list of all possible higher order com-
plexes that can be modeled from the four protein
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(1) 2) c(3)

Figure 3 Comparative modeling for three unknown proteins in cluster 14 shown in Figure 2 a(1) Model for YDL020C a(2) One of the
templates used by I-TASSER (PDB ID:1Z1NX) a(3) Superimposition of the model and the template (RMSD = 0.410) b(1) Model for YBR160W b(2)
One of the templates used by I-TASSER (PDB ID:2PK9A) b(3) Superimposition of the model and the template (RMSD = 0.77) c(1) Model for
YMLO032C c(2) Template used by I-TASSER (PDB ID:1WORA ) c(3) Superimposition of the model and the template (RMSD = 0). The difference in
buried surface area for the model in a(1) and template in a(2) is 173 A% and that is in b(1) and b(2) 654 A°.
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(e) ®

Figure 4 Models built for the interactions in the core of cluster 14 Buried surface areas of the dimers (a) YDL0O20C.YBR160W(5,603A%)
(b) YDLO20C.YOLOOTW (4,517A?) (c) YDLO20C.YGLO58W(4,295A%) (d) YBR160W.YGLO58W(3,408A%) (e) YOLOOTW.YGLO58W(2,162 A%) (f) YBR160W.
YOLOOTW (5,779 A?).

.
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Table 3 Buried surface area(SA) of the docked complexes

Interacting complex Buried SA  2*Buried SA/(Total
(A?) SA)
Dimers
YDLO20C : YBR160W 5,603 023
YDLO20C : YOLOOTW 4517 0.20
YDLO20C : YGLO58W 4,295 0.20
YBR160W : YGLO58W 3,408 0.29
YOLOOTW : YGLO58W 2,162 0.21
YBR160W:YOLOOTW 5779 041
Trimers
YGLO58W.YDLO20C.YBR160W 9,898 0.34
YGLO58W.YDL0O20C.YOLOOTW 8812 033
YBR160W.YOLOOTW.YGLO58W 7,941 044
YDL020C.YOLOOTW.YBR160W 10,296 033
Tetramers
YGLO58W.YDLO20C.YBR160W. 15,501 0.34
YDL020C
YGLO58W.YDLO20C.YOLOOTW. 14,591 042
YBR160W

(the order of the complexes in this table is the same as in Figure 4(a-f) and
Figure 5(a—d) for dimers and trimers, respectively)

molecules in the new core (shown in Figure 1(d)) of
cluster 14. We also compute the buried surface areas
of the trimers, as shown in Table 3. This table also
shows that the ratio between the buried surface area
and total surface area for the trimer YBR160W.
YOL001W.YGLO58W is bigger than that of the other
trimer thus making the former more stable. For similar
reason, we rank the tetramer YGL0O58W.YDL020C.
YOLOO1W.YBR160W as more stable than the tetramer
YGLO58W.YDL020C.YBR160W.YDLO020C.

Discussion

It is evident from the model for YML032C in Figure 3
(c) that YMLO032C is a highly flexible protein. The
results from disorder predictors [31] also show that this
protein is disordered. High flexibility and disorder of
this protein indicates that this could be a regulatory
protein. Highly flexible and disordered proteins are
functionally promiscuous as they can go through large
and wide conformational changes while binding with
other proteins or ligands [32]. Some disordered proteins
attain tertiary structure of the binding site only when
the binding with the ligand occurs. New methods that
allow combining docking with folding of the disordered
parts of a protein structure have been recently proposed
[33-39]. Flexible docking can predict protein-protein
interaction complexes while allowing limited flexibility
of the interacting proteins. Most methods consider
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ligand flexibility [3,38,39] and some address hinge
motion, side chain flexibility, and docking with multiple
conformations of a target protein obtained from multi-
ple structures for the same protein in the PDB database
[38]. However no docking algorithm can presently treat
the high flexibility and disorder as found in YMLO032C.

We have used the ratio between the buried surface
area and the total surface area of a protein complex as a
measure for the strength of an interaction. Although we
cannot definitely say whether an interaction actually
happens or not from the value of this ratio, the value
itself gives a certain level of confidence in that
interaction.

Conclusion

This work has taken the approach of predicting new
protein-protein interaction complexes and their interac-
tions through docking of their molecular structures.
Since not all complexes are available in the PDB, nor
are they all likely to ever be available, we have relied
upon comparative modeling and docking methods.
Their recent improved reliability gives some justification
for the use of these approaches. This methodology has
the advantage that it can also identify interactions that
could occur together or ones that are mutually exclu-
sive. In addition indirect interactions through another
intermediate protein can be identified. However, because
of the lengthy computational times and the required
human judgment to select models from the results of
the prediction programs for comparative modeling and
docking, this process cannot yet be fully automated.
Nonetheless many such cases can be investigated, and it
appears that the results can provide important new
information.

In this computational prediction of interaction com-
plexes, new interactions, and concurrency or exclusive-
ness of multiple interactions require two major
computational steps — comparative modeling (I-TAS-
SER server [14]) and docking (Cluspro server [22,23]).
We plan to develop software that will use a cluster of
protein interactions as input to produce final
structures.

Validation of these predictions is an important task.
At this time, we have not experimentally validated these
predictions of new protein-protein interactions and their
complexes. Because of the relatively few structures for
protein complexes in the PDB database, we have not
found clusters where the structures for the predicted
complexes are available in the PDB database. Therefore,
at this point, the correctness of our results depends on
that of the underlying computational methods —
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(c)

interactions b and f in Figure 4 occur simultaneously).

Figure 5 Trimers built from pairs of interactions of proteins in the core of cluster 14. Buried surface areas of the trimers (a) 9,898 A? for
YGLO58W.YDLO20C.YBR160W (the docked complex if interactions a and c in Figure 4 occur simultaneously) (b) 8812 A? for YGLO58W.YDL020C.
YOLOOTW (the docked complex if interactions b and c in Figure 4 occur simultaneously) (c) 7,941 A? for YBR160W.YOLOOTW.YGLO58W (the
docked complex if interactions e and f in Figure 4 occur simultaneously) (d) 10,296 A? for YDLO20C.YOLOOTW. YBR160W (the docked complex if

(d)

techniques for comparative modeling, clustering, and
buried surface area computations. Our theoretical pre-
dictions might be however useful for crystallographers
to select targets for the X-ray crystallographic determi-
nation of protein complexes.
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