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Abstract

Background: Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million
malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is
subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for
disease control.

Results: To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of
Plasmodium peroxiredoxins (Prx). Our study has confirmed PvTrx-Px1 to be a hydrogen peroxide (H,O,)-sensitive
peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of PyTrx-Px1, which may
be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried
arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned
conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In
addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight
into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of PyPrx6 is not only in the
sulfinic acid (RSO,H) form, but it is also with glycerol bound in a way (not previously observed) indicative of
product binding.

Conclusions: The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into
their oligomerization and product binding which may facilitate the targeting of these antioxidant defences.
Although the structural basis for the octameric oligomerization is further understood, the results yield more
questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations
are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation
of the active site and allows further characterization of the leaving group chemistry.

Background

There are at least 500 million clinical episodes of
malaria annually with more than a million Africans
dying each year, most of whom are children under 5
years of age [1]. The causative agent for the most lethal
form of malaria is a protozoan parasite, Plasmodium fal-
ciparum, while P. vivax causes a less severe form, P.
knowlesi is responsible for macaque malaria (but it can
also infect humans [2,3]), and P. yoelii and berghei infect
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rodents. Plasmodium parasites are frequently subject to
oxidative attack, for example, in the erythrocyte from
H,0O, release during heme metabolism and from NO
and reactive oxygen species (ROS) generation during the
host immune response [4,5]. In addition, oxidative stress
is sustained during the sexual maturation of the parasite
within the Anopheles mosquito midgut and salivary
gland prior to transmission [6,7]. As such, Plasmodium
antioxidant defences are essential to its survival, and
thus are expected to be targets for the effective control
of the disease [8,9].

Interestingly, neither the Plasmodium parasites nor
the trypanosomes contain a catalase or a selenocysteine-
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containing glutathione peroxidase (GPx), which are
enzymes notably efficient for the detoxification of
hydroperoxides [10,11]. Plasmodium does however pos-
sess 2 superoxide dismutases, 6 proteins homologous to
thiol-dependent peroxidases, and a glutathione-S-trans-
ferase (GST). The GST has only weak GSH peroxidase
activity, but it might contribute significantly to the anti-
oxidant capacity of the parasite due to its high concen-
tration [12]. Of those homologous to the thiol-
dependent peroxidases, there is the GPx-like thioredoxin
peroxidase, which is a non-selenocysteine GPx known to
be significantly less active than its selenium homologue
[13]. The 5 remaining thiol-dependent peroxidase
homologues identified in Plasmodium include thiore-
doxin peroxiredoxin 1 and 2 (Trx-Px1 and Trx-Px2)
from the peroxiredoxin subfamily Prx1, a 1-Cys peroxir-
edoxin (1-Cys Prx) from the Prx6 subfamily, antioxidant
protein (AOP) from subfamily Prx5, and a very recently
characterized nuclear peroxiredoxin (P/nPRx) [14]
(Table 1). Interestingly, peroxiredoxins have recently
been implicated in a different role, namely as a non-
transcriptional rhythmic marker, indicative of the
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circadian clock [19]. Various strategies have been used
to classify the members of the peroxiredoxin family
including a phylogenetic tree analysis that categorizes
them into 6 subfamilies (Prx1, Prx6, Prx5, Trx-Px, BCP,
and AhpE), each of which may include the mechanisti-
cally distinct 1-Cys and 2-Cys peroxiredoxins [20,21].

All peroxiredoxins contain a conserved cysteine resi-
due at the N-terminus that is referred to as the peroxi-
datic cysteine (Cp). During catalysis, it is oxidized by the
ROS substrate (generally HyO, or an alkyl hydroperox-
ide) to sulfenic acid (Cys-S-OH). Typical 2-Cys Prx con-
tain 2 conserved cysteines, including the Cp and a C-
terminal cysteine (termed the resolving Cys (Cg)). Dur-
ing catalysis, the Cp sulfenic acid reacts with the Cy of
the adjacent monomer to form the intermolecular disul-
fide of the homodimer that is subsequently reduced by
another (undetermined) thiol. In 1-Cys Prx, the Cp sul-
fenic acid is directly reduced by an unidentified redox
partner.

Building on the dimer formation, the 2-Cys Prx
enzymes organize themselves into higher order oligo-
mers, such as decamers, which have higher peroxidase

Table 1 Plasomodium peroxiredoxin orthologues and corresponding PDB codes for solved structures

Subfamily Name Mechanistic Cellular PlasmoDB ID PDB ID Reference
Classification Location
Prx1 PfTrx-Px1 2-Cys (C50, C170) cytosolic PF14_0368 [15]
PvTrx-Px1 2-Cys (C50, C170) cytosolic PVX_118545 (2He66, 2181) this work
PyTrx-Px1 2-Cys (C50, C170) cytosolic PY00414 (2HO1) this work
PbTrx-Px1 2-Cys (C50, C169) cytosolic PB000037.01.0
PkTrx-Px1 2-Cys (C50, C170) cytosolic PKH_126740
PfTrx-Px2 2-Cys (C67, C187) mitochondrial PFLO725w (2C0OD) [15,16]
PvTrx-Px2 2-Cys (C67, C187) mitochondrial PVX_123435
PyTrx-Px2 2-Cys (C67, C187) mitochondrial PY02747
PbTrx-Px2 2-Cys (C59, C179) mitochondrial PB001545.02.0
PkTrx-Px2 2-Cys (C67, C187) mitochondrial PKH_143220
Prx6 PfTrx-Px1 1-Cys (C47) cytosolic PF0O8_0131
PvTrx-Px1 1-Cys (C47) cytosolic PVX_093630
PyTrx-Px1 1-Cys (C47) cytosolic PY04285 (3TB2) this work
PbTrx-Px1 1-Cys (C47) cytosolic PB000600.02.0
PkTrx-Px1 1-Cys (C47) cytosolic PKH_011610
Prx5 PfTrx-Px1 1-Cys (C117) apicoplast MAL7P1.159 (TX1Y) N7
PvTrx-Px1 1-Cys (C114) apicoplast PVX_081760
PyTrx-Px1 1-Cys (C122) apicoplast PY01475
PbTrx-Px1 1-Cys (C28) apicoplast PB000177.01.0
PkTrx-Px1 1-Cys (C114) apicoplast PKH_021360
BCP PfPrx 1-Cys (C56) nuclear PF10_0268 [14,18]
PvnPrx 1-Cys (C52) nuclear PVX_111355
PynPrx 1-Cys (C52) nuclear PY03834
PbnPrx 1-Cys (C61) nuclear PBANKA_051140
PknPrx 1-Cys (C52) nuclear PKH_061160

Abbreviations include: Pf, P. falciparum; Pv, P. vivax; Py, P. yoelii; Pb, P. berghei; and Pk, P. knowlesi. Cellular location from experimental result, from result of
orthologue, or from predictive targeting sequences. Mechanistic classification from experiment or based on experimental result and sequence alignment of

orthologue
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activity. Formation of the higher order oligiomers is
dependent on the redox state of Cp (and Cy), as well as
other factors [22,23]. Both Trx-Px1 and Trx-Px2 have
been identified as typical 2-Cys Prx enzymes; and a crys-
tal structure of P. falciparum Trx-Px2 (PDB ID: 2C0D)
has been published [16]. Distinguishing these two Plas-
modium thioredoxin peroxidases is their cellular loca-
tion, as Trx-Px1 is predicted to be cytosolic and Trx-
Px2 has a mitochondrial targeting sequence [15]. Both
features were recently confirmed [24]. Like the Plasmo-
dium 1-Cys Prx from subfamily Prx6, AOP is also a 1-
Cys Prx; and the P. falciparum AOP structure has been
solved (PDB ID: 1XIY) [17]. AOP is thought to be an
apicoplast enzyme due to its N-terminal signal motif,
while the other Plasmodium 1-Cys Prx is cytosolic. Both
predictions were recently confirmed experimentally [24].
Prx enzymes are highly expressed in Plasmodium (0.5%
of cellular protein) and have been predicted from com-
petitive kinetic analysis with human cells to be responsi-
ble for the reduction of 90% of mitochondrial H,O, and
nearly 100% of cytoplasmic H,O, [25].

In order to further the understanding of the molecular
details of the Plasmodium redox system, we solved the
crystal structures of Trx-Px1 from P. vivax (PvTrx-Px1)
in the reduced and oxidized forms, Trx-Px1 from P. yoe-
lii (PyTrx-Px1) in the oxidized form, and a 1-Cys Prx
from P. yoelii (termed PyPrx6, herein) with Cp oxidized
to the sulfinic acid and with glycerol bound within the
active site pocket. In addition, we have structurally con-
firmed and characterized the PvTrx-Px1 as a HyO5-sen-
sitive peroxiredoxin; PyTrx-Px1 as forming an octamer
(instead of the typical decamer and dodecamer arrange-
ments); and PyPrx6 as a product bound complex reveal-
ing some interesting features of these enzymes.
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Results

Expression and initial characterization of Trx-Px1 from P.
falciparum, P. vivax, P. yoelii, and P. knowlesi and Prx6
from P. yoelii

Constructs of the Trx-Px1 enzymes from P. falciparum,
P. vivax, P. yoelii, and P. knowlesi were expressed and
purified as described previously [26]. PyPrx6 was also
expressed in Studier auto-induction media [27]. All were
full length constructs except PyTrx-Px1 which was also
expressed for crystallization with a 6-residue truncation
at the N-terminus. According to our mass spectroscopic
analysis, all of our purified Trx-Px1 enzymes were disul-
fide-linked dimers (Table 2). As verified by mass spec-
troscopy, each of the 4 purified Trx-Px1 enzymes could
be completely reduced using 20 mM dithiothreitol
(Table 2).

By analytical gel filtration, all of the purified Trx-Px1
constructs (oxidized form and at high pM concentra-
tions) eluted primarily as the higher order oligomer (i.e.
octamer or decamer or dodecamer) (data not shown).
Oligomerization has been shown to be dependent on
numerous factors including ionic strength, pH, concen-
tration of divalent metals, and most importantly redox
state [28]. In our gel filtration, a small amount of pre-
sumably aggregated protein was followed by the oligo-
meric protein around (corresponding to a calculated
mass of 272 or 314 kDa). In the case of PfTrx-Pxl1,
some presumably dimeric protein was also observed,
which was not noticed in previous gel filtration analyses
of PfTrx-Px1 by Akerman and coworkers. [29]. These
authors only observed higher order oligomers corre-
sponding to 400 and 250 kDa for PfTrx-Px-1 and
further detected the (03)5 quaternary form by electron
microscopy.

Table 2 Mass spectroscopy of reduced and oxidized Plasmodium Trx-Px-1 orthologues

Expected MW of

Reduced Monomer

Expected MW of
Oxidized Dimer

Purified Enzyme
(Da)

Purifed Enzyme +
20 mM DTT (Da)

PfTrx-Px1 23702.08 47400.12 47456.56 (99%+) 23730.96
23729.32 (trace) °

PvTrx-Px1 23567.94 47131.84 47133.20 (major) 23568.77
23568.94 (minor)

PyTrx-Px1 23534.86 47065.68 4706649 (99%+) 23533.70
23533.70 (trace)

PyTrx-Px1: 2323440 46468.76 46470.60(99%+) 23235.18

Q7-L195 23234.49 (trace)

PKTrx-Px1 24225.58 48447.12 4844943 (99%+) 24226.38

24226.10 (trace)

The calculated MW in Da is determined from the amino acid sequence and includes the Hisg-tag incorporated into our constructs. The expected monomer MW is
determined from the calculated monomer MW and subtracts the known E. coli post translational modification, namely clipping of the N-terminal Met (-131.19) of
the Hisg-tag [26]. The expected MW of the oxidized dimer is calculated by doubling the expected MW weight of the monomer (clipping of the N-terminal Met
accounted for) and subtracting 4 H (-4.04). °The MW of the purified monomeric PfTrx-Px-1 is off by 28 Da (and the dimer is off by twice this) which may be
accounted for by one of the following: addition of ethyl addition, N, N-dimethylation of Arg or Lys, 2,4 bis-Trp-6,7-dione formation, or addition of formaldehyde

(CHO)
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PyPrx6 was expressed in two ways: PyPrx6 expressed
from our typical protocol was purified in the reduced
form according to mass spectroscopy (27189.1 Da) with-
out addition of exogenous reducing agents (with the
expected molecular weight after cleavage of the N-term-
inal Met weight being 27188.2 Da), while PyPrx6
expressed from Studier auto-induction media was puri-
fied in the sulfinic acid form (see below). From a cali-
brated gel filtration column, the enzyme eluted at 220
mL (corresponding to a calculated gel filtration mass of
62 kDa) which is consistent with the expected behaviour
of a dimer.

Crystal structures of Trx-Px1 from P. vivax and P. yoelii
The crystal structures of P. vivax Trx-Px1 were solved
in both the reduced (PvTrx-Px1_red, PDB ID: 2181) and
oxidized forms (PvTrx-Px1_ox, PDB ID: 2H66) at 2.45
A and 2.5 A, respectively (Figure 1). Aside from these 2
structures, to date only rat and Salmonella typhimurium
Prx1 subfamily structures have been solved in both fully
reduced and oxidized (as the disulfide) redox states [21].
In comparison to other solved structures, PvTrx-Px1 is
most similar (52% sequence identity) to PfTrx-Px2 [16].
It has 85% sequence identity with PfTrx-Px1 and 47%
identity to its closest human orthologues. Herein, the
oxidized form of PyTrx-Px1 has also been solved to 2.3
A (PDB ID: 2H01) (Figure 1C).

The structures of each (PvTrx-Px1_red, PvTrx-Px1_ox,
and PyTrx-Px1_ox) contain the typical thioredoxin-fold
found in known peroxiredoxins. There is a central 7-
stranded B-sheet comprised of B2-f1-B5-B4-B3-B6-f7
with B1 and 6 running anti-parallel relative to the other
strands. This B-sheet is sandwiched by a1 and o4 on one
side and a2, a3, and a5 on the other side. The root
mean square deviation (rmsd) between PvTrx-Px1_ox,
and PyTrx-Px1_ox is 0.91 A when superimposing over
the monomer encompassing Ca’s from residues 2 to 177.
The remaining residues of the C-terminus are disordered
(from 178 to 195) in the PvTrx-Px1_ox structure.

In PvTrx-Px1_red structure, the Cp residue (Cys50 for
P. vivax) is located at the first turn of helix a2 at the
end of a narrow accessible channel formed by a loop-
helix motif and surrounded by 3 conserved residues
Pro43, Thr47, and Argl25 (Figure 2A, red/dark grey).
The pyrrolidine ring of Pro43 limits solvent accessibility
and protects the reactive cysteinyl sulfenic acid from
further oxidation during catalysis. The distance between
Cys50 and the corresponding Cy thiol from its dimeric
partner is 13.5 A in the reduced form. In both the oxi-
dized structures of PvTrx-Px1_ox and PyTrx-Px1_ox,
the a2 helix is locally unfolded (LU) around the Cp,
such that the a2 helix begins after the Cp with Ser52
(coloured in orange in Figure 2A for Pv and Py: PvTrx-
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Px1_ox) or Ser46 (Figure 2B for PyTrx-Px1_ox). Some
conserved residues that form the active site in the
reduced structure are in the same positions and orienta-
tions in both the oxidized structures (Pro43, Thr47, and
Argl25 for PvTrx-Px1, Figure 2A, orange/light grey and
Pro37, Thr41, and Argl19 for PyTrx-Px1, Figure 2B).
The Cp has rotated to the surface as part of a highly
exposed loop; and Sp (sulfur of Cp) is engaged in a dis-
ulfide bond with Sy (sulfur of Cg) of the enzyme’s
dimeric partner forming a domain swapped homodimer.

PvTrx-Px1 and PyTrx-Px1 are H,0,-sensitive
peroxiredoxins

The 3 sequence motifs that define the H,O,-sensitive
peroxiredoxins include: (1) the conserved loop-helix
from Pro43 to Glu53 surrounding the Cp; (2) a 3¢
helix-loop from Pro89 to 11e98; and (3) the 29 C-term-
inal residues from Gly167 including Cy and conserved
bulky residues [30]. The loop-helix is completely con-
served among human, rat, and Plasmodium peroxire-
doxins. However, the Plasmodium enzymes are a slight
variation of 31, helix-loop and C-terminal tail motifs
with sequences including 3GGIG”® and '°'YL'??,
respectively, instead of the typical GGLG and YF (Figure
3A). Upon addition of 500 uM to 5 mM H,O, to
reduced (by DTT) PfTrx-Px1, PvTrx-Px1, PkTrx-Px1, or
PyTrx-Px1 enzymes, additions of 2 and 3 oxygen atoms
were observed by mass spectroscopy, confirming that
these enzymes are H,O,-sensitive. Structurally, the first
loop-helix and the C-terminal arm of P. falciparum
were predicted by modelling to undergo the same struc-
tural rearrangement during catalysis as the mammalian
peroxiredoxins [31]. Figure 3B, 3C illustrate the struc-
tural changes that PvTrx-Px1 does indeed undergo dur-
ing catalysis further supporting its characterization as a
H,O,-sensitive peroxiredoxin. Although predicted by
Kawazu [31], to be fluid (i.e. structurally disordered)
from Prol71 immediately following Cp, the C-terminal
tail is an ordered loop from Prol71 to Glyl77 in the
PvTrx-Px1_ox structure. The PyTrx-Px1_ox structure
also shows a similar arrangement of conserved residues,
a 310 helix-loop motif at *°PLSQGGIGNI’®, and a C-
terminal tail bearing a "*'YL'®? motif (nearly identical to
PyTrx-Px1 that folds upon reduction into a loop fol-
lowed by an a-helix), so it is also expected to be a
H,0O,-sensitive peroxiredoxin (Figure 2B and 3A). The
conserved *'YL'* motif that is located on the a-helix
close to the surface stabilizes the full-folded conforma-
tion. This motif therefore slows the resolution reaction
and allows overoxidation by reaction with a second
equivalent of peroxide. In contrast robust peroxiredox-
ins do not have residues protecting the Cp and are
quickly oxidized to the disulfide [30].
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C-terminal
extension

Figure 1 Structures of the dimeric units of the Plasmodium peroxiredoxins. The structures of the dimeric units of the peroxiredoxins with
the Cp and Cg thiol side chains are shown to display the secondary structure in one of the monomers with a-helices shown in blue, B-sheets
shown in pink, and sulfur and oxygen atoms displayed in yellow and red, respectively. (A) PvTrx-Px1_ox is shown with only one disulfide visible,
as the second one is not visible due to the lack of structure at the C-terminus (thus Cg) of the monomer shown with secondary structure
colours. (B) PvTrx-Px1_red with all 4 reduced thiols clearly visible. (C) PyTrx-Px1_ox with the 2 disulfides clearly displayed; and (D) PyPrx6 is
shown with its sulfinic acid active site cysteine and with glycerol bound.
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Figure 2 PvTrx-Px1 and PyTrx-Px1 active sites. (A) Active sites of PvTrx-Px1_red and PvTrx-Px1_ox are shown in red/dark grey and orange/
light grey, respectively. Note the positioning of Pro43, Thr47, and Arg125 are unchanged between the reduced and oxidized forms. The
dramatic change of the active site Cp in the reduced form (red) is shown as untwisting of the helix to meet the Cg from its dimeric partner. As
well, the formation of the disulfide results in the disruption of the final C-terminal a-helix. Note that in the reduced form the Cp and Cy are
separated by 13.5 A. (B) Active site of PyTrx-Px1_ox is shown for comparison.

46 7

e
ys,,44%er

Disulfide bonds in the PvTrx-Px1_ox and PyTrx-Px1_ox
structures

Upon examination of each dimer of PvTrx-Px1_ox deca-
mer ((ap)s oligomer) (Figures 1A and 4A), only 4 of a
possible 10 disulfide bonds are clearly defined in the
crystal structure. There is inadequate density to define
the C-terminal tail from around the Cy for the remain-
ing residues, so that for several of the monomers only
the side chain of Cp but not that of Cy is visible. In the
case of the PyTrx-Px1_ox octamer ((ct,)4 oligomer) (Fig-
ures 1C and 4B) (for which the data was collected at a
home source) the Cys-Sp to Cys-Sy distances measure
~3 A (notably, bond lengths at the resolution of these
structures are derived from a combination of x-ray data
and chemical constraints). There are no reports indicat-
ing that disulfide bonds are labile under the conditions
used in our PyTrx-Px1 experiments. As expected, the C-
terminal tails of PvTrx-Px1 and PyTrx-Px1 have higher
B-factors than the other parts of the molecule, indicative
of a more fluid region and also of the apparent absence
of detectable disulfide bonds in portions of the PvTrx-
Px1 structure and the distortion of the disulfide bond
length in the PyTrx-Px1 structure. In previously pub-
lished crystal structures of oxidized 2-Cys Prx, the Cys-

Sp to Cys-Sy distance is also longer than expected for a
disulfide bond (as the typical bond length is 2.05 for a
disulfide). For example in the structure of a 2-Cys Prx
from Helicobacter pylori (HpAhpC) (PDB ID: 1ZOF),
the Cys-Sp to Cys-Sy distances measurements range
from 2.0 to 3.2 A and in a P. falciparum 2-Cys Prx
(PfTrx-Px2) (PDB ID: 2COD) one of the disulfides is
shown in two different orientations (2.0-2.2 A) indicative
of the structural flexibility of these structures, while the
other measures at 2.6 A. Our analysis using mass spec-
troscopy (already discussed) and the overall structural
configurations (i.e. local unfolding about Cp and at the
C-terminus) both support PvTrx-Px1_ox and PyTrx-
Px1_ox being in the oxidized form making these long
Cys-Sp to Cys-Sy distances not easily accounted for, yet
prevalent in the Prx1 subfamily.

Oligomeric organization of PvTrx-Px1 and PyTrx-Px1

Oligomeric peroxiredoxins are formed via at least 2
types of interactions: (1) B-type interactions where edge
to edge associations of B7 strands of the central sheet
meet to extend it into a 14-stranded [-sheet; and (2) A-
type where the interface is a tip to tip association
centred on helices a4 and a5 packing against helices a4
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A

Loop-Helix 330 Helix-Loop C-Terminal Tail

HuPrx1 **PLDFTFvCETE® *°PRREGGLGPLY '®*GEVCPAGWKPGSDTIKPNVDDSKEYFSKHN'*

RatPRxII **PLDFTFVCPTE® 2°PREQGGLGEMT '®GEVCPAGWKPGSDTIKPDVNKSKEYFSKQR'Y

PfTPx1 **pLDFTEVCPSE® *°pLTRGGIGNI® ¢ GDVCPANWKRGKVAMKPSEEGVSEYLSKL-*°

PvIPx1 **prDFTFvCPSE®® **pLaKGGIGNI®® ¥ GDVCPANWQRGKVSMKPSEEGVAQYLSTL-%®

PkTPx1 **prDFTFvCPSE®® *°pREKGGIGNI®® ¥ GDVCPANWKKGKVSMKPSEEGVAQYLSTL-%

PyTPx1 “*pLDFTFVCPSE® °°PLSQGGIGNI® ¥ GDVCPANWQKGKESMKPSEEGVAKYLSNL-'

PbTPx1 **prLDFTFvCPSE®® *pLsgeeIeNI® 9 cDVCPANWKKGKESMKPSEEGVAKYLSSL-1%

B

C-terminal Tail

“— (ordered a-helix)

Tyrlsl

Leul9?2

{disordered after Gly177)

Figure 3 PvTrx-Px1 is H,0,-sensitive. (A) Comparison of the sequences of the H,O,-sensitive mammalian peroxiredoxins to the Plasmodium
peroxiredoxins discussed herein. (B) & (C) Active sites of the reduced and oxidized forms of PvTrx-Px1 exemplifying the features described in the
text of the H,O,-sensitive peroxiredoxins.

\

and a5 of the other chain [17]. The dimer interface of  Accordingly, the same dimeric unit is expected in the
the PvTrx-Px1_ox and PyTrx-Px1_ox (i.e. where the reduced structures. These dimers then associate via A-
interactions resulting at the surfaces formed by the dis-  type interactions to form the higher order oligomers,
ulfide bond) is termed the B-type interaction face. which are typically decameric and dodecameric. PvTrx-
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Figure 4 Plasmodium peroxiredoxin oligomeric structures. Oligomeric structures of (A) PvTrx-Px_ox and (B) PyTrx-Px1_ox showing the
internal dimer. (C) The close-up view of a hydrogen bond at the A-type interface between the side chain of Lys81 from one monomer (cyan)
and the main chain carbonyl of Lys172 from an adjacent molecule (grey) with the 2mFo-dFc electron map contoured at 1.0 o (blue mesh). (D)
Examples of the novel hydrogen bonding interactions of the PyTrx-Px_ox are circled in black. The panel is simplified to show only a tetramer for
clarity, but indeed there are hydrogen bonding interactions across all of the A-type interfaces. Although the hydrogen bonding interaction is at
the A-type interface, it is formed between distant chains in an A-C fashion (where A, B, C, and D chains are pink, grey, cyan, and green,
respectively). For example, in the pink chain Lys172 carbonyl backbone is shown hydrogen bonding with the side chain of Lys81 from the cyan
chain (A-C fashion) and in the grey chain Lys81 is hydrogen bonding with the main chain carbonyl of green Lys172 (B-D fashion). A comparison
of the A-type interactions (E) and B-type interactions (F) between PvTrx-Px1 and PyTrx-Px1 is shown. In (E) and (F) the monomer structures (dark
green and purple) are structurally aligned (rmsd = 0.573 A), so that upon comparison of the corresponding dimeric partners the difference in
the interfaces are shown (PvTrx-Px1 shown in light greens and PyTrx-Px1 shown in light blue/purple). A full alignment of the A-type dimers gives
a rmsd = 1.065 A, while a full alignment of the B-type dimers gives a rmsd = 3.137 A,
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Px1_ox and PvTrx-Px1_red arrange in a decameric fash-
ion (according to our crystal structure), which from a
survey of peroxiredoxin structures deposited to the PDB
is the most common oligomerization. According to our
results (namely a crystal structure and the gel filtration
elution times characteristic of the higher order oligomer
and not a dimer), the toroid PyTrx-Px1 structure is
unique in that it is octameric (Figure 4B). PvTrx-Px1_ox
and PvTrx-Px1_red decamers have internal diameters of
~58 A, while PyTrx-Px1_ox octameric diameter is corre-
spondingly smaller at ~50 A. Li et al. reportedly solved
the structure of another octameric peroxiredoxin (Myco-
bacterium tuberculosis AhpE), but this has been
disputed as simply a crystallographic artifact, as predo-
minately dimers were observed in gel filtration and the
octameric interface is not extensive and does not involve
the typical interfaces [32,33]. It could be argued that the
octameric arrangement of PyTrx-Px1 is a result of the
crystal packing of PyTrx-Px1_ox dimers; however, no
dimers were observed in the gel filtration of the PyTrx-
Px1_ox sample which was done at a high uM concentra-
tion comparable to crystallization experiments. Interest-
ingly, there is a hydrogen bonding interaction in the
PyTrx-Px1 structure between distant monomers and
more specifically between adjacent dimers, where the C-
terminal tail of one monomer crosses its dimeric partner
to hydrogen bond to next monomer. Contributing to the
stability of the octamer, the side chain of Lys81 is within
hydrogen bonding distance (3.2 A) of the backbone car-
bonyl of Lys172 (Figure 4C). Indeed, there are interac-
tions between each of the pairs A-C, B-D, C-E, D-F, E-
G, F-H, G-A, and H-B, as one would expect from sym-
metry (Figure 4D). Although these 2 residues are con-
served in PvTrx-Px1, there is no similar interaction in
the PvTrx-Px1_ox or PvTrx-Px1_red structures (where
the corresponding residues are Lys87 and Glyl77).
There is 83% sequence identity between the P. yoelii
and P. vivax Trx-Px1 enzymes, so the differences in oli-
gomeric state were not predictable. Previous reports
have identified alterations of the B-type interface as con-
ferring the different orders of oligomeric state, while the
A-type interface remains constant [33]. An alignment of
the Ca’s of a monomer from the decameric PvTrx-
Px1_ox with a monomer from octameric PyTrx-Px1_ox
(rmsd = 0.573 A) is shown in Figure 4E, F to illustrate
the overlap of each accompanying monomer in the A-
type interface and B-type interface, respectively. In Fig-
ure 4E, the corresponding A-type interface dimer is
shown for the octamer and decamer which visually
appears to preserve the overlap for their respective
dimeric partners. Indeed, a structural alignment of the
A-type dimers between the octamer and decamer gives
a rmsd of 1.065 A. Figure 4F shows the same monomers
aligned, but in this case, their respective B-type interface
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with the dimeric partner from the opposite side shown.
Here, one can see that the overlap is poor which is also
reflected as a much larger rmsd of 3.137 A for the align-
ment of octameric and decameric B-type dimeric part-
ners. In order to more directly compare the interfaces,
each monomer is simplified to the 2 Ca’s of conserved
leucine residues at its core, for example, Leu 102 and
Leul39 from PvTrx-Pxland corresponding Leu96 and
Leul33 from PyTrx-Px1 (Figure 5A, B, respectively). An
analysis of the changes between the PyTrx-Px1 octamer
and the PvTrx-Px1 decamer was undertaken using these
conserved core residues as a representation of each
monomer. Indeed, the model is validated, as the dis-
tance between the selected leucine residues (termed
core length) is conserved throughout each of the struc-
tures and is similar between the two structures (Figure
5D). The orientation (termed angle between the dimers)
and distance between the dimers within the oligomer is
also conserved between the PyTrx-Px1 octamer and
PyTrx-Px1 decamer (Figure 5D). On the other hand, the
orientation (termed angle between monomers) and dis-
tance between the monomers of the dimer (termed core
distance) is dramatically different between the octamer
and decamer. The observation that the different oligo-
merization is attributable to the interface within the
dimer suggests that the oligomerization is not an artifact
of crystallization and that the dimer itself is unique at
least in terms of its B-type interface.

Analysis of the structures of PyTrx-Px1 and PvTrx-
Px1 identifies several key points of difference between
the structures that may account for difference in oligo-
merization. First of all, the presence of a hydrogen bond
between the dimers of PyTrx-Px1 (and not PvTrx-Prx1)
was already discussed (Figure 4C, D). Secondly, the C-
terminal tails have different orientations, such that they
are binding at different positions on the surface of their
respective dimeric partners (Figure 6). The tails are
bound by an intermolecular disulfide between Cp and
Cg, as well as a series of hydrophobic interactions. The
different binding orientations are linked to the orienta-
tion of the side chain of a conserved arginine (Argl42
and Argl48 for PyTrx-Px1 and PvTrx-Px1, respectively)
(Figure 6A, B). In the case of PvTrx-Px1, the arginine is
buried and the C-terminal tail adopts the typical binding
pattern on the surface of its respective dimeric partner
(Figure 6D). As opposed to PyTrx-Px1 where the
equivalent arginine side chain is at the surface of the
protein obstructing the typical pathway, such that the
C-terminal tail adopts a different position at the surface
of its partner (Figure 6C). Using the NCBI Molecular
Modeling Database http://www.ncbi.nlm.nih.gov/Struc-
ture/MMDB/mmdb.shtml, a search was performed to
identify 3D structures to similar PyTrx-Px1. A manual
inspection of each the 2-Cys peroxiredoxins of the 143


http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml
http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml

Qiu et al. BMC Structural Biology 2012, 12:2
http://www.biomedcentral.com/1472-6807/12/2

Page 10 of 18

angle at A-type interface

~——
'~
—

core distance

(=
& “
<
ve .
& )
° - o ®
L ]
° L] ®
Py L
L) ©
L]
L . ° ©

angle at B-type interface

Avg Core Avg Dirne: Avg Coreﬂ Bugabak Mgk
Lenﬁgth Disneal)  Dewmnes)n) A-interface (°) B-interface (%)
(A) (A-interface) (B-interface)
PvTrx-Prx1_red 10mer 19.1 25.9 8.0 107 115.7
PyTrx-Prxl_ox 10mer 19 26 8.0 108.3 116
PyTrx-Prxl_ox 8mer 18.8 26 5l 107.7 174.9

Figure 5 Scheme describing the differences in oligomerization. (A) The Ca's from 2 conserved leucine residues (i.e. Leu 102 and Leu139)
are shown for PvTrx-Px1. Two dimers are highlighted: the first comprised of blue and green monomers and second comprised of yellow and
orange monomers. (B) The Ca's from 2 conserved leucine residues are shown (ie. Leu96 and Leu133 in PyTrx-Px1). Two dimers are highlighted:
the first comprised of green and purple monomers and second comprised of yellow and blue monomers. (C) The same spheres are shown from
(A) from a different angle and scale with a grey line connecting the Lys's of the same monomer for clarity. The distances and angles calculated
(by Pymol) in the next panel are defined. Note that these were made for the sole purpose of comparing the orientation of the monomers
within the structure at the B-type interface and at the A-type interface. (D) Summary table showing the average distances and angles calculated
for each of the measurements indicated in the previous panel. The standard deviations are not shown for clarity, but are less than 0.5% in each

case.

low redundancy hits (from the 1532 total hits) showed
no similarity in orientation to the PyTrx-Px1 C-terminal
tail, as expected as no other toroid octameric peroxire-
doxins are known to date. A second point of differentia-
tion between the two structures is a loop with the
conserved sequence "**NNLA(I/L)GRS'*® (numbering
from PvTrx-Px1 (PDB: 2H66)) that connects a5 and B7
(B-sheet involved in the peroxiredoxin B-type interface)

and contains the afore mentioned buried/surface Arg.
The loops from each structure adopt different confor-
mations that put Argl42 at the surface for PyTrx-Px1
and the corresponding Argl48 buried for PvTrx-Px1.
Although the PvTrx-Px1 structure is from a full-length
construct, only a structure with an N-terminal trunca-
tion of 6 residues crystallized sufficiently well for data
collection in the case PyTrx-Pxl. Although both
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Figure 6 Role of C-terminal tail and NNLA(I/L)GRS-loop in the determination the oligomerization of PyPrx-Tr1. (A) and (B) Two views of
the oxidized monomers of PyTrx-Px1 (blue) and PvTrx-Px1 (yellow) showing their structural differences: C-terminal tail adopts a different
orientation in each structure, NNLA(I/L)GRS-loop also adopts a different orientation in each structure (see panel B), and the Arg adopts a surface
position in PyTrx-Px1 and a buried position in PvTrx-Px1. Note that chain | from PDB: 2H66 is used because it is most complete at the C-
terminus. As well, portions of the structures in (B) are hidden to facilitate the view of the loop (including up to Tyr42 from the N-terminus and
from Ala56 to Asp 77). (C) In order to demonstrate how the C-terminal tail positions itself in the dimer, a hybrid surface-cartoon rendering of
PyTrx-Px1 shows the orientation of the C-terminal tail and the NNLA(I/L)GRS loop in grey. (D) and (E) For comparison, the hybrid surface-cartoon
renderings of PvTrx-Px1 show the orientation of the C-terminal tail and the NNLA(I/L)GRS loop in grey. Note that (D) is from chains | and J
which only shows a complete C-terminal chain for I. As well, for (E) chains C and D are used which both truncate around Cg for the C-terminal
tail, but show that the C-terminus is the same up to this point.
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constructs bear a N-terminal Hise-tag, the tag could
only be cleaved from the PvTrx-Px1 construct. Even
after several days at room temperature (where typical
conditions require an overnight reaction at 4°C), the
His¢-tag remained intact on PyTrx-Px1. Although the
tag is partially visible in PyTrx_Px1 case(’AFQG' from
PDB: 2HO01), it is not close enough to the conserved
loop in both cases to affect its orientation. Further stu-
dies will determine what roles the structural features
identified herein (i.e. the hydrogen bond between the
dimers, the N-terminal tail, the surface/buried arginine,
the NNLA(I/L)GRS-loop, and the C-terminal tail) play
in the stoichiometry of oligomerization of these Trx-Px1
enzymes.

Crystal structure of PyPrx6 with product bound
The PyPrx6-SO,H crystal structure has been solved at
2.3 A (PDB ID: 3TB2). It is 47% identical to its closest
human orthologue and shares 76% sequence identity
with its P. falciparum orthologue. The closest available
structure by sequence (at 48% sequence identity) is Are-
nicola marina peroxiredoxin 6 which was further identi-
fied as a 2-Cys Prx [34], but it also shares 47% sequence
identity with a solved structure for a human 1-Cys Prx
[35]. Overall, the human (PDB ID: 1PRX) and P. yoelii
structures are very similar with a core thioredoxin-fold
and a C-terminal domain connected by both an
extended helix a5 and a loop. The core rmsd is 1.38A
for 401 aligned residues in both structures. The C-term-
inal domain of PyPrx6 that comprised of 3 B-strands
and a a-helix is larger than the C-terminal domain from
the Prx1 subfamily (Figure 1D). This domain from each
monomer extends over the other forming a domain
swapped dimer.

The active site Cp (Cys47) is located at the bottom of
a narrow pocket (~4 A by ~7 A) at the end of helix 2.
There are 2 additional densities in each of the 4 active
site pockets of the asymmetric unit (Figure 7) which are
best filled by a glycerol molecule (from the purification
buffer used which contained 5% glycerol) and fitting the
Cp residues to their sulfinic acid derivatives (Cp-SO,H).
Previously, the Cp has been structurally characterized in
the whole range of oxidation states (including Cp-SH,
Cp-SOH, Sp-SO,H, Cp-SO3H, and Cp-SS-Cy) [36]; and
our data agrees with those sulfinic acid structures pre-
viously studied. As well, nearly 20 peroxiredoxin struc-
tures have either substrate or what has been termed
substrate analogue bound in their active site pockets,
including H,0,, benzoate, acetate, dithiothreitol (oxi-
dized), ethylene glycol, glycerol, sulfate, citrate, and for-
mate [36].

In order to understand the reaction mechanism, our
focus is on the comparison of structures with substrate
(H,0,) or glycerol bound. The binding of H,O, to
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Aeropyrum pernix Tpx (thiol peroxidase) has been
structural characterized (PDB: 3A2W and 3A2V) [38].
Further work on these structures and comparisons to
other ligand bound peroxiredoxin structures previously
showed that oxygen atoms of the ligands overlap with
the proximal (relative to Cp) oxygen atom (O,) and/or
the distal oxygen atom (Og) of bound H,O, [37]. Inter-
estingly, the glycerol molecule found in these structures
can adopt all three possibilities: (1) in one monomer of
ApTrx (PDB: 3A2W) it is found with a single oxygen
atom overlapping O, (Figure 7C, pink); (2) in another
monomer of ApTrx (PDB: 3A2W), it is found to overlap
with both O, and Og (Figure 7C, pink); and (3)
reported for the first time, in our structure of PyPrx6,
the glycerol is observed to overlay with only Op (Figure
7C, purple). Previously, only 2 anionic ligands (sulfate
and citrate) were observed to occupy Og alone (see
PDB: 1TP9 and 3DRN) [37]. Despite variations in the
backbone orientation of the glycerol in our structure
(which is also seen in the ApTrx glycerol bound chains
and presumably due to its conformational flexibility),
the binding of all 4 glycerol molecules shows that each
binds with the terminal hydroxyl in a similar position
overlapping with Og site (Figure 7B). Oxygen atoms at
position O, are postulated to be a mimetic for the sub-
strate bound in a Michaelis complex ready for attack by
the nucleophilic Cp, while oxygen atoms at position Og
are indicative of the leaving group (H,O or alcohol)
[37]. As such, it can be suggested that the glycerol posi-
tioned with its terminal hydroxyl at Og is in a product
bound configuration. Although there is variability in the
binding of the remainder of the glycerol molecule, the
alkyl group is always directed away from the active site
pocket and the oxygen of the leaving group is in close
proximity to a conserved threonine (Thr44). This
arrangement suggests that it may be the proton donor,
although others have suggested that this threonine func-
tions as a hydrogen bond acceptor as it deprotonates
the incoming substrate for attack by the Cp thiolate and
that bulk solvent is responsible for the protonation of
the leaving group [37]. Therefore, the active site pocket
is adapted to accommodate different substrates (and
thus products), which is exemplified through the struc-
tural flexibility exhibited in the product bound glycerol
shown herein. As well, the Og position appears to be
designated for the oxygen of the leaving group and is
well positioned for protonation by a conserved
threonine.

The conserved residues of the Cp loop comprised of
*OPxxxxTxxCp*” and conserved Argl27 (numbering
refers to PyPrx6) are implicated in catalysis (Figure 8).
For the conserved arginine in both PyPrx6 (Argl27) and
ApTrxeH,0, structures, it adopts position I, typical of
Prx6, which bears a conserved arginine (Argl52) and
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Figure 7 PyPrx6 active site depicting the sulfinic acid and the binding orientations of glycerol. (A) Fc-Fo omit map (1.62 &) of the active
site from the 4 chains within the asymmetric unit of PyPrx6 (PDB: 3TB2) showing the density assigned to both the sulfinic acid of Cp and the
glycerol bound in the active site. Glycerol and sulfinic acid are labelled as GOL and CSD, respectively. Note that the carbons are yellow, sulfur is
green, oxygen is red, and nitrogen is blue. (B) A comparison of the binding orientations of each of the glycerol molecules of PyPrx6 relative to
H,O, derived from an alignment with the ApTrx-H,0O, structure (PDB: 3A2V) with our PyPrx6 structure. The H,0O, is shown as the red oxygen
atoms with positions O and Og labelled, while the 4 glycerol molecules in the PyPrx6 structure are shown with different coloured backbones
and red oxygen atoms. Note that in each case, the terminal oxygen of the glycerol molecule aligns with position Og. (C) For comparison, from a
similar structural alignment the known binding orientations for glycerol (from PDB: 3A2W (ApTrx, chains A and C with the glycerol molecules
depicted in pink and green, respectively) are compared to the same binding of H,O, (PDB: 3A2V). Note that for ApTrx chain A, the glycerol
terminal oxygen aligns with position O, while the glycerol molecule from ApTrx chain C has oxygen atoms aligning with positions O and Og
as was previously reported [37] All structural alignments derived from the alignment of the following conserved residues PxxxxTxxCp, as was

glutamate (Glu50) (or possibly a glutamine or histadine)
and supports the positioning by a hydrogen bonding
network, as previously described [37]. The active site
geometry is fully folded (FF) and is virtually identical to
that of the ApTrxeH,0,. As was recently described, the
nucleophilic Cp (as activated by a main chain amide N-
H and the conserved arginine guanidinium) is expected
to act as a thiolate and attack the substrate in an Sy2
fashion [37]. These hydrogen bonds, as well as those
secondary ones from the backbone carbonyls and the
glutamic acid/second conserved arginine, surrounding

the Cp are preserved between the ApTrx xeH,O, and
the PyPrx6+glycerol structures suggesting that the sulfi-
nic acid form may be activated, and thus sufficiently
nucleophilic (similar to its full reduced state) within the
active site to undergo a further reaction with substrate.
This would result in a subsequent oxidation of the
active site to the sulfonic acid. Indeed, this form of the
Cp has been structural characterized in other cases
(PDB: 2CV4, 2NVL, and 1XIY). The conserved proline
serves as a barrier to solvent, while the main chain of
the Cp loop provides hydrogen bonds to the Cp and the
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Figure 8 Comparison of the active sites of PyPrx6-glycerol with
ApTrxsH,0,. A view into the active site from above shows select
main chain and side chain residues of PyPrx6 (PDB: 3TB2) in dark
grey (with the associated glycerol shown in purple/red). In light
grey the corresponding ApTrx (PDB: 3A2W) side chain residues are
shown (with the associated H,O, shown in pink/dark red to
differentiate O and Og). The structural alignment is derived from
the alignment of the following conserved residues PxxxxTxxCp, as
was done previously [37].

conserved threonine. Although at a reduced efficiency
owing to the relative activity of an oxidized thiol relative
to a thiolate, the preservation of the hydrogen bonding
network about the active site cysteine, indicates that
sequential H,O, reductions are possible.

Discussion

Plasmodium lacks the two major antioxidant enzymes of
eukaryotic cells, namely glutathione peroxidase and cat-
alase [39]. As such, the parasite is likely to rely on the
peroxiredoxin family to control peroxide production (as
well as other reactive oxygen and nitrogen species) dur-
ing critical stages of its lifecycle, for example during ery-
throcyte invasion when heme metabolism and immune
response pathways ensue. During the trophozoite stage
(feeding period), Prx enzymes accounts for 0.5% of the
total expressed protein [40]. One recent study suggests
that PmPrx, the P. falciparium nuclear peroxiredoxin
might be essential in the erthyrocyte stage, as neither P.
falciparum or P. berghei knock-out lines could be gener-
ated despite several attempts and success with generat-
ing tagged nPrx-GFP fusion cell lines [14]. Analysis of
the growth of a P. berghei Trx-Px1 knockout also sug-
gests that Trx-Px1 is not essential for growth, but P. fal-
ciparum and P. bergei show differences in their
lifecycles [41]. There is a possibility that Trx-Px1 is
essential during the asexual growth of P. falciparum
[31]. Expression of Pf1-Cys Prx is elevated during the
trophozoite and early schizont stages (when the para-
sites are maturing during the liver phase) suggesting
that this subfamily detoxifies ROS, like those released

Page 14 of 18

during heme metabolism [40]. Despite the important
roles of peroxiredoxins, whether inhibitors targeting
Plasmodium peroxiredoxins will lead to parasite death
remains to be determined.

Structural characterization of the 2-Cys Prx enzymes
has shown that the C-terminal tail (referred to as the
Cp) is essential for stabilizing the octameric/decameric
arrangement of peroxiredoxins. When Trx-Px1 (or
another 2-Cys Prx) is oxidized to the disulfide form, the
Cr loop is unfolded; and structural support of the octa-
mer/decamer/dodecamer interfaces are weakened giving
rise to dimer formation (as seen in part when our oxi-
dized PfTrx-Px1 is run on a gel filtration column).
When the Cy loop is folded as in the reduced form, the
higher order oligomer is favoured because of increased
stabilization for the B-type interface which supports oli-
gomerization. The dramatic rearrangement of the C-
terminal tail and ensuing changes in stability are clearly
demonstrated in our structures from PyTrx-Px1 and
PvTrx-Px1 (both oxidized and reduced forms). However,
the high concentrations of protein used in crystallizing
the enzyme (and also apparently during most of our gel
filtration experiments) may account for the trapping of
the disulfide forms of these peroxiredoxins in their pre-
dicted unfavoured octameric/decameric/dodecameric
forms. Factors associated with the oligomeric forms pri-
marily include reduction of the active site disulfide, but
also, high or low ionic strength, low pH, high magne-
sium or calcium concentrations, and overoxidation of
the peroxidatic cysteine (Cys-SO,H) [28]. At physiologi-
cally relevant concentrations, peroxiredoxins can be
expected to exist as dimers awaiting reduction; and
upon reduction, the catalytic cycle is complete and the
reduced peroxiredoxin oligomerizes [23]. With data
from the novel octameric configuration of PyTrx-Prx1
studied herein, other specific structural features affecting
oligomerization are considered. The molecular basis for
octamer formation relies on the hydrogen bond between
the dimers which is facilitated by the positioning of the
C-terminal tail which in turn rests on interplay between
the surface/buried arginine of the NNLA(I/L)GRS-loop
and possibly the N-terminal tail. /n vivo work directed
at the further characterization of the different sizes and
configurations of the oligomers will be necessary to fully
understand the biological implications.

Aside from being antioxidant proteins, 2-Cys Prx
(Prx1) has also been implicated in H,O,-mediated signal
transduction. Eukaryotic 2-Cys Prx enzymes are sensi-
tive to oxidative inactivation, while their bacterial ortho-
logues are robust with respect to overoxidation [30].
The Plasmodium 2-Cys Prx enzymes accordingly have
the 3 sequence motifs indicative of the H,O,-sensitive
peroxiredoxins, and as shown herein are structurally
identical with respect to sensitivity to H,O, to known
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H,0,-sensitive 2-Cys Prx enzymes, thus allowing low
resting levels of H,O,, while permitting higher levels
during signal transduction.

The PyPrx6 structure presented herein has greatly
enhanced our understanding of the chemistry of the
peroxiredoxins. With a product bound configuration,
the residues supporting the leaving group are further
understood. There is flexibility for the alkyl chain, but
the Og position is indeed designated for the oxygen of
the leaving group. As well, the retention of hydrogen
bonds about the active site thiol (even in an oxidized
state) indicates that it is poised for further reaction,
albeit at a reduced efficiency owing to the reduced activ-
ity of an oxidized thiol relative to a thiolate.

Conclusions

Our structural data and mass spectroscopy confirms
that PvTrx-Px1 is H,O,-sensitive peroxiredoxin. The
characterization of the oligomerization of PyTrx-Px1 has
identified structural features supporting its novel octa-
meric oligomerization. Previously unreported abnormal-
ities of the disulfide bond measurements in some of the
Prx crystal structures are brought to the forefront.
Finally, a crystal structure with an alcohol bound and
the Cp oxidized gives a view to the product bound com-
plex providing insight into leaving group and the sus-
ceptibility of some peroxiredoxins to overoxidation.
These results enhance our understanding of the struc-
tural variations of the peroxiredoxin oligomers and the
nature of the catalysis by these remarkable enzymes.
Further work will lend insight into the biological impli-
cations of the oligomerization and how to exploit the
active site features in drug discovery programs.

Methods

Cloning, expression, and purification

Full-length P. falciparum Trx-Px1 encoded by PlasmoDB
ID: PF14_0368 http://plasmodb.org/plasmo/[42] was
cloned from P. falciparum 3D7 genomic DNA with a
Hisg-tag with an integrated thrombin cleavage site
(MGSSHHHHHHSSGLVPR*GS). Full-length P. knowlesi
Trx-Px1 encoded by PlasmoDB ID: PKH_126740
was cloned from P. knowlesi H genomic DNA with a
His¢-tag with an integrated TEV cleavage site
(MGSSHHHHHHSSGRENLYFQ*@G). Full-length P. vivax
protein encoded by PlasmoDB ID:PVX_118545 with an
N-terminal Hisg-tag and TEV cleavage site (as above) was
cloned from a P. vivax Salvador I cDNA library (gener-
ously provided by Prof. Liwang Cui of Penn State Univer-
sity). Full-length P. yoelii protein encoded by PlasmoDB
ID: PY00414 (Trx-Px1) was cloned from P. yoelii 177XNL
genomic DNA with an N-terminal His¢-tag and inte-
grated TEV protease site (as above). Full-length P. yoelii
protein encoded by PlasmoDB ID: PY04285 (Prx6) was
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cloned from P. yoelii 17XNL genomic DNA with an N-
terminal Hisctag with different integrated TEV protease
site (MGSSHHHHHHSSGRENLYFQ*GHM) and C-
terminal addition (GS). All enzymes were expressed and
purified according to methods described previously [26]
except for PyPrx6 which was expressed from Studier
auto-induction media [27].

Characterization

All mass spectra were completed on an Agilent LC-MS-
TOF (Model #G1969A) running in positive ion mode
and integrated with an Agilent 1100 series HPLC using
an Agilent Poroshell 300-SB-C3 column for fast bind-
ing/elution desalting. All gel filtration experiments were
complete on a AKTA purifier chromatography system
(GE Healthcare Life Sciences) equipped with a Superdex
S200 gel filtration column that was calibrated with 4
samples (bovine thyroglobulin (670 kDa), bovine y-glo-
bulin (158 kDa), chicken ovalbumin (44 kDa), and horse
myoglobin (17 kDa) all from Bio-Rad) in 10 mM
HEPES, pH 7.4 and 500 mM NaCl.

Crystallization and structure determination

PvTrx-Px1_ox with the Hisg-tag intact was crystallized
by mixing 1.5 uL of protein (at a concentration of 8
mg/mL in a buffer of 10 mM HEPES, pH 7.5, 500 mM
NaCl) with 1.5 puL of reservoir solution containing 5%
Peg 4 K, 50 mM NaAc, 100 mM NaAc, pH 4.6 in a
hanging drop vapour diffusion setup with over 350 pL
of reservoir solution at 18°C in VDXm plates (Hampton
Research). Crystals appeared overnight and were
flashed-cooled in liquid nitrogen (Ny(;) for data collec-
tion. Single wavelength data was collected at a synchro-
tron source (APS Beamline 17-ID) with a CCD detector
(ADSC quantum 210). PvTrx-Px1_red with the Hisg-tag
intact was crystallized using the hanging drop vapour
diffusion method in a VDXm plate with 350 pL of
mother liquor at 18°C. 1.5 uL of the protein solution
treated with 5 mM TCEP was mixed with 1.5 pL of the
reservoir solution containing 19% PEG 3350, 150 mM
lithium citrate. Crystals appeared overnight. Data for
crystals flash frozen in Ny() was collected at the syn-
chrotron (APS Beamline 17-BM) with a CCD detector
(MAR CCD 165 mm). PyTrx-Px1 with the His¢-tag
intact was crystallized at 4.3 mg/mL using the sitting
drop vapour diffusion method in a Linbro plate with
300 pL of mother liquor at 18°C. 1.5 uL of the protein
solution was mixed with 1.5 pL of the reservoir solution
containing 1.6 M ammonium sulfate, 100 mM HEPES,
pH 6.8, 200 mM NaAc, 20 mM NaBr, 5% ethylene gly-
col. Crystals appeared in 3-5 days and were flash frozen
in Ny with data collected on a Rigaku FRE Superbright
rotating anode with an RAXIS IV plate reader. PyPrx6
with the Hisq-tag intact at 15 mg/mL was crystallized by
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Table 3 Data collection, phasing, and refinement statistics for the 2H66, 2181, 2H01, and 3TB2

Structure PvTrx-Px1_ox PvTrx-Px1_red PyTrx-Px1_ox PyPrx6-SO,H
PDB Code 2H66 2181 2H01 3TB2
Space Group P21 2221 P422 221
Cell Dimensions
a (A 70.55 91.35 105.08 90.39
b (A) 149.59 21257 105.08 156.84
c (A 13191 115.26 41.83 178.07
a () 90 90 90 90
B 104.88 90 90 90
v () 90 90 90 90
Wavelength 1.00 1.00 154178 0.97939
Resolution (A) 50.00-2.48 48.28-2.45 50.00-2.30 20.00-2.30
(2.53-2.48) (2.55-2.45) (2.38-2.30) (2.38-2.30)
Unique reflections 86441 41514 10337 53397
Remerge 0.115 0.072 0.153 0.059
(0.488) (0.460) 0471) (0.397)
I/cl 20.18 1551 26.55 24.04
(1.3) (3.56) (4.29) (3.31)
Completeness (%) 99.2 999 946 99.7
(99.8) (100.0) (99.3) (100.0)
Redundancy 34 64 139 43
(33) (6:4) (12.8) (43)
Refinement
Resolution (A) 25 245 23 23
Number of Reflections 82137 39472 10337 53397
Test Set Reflection numbers 4302 2107 542 2858
Rwork/Riree 0.194/0.232 0.217/0.265 0.208/0.232 0.186/0.207
Number of Atoms (protein/ligand/water) 13294/0/154 7190/0/80 1368/0/54 7055/89/364
Mean Beacror 45.74 386 378 40.0
Ramachandran Favored (%) 95.37 95.21 91.86 98.01
Ramachandran Disallowed (%) 048 033 0.58 0.00
RMS deviations
Bond length (A) 0.0161 0.0083 0.0090 0.0086
Bond angle (°) 16765 1.2250 1.2343 1.1004

means of by hanging drop vapour diffusion in a VDXm
plate. The plate was set with 1.5 pL protein plusl.5 pL
buffer in each drop and 350 pL reservoir volume per
well. Crystals emerged in 23% Peg 3350, 0.1 M Bis-Tris
pH 5.5, 200 mM (NH,4),SO4 and 5% ethylene glycol at
20°C. MAD data from a crystal flash frozen in Ny was
collected at the synchrotron (APS Beamline 17-ID) with
a CCD detector (ADSC Quantum 4).

Data were processed using the HKL2000 package [43].
Each structure was solved by molecular replacement
using modified homology models created with the
FFASO3 program [44]. The structures were refined by
iterative rounds of manual building in Coot [45] and
refinement using refmac5 from CCP4 package [46]. All
structures were refined with good statistics and geome-

try, checked with MOLPROBITY [47]. Final statistics
and data information for each structure can be found in
Table 3. Figures for structural models were created
using the Pymol visualization software http://www.
pymol.org.

Acknowledgements

The authors would like to thank Jocelyne Lew for cloning of Trx-Px-1 from P.
falciparum, P. vivax, P. yoelii, and P. knowseii and Prx6 from P. yoelii and Helen
Ren, Michelle Melone, Zahoor Alam, Simon Houston, Mehrnaz Amani, and
Greg Wasney for the large scale expression of these enzymes. The BL21(DE3)
R3 strain of E. coli (which we subsequently modified adding pRARE2) used in
expressing the proteins came from Opher Gileadi of the Structural Genomics
Consortium (SGC) at the University of Oxford. The Structural Genomics
Consortium is a registered charity (number 1097737) that receives funds
from the Canadian Institutes for Health Research, the Canadian Foundation
for Innovation, Genome Canada through the Ontario Genomics Institute,


http://www.pymol.org
http://www.pymol.org

Qiu et al. BMC Structural Biology 2012, 12:2
http://www.biomedcentral.com/1472-6807/12/2

GlaxoSmithKline, the Knut and Alice Wallenberg Foundation, the Ontario
Innovation Trust, the Ontario Ministry for Research and Innovation, Merck &
Co, Inc, the Novartis Research Foundation, the Petrus and Augusta
Hedlund's Foundation, the Swedish Agency for Innovation Systems, the
Swedish Foundation for Strategic Research and the Wellcome Trust.

Authors’ contributions

WQ analyzed the structural data and solved the structures of PvTrx-Px1_red
and PyTrx-Px1, as well, identified and assigned previously unknown densities
within the PyPrx6 structure. AD collected diffraction data on each of the
structures and assisted in the solving of the structures. JCP helped analyze
all of the structural data and provided insight into the oligomerization and
the characterization of the active site of PyPrx6. AB solved PyPrx6. JM helped
solve PyTrx-Px1. AKW solved PvTrx-Px1_ox. TH investigated the PvTrx-Px1 and
PyTrx-Px1oligermization. RH conceived the study, provided insight, and
helped draft the manuscript. JDA analyzed the structures, drafted the
manuscript and figures, as well as purified, characterized, and crystallized
both PvTrx-Px1 structures and PyTrx-Px1. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 October 2011 Accepted: 19 March 2012
Published: 19 March 2012

References

1. WHO/RBM, UNICEF: World Malaria Report 2005. In Global Malaria Situation.
Edited by: Korenromp E, Miller J, Nahlen B, Wardlow T, Young M. Geneva:
WHQO; 2005:1-13.

2. Jongwutiwes S, Putaporntip C, lwasaki T, Sata T, Kanbara H: Naturally
acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect
Dis 2004, 10(12):2211-2213.

3. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J,
Thomas A, Conway DJ: A large focus of naturally acquired Plasmodium
knowlesi infections in human beings. Lancet 2004, 363(9414):1017-1024.

4. Olliaro PL, Goldberg DE: The plasmodium digestive vacuole: metabolic
headquarters and choice drug target. Parasitology Today (Personal ed)
1995, 11(8):294-297.

5. Ginsburg H, Ward SA, Bray PG: An integrated model of chloroquine
action. Parasitology today (Personal ed) 1999, 15(9):357-360.

6. Han YS, Thompson J, Kafatos FC, Barillas-Mury C: Molecular interactions
between Anopheles stephensi midgut cells and Plasmodium berghei:
the time bomb theory of ookinete invasion of mosquitoes. EAMBO J 2000,
19(22):6030-6040.

7. Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC: The peroxiredoxin gene
family in Drosophila melanogaster. Free Radic Biol Med 2001,
31(9):1090-1100.

8. Flohe L, Jaeger T, Pilawa S, Sztajer H: Thiol-dependent peroxidases care
little about homology-based assignments of function. Redox Rep 2003,
8(5):256-264.

9. Krauth-Siegel RL, Bauer H, Schirmer RH: Dithiol proteins as guardians of
the intracellular redox milieu in parasites: old and new drug targets in
trypanosomes and malaria-causing plasmodia. Angewandte Chemie
(International ed) 2005, 44(5):690-715.

10. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H:
Oxidative stress in malaria parasite-infected erythrocytes: host-parasite
interactions. Int J Parasitol 2004, 34(2):163-189.

11. Deponte M, Rahlfs S, Becker K: Peroxiredoxin systems of protozoal
parasites. Subcell Biochem 2007, 44:219-229.

12. Deponte M, Becker K: Glutathione S-transferase from malarial parasites:
structural and functional aspects. Meth Enzymol 2005, 401:241-253.

13. Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohe R,
Flohe L: The putative glutathione peroxidase gene of Plasmodium
falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001,
276(10):7397-7403.

14. Richard D, Bartfai R, Volz J, Ralph SA, Muller S, Stunnenberg HG,

Cowman AF: A genome-wide chromatin-associated nuclear
peroxiredoxin from the malaria parasite Plasmodium falciparum. J Bio/
Chem 2011, 286(13):11746-11755.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 17 of 18

O'Neill JS, Reddy AB: Circadian clocks in human red blood cells. Nature
2011, 469(7331):498-503.

Knoops B, Loumaye E, Van Der Eecken V: Evolution of the peroxiredoxins.
Sub Cell Biochem 2007, 44:27-40.

Hall A, Nelson K, Poole LB, Karplus PA: Structure-based Insights into the
Catalytic Power and Conformational Dexterity of Peroxiredoxins.
Antioxidants & redox signaling 2011, 15(3):795-815, Epub 2011 Apr 20.
Rahlfs S, Becker K: Thioredoxin peroxidases of the malarial parasite
Plasmodium falciparum. Eur J Biochem/FEBS 2001, 268(5):1404-1409.
Boucher IW, McMillan PJ, Gabrielsen M, Akerman SE, Brannigan JA,

Schnick C, Brzozowski AM, Wilkinson AJ, Muller S: Structural and
biochemical characterization of a mitochondrial peroxiredoxin from
Plasmodium falciparum. Mol Microbiol 2006, 61(4):948-959.

Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA: Crystal
structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol
Biol 2005, 346(4):1021-1034.

Gretes MC, Poole LB, Karplus PA: Peroxiredoxins in parasites. Antioxid
Redox Signal 2012.

Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and
speculative preview of novel mechanisms and emerging concepts in
cell signaling. Free radical biology & medicine 2005, 38(12):1543-1552.
Wood ZA, Schroder E, Robin Harris J, Poole LB: Structure, mechanism and
regulation of peroxiredoxins. Trends in biochemical sciences 2003,
28(1):32-40.

Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K: Compartmentation of
redox metabolism in malaria parasites. PLoS Pathog 2010, 6(12):e1001242.
Winterbourn CC: Reconciling the chemistry and biology of reactive
oxygen species. Nat Chem Biol 2008, 4(5):278-286.

Vedadi M, Lew J, Artz J, Amani M, Zhao Y, Dong A, Wasney GA, Gao M,
Hills T, Brokx S, et al: Genome-scale protein expression and structural
biology of Plasmodium falciparum and related Apicomplexan organisms.
Mol Biochem Parasitol 2007, 151(1):100-110.

Studier FW: Protein production by auto-induction in high density
shaking cultures. Protein Expr Purif 2005, 41(1):207-234.

Wood ZA, Schroder E, Robin Harris J, Poole LB: Structure, mechanism and
regulation of peroxiredoxins. Trends Biochem Sci 2003, 28(1):32-40.
Akerman SE, Muller S: 2-Cys peroxiredoxin PfTrx-Px1 is involved in the
antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol
2003, 130(2):75-81.

Wood ZA, Poole LB, Karplus PA: Peroxiredoxin evolution and the
regulation of hydrogen peroxide signaling. Science 2003,
300(5619):650-653.

Kawazu S, Komaki-Yasuda K, Oku H, Kano S: Peroxiredoxins in malaria
parasites: parasitologic aspects. Parasitology Int 2008, 57(1):1-7.

Li S, Peterson NA, Kim MY, Kim CY, Hung LW, Yu M, Lekin T, Segelke BW,
Lott JS, Baker EN: Crystal Structure of AhpE from Mycobacterium
tuberculosis, a 1-Cys peroxiredoxin. J Mol Biol 2005, 346(4):1035-1046.
Karplus PA, Hall A: Structural survey of the peroxiredoxins. Sub Cell
Biochem 2007, 44:41-60.

Hall A, Parsonage D, Poole LB, Karplus PA: Structural evidence that
peroxiredoxin catalytic power is based on transition-state stabilization. J
Mol Biol 2010, 402(1):194-209.

Smeets A, Loumaye E, Clippe A, Rees JF, Knoops B, Declercq JP: The crystal
structure of the C45S mutant of annelid Arenicola marina peroxiredoxin
6 supports its assignment to the mechanistically typical 2-Cys subfamily
without any formation of toroid-shaped decamers. Protein Sci 2008,
17(4):700-710.

Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE: Crystal structure of a novel
human peroxidase enzyme at 2.0 A resolution. Nat Struc Biol 1998,
5(5):400-406.

Hall A, Nelson K, Poole LB, Karplus PA: Structure-based insights into the
catalytic power and conformational dexterity of peroxiredoxins. Antioxid
Redox Signal 2011, 15(3):795-815.

Nakamura T, Kado Y, Yamaguchi T, Matsumura H, Ishikawa K, Inoue T:
Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed
with its substrate, hydrogen peroxide. J Biochem 2010, 147(1):109-115.
Mehlotra RK: Antioxidant defense mechanisms in parasitic protozoa. Crit
Rev Microbiol 1996, 22(4):295-314.

Kawazu S, Tsuji N, Hatabu T, Kawai S, Matsumoto Y, Kano S: Molecular
cloning and characterization of a peroxiredoxin from the human malaria


http://www.ncbi.nlm.nih.gov/pubmed/14962360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962360?dopt=Abstract

Qiu et al. BMC Structural Biology 2012, 12:2
http://www.biomedcentral.com/1472-6807/12/2

41.

42.

43.

44,

45.

46.

47.

parasite Plasmodium falciparum. Mol Biochem Parasitol 2000,
109(2):165-169.

Kawazu S, Nozaki T, Tsuboi T, Nakano Y, Komaki-Yasuda K, lkenoue N,
Torii M, Kano S: Expression profiles of peroxiredoxin proteins of the
rodent malaria parasite Plasmodium yoelii. Int J Parasitol 2003,
33(13):1455-1461.

Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H,
Gupta D, Kissinger JC, Labo P, et al: PlasmoDB: the Plasmodium genome
resource. A database integrating experimental and computational data.
Nucleic Acids Res 2003, 31(1):212-215.

Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in
oscillation mode. Method Enzymol 1997, 276:307-326.

Jaroszewski L, Rychlewski L, Li ZW, Li WZ, Godzik A: FFASO3: a server for
profile-profile sequence alignments. Nucleic Acids Res 2005, 33:
W284-\W288.

Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of
Coot. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 4):486-501.

Bailey S: The Ccp4 Suite - Programs for Protein Crystallography. Acta
Crystallogr D 1994, 50:760-763.

Davis IW, Murray LW, Richardson JS, Richardson DC: MolProbity: structure
validation and all-atom contact analysis for nucleic acids and their
complexes. Nucleic Acids Res 2004, 32:W615-W619.

doi:10.1186/1472-6807-12-2

Cite this article as: Qiu et al.: Crystal structures from the Plasmodium
peroxiredoxins: new insights into oligomerization and product binding.
BMC Structural Biology 2012 12:2.

Page 18 of 18

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Expression and initial characterization of Trx-Px1 from P. falciparum, P. vivax, P. yoelii, and P. knowlesi and Prx6 from P. yoelii
	Crystal structures of Trx-Px1 from P. vivax and P. yoelii
	PvTrx-Px1 and PyTrx-Px1 are H2O2-sensitive peroxiredoxins
	Disulfide bonds in the PvTrx-Px1_ox and PyTrx-Px1_ox structures
	Oligomeric organization of PvTrx-Px1 and PyTrx-Px1
	Crystal structure of PyPrx6 with product bound

	Discussion
	Conclusions
	Methods
	Cloning, expression, and purification
	Characterization
	Crystallization and structure determination

	Acknowledgements
	Authors' contributions
	Competing interests
	References

