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Abstract

Background: The inhibition of the activity of β-secretase (BACE-1) is a potentially important approach for the
treatment of Alzheimer disease. To explore the mechanism of inhibition, we describe the use of 46 X-ray
crystallographic BACE-1/inhibitor complexes to derive quantitative structure-activity relationship (QSAR) models. The
inhibitors were aligned by superimposing 46 X-ray crystallographic BACE-1/inhibitor complexes, and gCOMBINE
software was used to perform COMparative BINding Energy (COMBINE) analysis on these 46 minimized BACE-1/
inhibitor complexes. The major advantage of the COMBINE analysis is that it can quantitatively extract key residues
involved in binding the ligand and identify the nature of the interactions between the ligand and receptor.

Results: By considering the contributions of the protein residues to the electrostatic and van der Waals
intermolecular interaction energies, two predictive and robust COMBINE models were developed: (i) the 3-PC
distance-dependent dielectric constant model (built from a single X-ray crystal structure) with a q2 value of 0.74
and an SDEC value of 0.521; and (ii) the 5-PC sigmoidal electrostatic model (built from the actual complexes
present in the Brookhaven Protein Data Bank) with a q2 value of 0.79 and an SDEC value of 0.41.

Conclusions: These QSAR models and the information describing the inhibition provide useful insights into the
design of novel inhibitors via the optimization of the interactions between ligands and those key residues of
BACE-1.

Keywords: BACE-1 Inhibitors, Superimposition, 3D-QSAR, COMBINE
Background
It is generally accepted that Alzheimer’s disease (AD) is
caused by extracellular amyloid plaque deposition and the
intracellular formation of neurofibrillary tangles in the
brain [1-4]. β-amyloid peptides (Aβ, forming the amyloid
plaques) are formed by the action of the β-secretase
(BACE-1) and γ-secretase enzymes on the amyloid pre-
cursor protein (APP) [5-8]. BACE-1 is currently widely
accepted as a leading target for the therapeutic treatment
of AD [9-12]. The inhibition of BACE-1 can prevent the
cleavage of APP to Aβ and the formation of amyloid
plaques [13].
The search for potent BACE-1 inhibitors is being pur-

sued actively in many academic institutes and pharma-
ceutical companies. Most of these endeavors include
computational studies such as pharmacophore modeling
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[14,15], classical quantitative structure-activity relationships
(QSARs) [14-17], docking and virtual screening [18-22] and
molecular dynamics (MD) simulations [23-26]. Currently,
several hundred BACE-1 inhibitors have been reported, but
most of these inhibitors are peptidomimetics [16]. To find
novel BACE-1 inhibitors, a few companies are actively
screening against BACE-1. A research group from Merck
has performed in vitro high-throughput screening (HTS)
and found a single molecule (a 1,3,5-trisubstituted benzene)
as a hit from a multi-million compound library [27],
whereas Astex Therapeutics has taken a fragment-based
lead generation approach [28]. After the virtual screening
of a fragment library, a small number of potential structures
were soaked with BACE-1 crystals in anticipation of obtain-
ing a co-crystal with the enzyme. Johnson & Johnson
Pharmaceutical R&D also reported a novel cyclic guanidine
screening lead; the initial screening lead had an IC50 value
of 900 nM [29]. Huang et al. performed in silico screening
of 180,000 small chemicals and found 10 diacylurea inhibi-
tors that exhibited an IC50 value lower than 100 μM in an
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enzymatic assay. Four of these inhibitors were cell
penetrant (EC50 < 20 μM) [21].
3D-QSAR studies are very helpful in the design of

novel lead compounds. Zuo et al. explored the binding
mechanism of 32 statine-based peptidomimetic inhibi-
tors of BACE-1 using CoMFA (comparative molecular
field analysis) and CoMSIA (comparative molecular
similarity indices analysis) methods. Based on molecular
docking results, 3D-QSAR models were developed with q2

values of 0.582 and 0.622 using CoMFA and CoMSIA, re-
spectively [17]. A study of the mechanism of the inter-
action between BACE-1 and its inhibitors would be
valuable in discovering more active drug-like inhibitors
that block the function of BACE-1. To glean critical infor-
mation regarding the interactions of the inhibitors with
the residues in the active site of BACE-1, we conducted a
3D-QSAR study of 46 BACE-1/inhibitor complexes using
the COMparative BINding Energy (COMBINE) method.
The COMBINE method, first developed by A. R. Ortiz in
1995 [30], has been widely applied in the field of drug
design [31-37]. In 2010, Gil-Redondo et al. developed
gCOMBINE [38], a Java graphical user interface (GUI), to
perform COMBINE analyses, providing a convenient tool
for academic researchers. The key idea of COMBINE ana-
lysis is that a simple expression describing the differences
in binding affinity of a series of related ligand-receptor
complexes can be derived by using multivariate statistics
to correlate experimental data on binding affinities with
components of the ligand-receptor interaction energy
computed from energy-minimized 3D structures. Some
other forms of free energy calculations, such as MM-
PBSA, MM-GBSA [39], or linear interaction energy (LIE)
simulation [40], use Monte Carlo, or molecular dynamics
simulations to calculate the protein-ligand interaction en-
ergies. However, COMBINE analysis only needs static
structures and this approach can reduce the computa-
tional burden. Compared with the classical 3D-QSAR
methods (CoMFA and CoMSIA) [41], COMBINE analysis
can aid researchers in acquiring quantitative or semiquan-
titative insight into the key role played by specific protein-
ligand interactions and/or desolvation components. As a
result, residue-based van der Waals and electrostatic con-
tributions that are endowed with a higher discriminatory
ability can be identified, which provides clues for further
chemical modification throughout the series. It has also
been demonstrated that regression models derived with
COMBINE analysis are suitable for fast virtual screening
of compound databases [37].
Alignment is a crucial component in 3D-QSAR stud-

ies, and many researchers have used docking methods to
align ligands when 3D protein structures were available
[17]. However, due to various approximations and trade-
offs involved in the formulations because of the compu-
tational cost, the current scoring functions are unable to
accurately assess the ligand binding poses. To overcome
this disadvantage of the dock methods, in the present
study, we replaced the docking method with a superim-
posing X-ray protein/inhibitor complex method to align
the ligands. It has been eleven years since the first
BACE-1 crystal structure was reported. Currently, there
are more than 150 X-ray crystal structures of BACE-1/
inhibitor complexes in the Brookhaven Protein Data Bank
(PDB) [42]. Taking into consideration the diversity of the
inhibitors, we chose 46 crystal structures of BACE-1/
inhibitor complexes from the Brookhaven PDB. Using a
COMBINE analysis, we obtained a robust COMBINE
model, which should be useful for understanding the
inhibitory mode of BACE-1 and in designing novel lead
compounds against Alzheimer’s disease.

Results and discussion
In this study, choosing the 1 W51 structure as the refer-
ence for all the alignments was based on previous research
[43]. Polgar and Keseru have performed a comparative vir-
tual screen for BACE-1 inhibitors using different protein
conformations (1SGZ, 1FKN, 1 W51, 1XS7 and 1M4H).
In that study, the use of 1 W51 as a target gave the best
enrichment factors and the ligands found proper poses
more easily [44]. Furthermore, in our previous studies, by
comparing different reference structures, we found that
the use of the 1 W51 structure gave better binding affinity
models [43]. Therefore, despite the availability of other
crystal structures of BACE-1 serving as the reference
structure, we concluded that the 1 W51 structure repre-
sented the most suitable reference structure.
By a standard superposition technique [45], we ana-

lyzed and compared 46 crystal structures to explore the
protonation state of the catalytic Asp residues, and to
clarify the functional role and stability of the two
conserved water molecules (W1 and W2) in the BACE-1
active site (Figure 1). The catalytic water (W1) bridges
the two catalytic aspartate residues and is involved in
nucleophilic attack. Structural data suggest the average
distance between the carboxyl oxygens of the catalytic
Asp dyad is 2.5–3.5 Å for all 46 complexes (Figure 1), it
indicates that hydrogen bonding between Asp32 and
Asp228 is possible in the presence of a substrate. The
location of the Thr231 hydroxyl group at a hydrogen bond
distance from the Asp 228 carboxyl is a common feature of
the BACE-1 complexes with inhibitors. This phenomenon
was supported by the reaction mechanism proposed by
Andreeva and Rumsh, i.e., Thr231 protects the Asp228
carboxyl from protonation [46].
At the same time, the proximity of the Ser35 hydroxyl

group to the Asp32 carboxyl group found in BACE-1
was observed in all complexes with inhibitors. It is im-
portant to note that another water molecule (W2), in
the vicinity of the active groups, is completely conserved



Figure 1 The catalytic site of BACE-1 (1TQF structure). The
Thr231 hydroxyl group located at a hydrogen bond distance from
the Asp228 carboxyl moiety protects this group from protonation. A
conserved water molecule (W2), forms three hydrogen bonds with
residues Tyr71, Asn37 and Ser35, resulting in the formation of a
continuous chain of hydrogen-bonded residues Trp76-Tyr71-W2-
Ser35-Asp32 that connect the flap with the catalytic site. Hydrogen
bonds are shown by dashed lines, amino acids are shown by sticks
and water molecules are shown by red balls.
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[46]. This water molecule forms a hydrogen bond with
side-chain hydroxyl of Ser35 and this kind of interaction
was observed in all analyzed structures. Besides Ser35,
W2 is oriented such that it acts as a donor to the Asn37
backbone carbonyl. This bond is also conserved. W2
also forms a third hydrogen bond with the hydroxyl of
the conserved residue Tyr71; the Tyr71 hydroxyl acts as
an acceptor for the NH of Trp76. These interactions
form a continuous chain of hydrogen-bonded residues,
Trp76-Tyr71-W2-Ser35-Asp32, thereby connecting the
flap with the catalytic site. Structural data suggest the
existence of a mechanism that assists releasing a proton
from the Asp32 carboxyl during the initial stages of
catalysis, and acceptance of a proton after substrate
cleavage. This mechanism arises from the ability of the
Ser35 hydroxyl and the water molecule W2 to exchange
their donor and acceptor roles while being hydrogen-
bonded. In other word, Ser35 assists in proton accept-
ance and release of Asp32 during the catalytic cycle.
The identification of the protonation states of the key

aspartate residues in BACE-1 is of significant interest both
in understanding the reaction mechanism and in guiding
the design of drugs against Alzheimer’s disease. However,
researchers have not reached consensus on the experi-
mental and theoretical studies of the aspartate protonation
states [20,26,47,48]. By structural data analysis, our results
are consistent with the results of Polgar and Keseru [20].
Polgar and Keseru performed pKa calculations to study
the protonation state of catalytic Asp residues (Asp32,
Asp228) of BACE-1 based on the finite-difference solution
of the Poisson-Boltzmann equation. Their research con-
cluded that crystals of BACE-1 (1SGZ, 1FKN) were grown
at pH 6.5 and 7.4 and under this condition only the
Asp228 residue is ionized (Asp32, Asp228−).
In addition, tautomerism could influence the results

of the COMBINE analysis. Tautomerism, which is a
phenomenon whereby a compound interconverts to
other isomers that differ in the position of a double
bond and one atom (typically a hydrogen atom), is of
special interest in studies of protein-ligand interactions
[49]. Since the displacement of a hydrogen atom may
convert an acceptor into a donor, a tautomeric re-
arrangement changes the interaction landscape of a
protein-ligand complex. In this study, we should ini-
tially examine whether there are tautomers among these
46 co-crystallized ligands. Next, we had to estimate the
preferred tautomer in the binding site for each tautomer
by analyzing the hydrogen bond interactions. This is
because the positions of the hydrogen atoms in the PDB
structures were not determined due to the resolution
limits of the structures. By visual inspection, some tauto-
meric structures among these 46 co-crystallized ligands
were found and the main tautomeric forms can be repre-
sented as amide-imidic acid and allyl amine-imine. By
analyzing the structural data, the most favorable hydrogen
bond interactions were identified. Table 1 summarizes the
most preferred tautomer in the binding site for each
compound. Moreover, according to the above analysis the
protonation state of BACE-1 was assessed as Asp32+ and
Asp228−. Therefore, this protonation state (Asp32+ and
Asp228−) and the most preferred tautomer of each co-
crystallized inhibitor were applied in the following COM-
BINE analysis.
In present study, three types of electrostatic models

(Model 1: a distance-dependent dielectric constant model
[50]; Model 2: a uniform dielectric constant model [51];
and Model 3: a sigmoidal model [50]) were used. The q2

value served as the criterion to determine the optimal
dimensionality of the PLS models. The standard deviation
of errors of correlation (SDEC) value for the 38 internal
training sets and the average standard deviation of errors
of prediction (SDEP) value for the eight external test sets
are listed in Table 2. To justify the docked conformation
of the inhibitors from their respective complexes, root-
mean-square deviation (RMSD) was used as a good meas-
ure to evaluate the predicted power of a docking result It
is generally accepted that a successful docking result
reproduces the crystallographic conformation of a ligand
in the complex structure within a 2 Å RMSD on all ligand
atoms. Three protocols were performed to translocate the



Table 1 Data set of the 46 co-crystallized ligands of BACE-1

a1. 1W51, L01 2. 1TQF, 32P 3. 1YM2, AUA

4. 1YM4, AMK 5. 2B8V, 3BN 6. 2F3E, AXQ

7. 2F3F, AXF 8. 2IQG, F2I 9. 2IRZ, I02

10. 2IS0, I03 11. 2OAH, QIN 12. 2OHL, 2AQ

13. 2OHM, 8AP 14. 2OHP, 6IP 15. 2OHQ, 7IP

16. 2OHR, 8IP 17. 2OHS, 9IP 18. 2OHT, IP6
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Table 1 Data set of the 46 co-crystallized ligands of BACE-1 (Continued)

19. 2OHU, IP7 20. 2P83,MR0 21. 2PH6, 712

22. 2B8L, 5HA 23. 2QZL, IXS 24. 2ZE1, 411

25. 2QP8, SC7 26. 2VIE, VG0 27. 2VJ7, VG6

28. 2VJ9, VG7 29. 2VNM, CM8 30. 2VNN, CM7

31. 2WF0, ZY0 32. 2WF1, ZY1 33. 2ZDZ, 310

34. 2FDP, FRP 35. 3CIB, 314 36. 3CIC, 316
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Table 1 Data set of the 46 co-crystallized ligands of BACE-1 (Continued)

37. 3CID, 318 38. 3DM6, 757 39. 3DUY, AFJ

40. 3DV1, AR9 41. 2P4J, 23I 42. 3FKT, SII

43. 2QK5, CS5` 44. 1XS7, MMI

45. 1FKN, OM99-2 46. 1M4H, OM00-3

a Represents compound number, PDB code and inhibitor name, respectively. Inhibitors 2, 13, 15, 21, 36, 40, 42 and 44 were selected for the prediction set. For
acquiring the elarged picture about the structures of all the co-crystallized ligands, please see the Additional file 1: Figure S1.
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other 45 co-crystallized inhibitors to a single active pocket
of BACE-1 (PDB entry 1 W51). Protocol 1, energy
minimization after protein superposition; Protocol 2: en-
ergy minimization before protein superposition; Protocol
3: docking by Surflex. Subsequently, we performed a
COMBINE analysis of the 46 BACE-1/inhibitor com-
plexes (each inhibitor and the A chain of 1 W51). As indi-
cated in Table 3 and judging from the RMSD value,
protocol 1 reproduced the native crystallographic con-
formation to its fullest extent. As indicated in Table 2,
among the three types of electrostatic models, we found
that Model 1 outperformed Models 2 and 3, in which
three latent variables (PCs) yielded an r2 of 0.87, a q2 of
0.74, and an SDEC value of 0.53. The SDEP value for the
external validation was 1.13, as expected, which is larger
than that for the internal validation but sufficient to dem-
onstrate the robustness of the model. The predicted pIC50

values are listed in Table 3, and plotted against the
experimental pIC50 values for the model with three latent
variables in Figure 2A. We can see that this 3-PC COM-
BINE model produces more accurate predictions than
those obtained in previous CoMFA and CoMSIA studies
of BACE-1 inhibitors [17].
Table 3 shows that the RMSD values of some co-

crystallized ligands by protocol 3 were greater than 2 Å
compared with their native crystallographic conform-
ation. Although protocol 2 (energy minimization before
protein superposition) could reproduce the native crys-
tallographic conformation as well as protocol 1, in gen-
eral the results using protocol 1 were superior to the
results obtained using protocol 2. In addition, by using
protocol 2, the COMBINE model was developed with q2

values of 0.69 and SDEC values of 0.719 (a distance-
dependent dielectric constant 3-PC model), which was
not so good as that in the 3-PC model obtained from
protocol 1.



Table 2 Performance of different COMBINE modelsa for the whole set of inhibitors in fitting and prediction

Data set 1b Data set 2b

Electrostatic Models c No. of PCs r2 SDEC q2 SDEP r2 SDEC q2 SDEP

1 1 0.709 0.78 0.653 0.948 0.588 0.929 0.51 1.153

2 0.82 0.614 0.713 0.914 0.793 0.659 0.701 0.816

3 0.871 0.521 0.74 1.131 0.891 0.477 0.703 1.074

4 0.917 0.417 0.713 0.989 0.91 0.435 0.761 1.096

5 0.944 0.344 0.691 1.00 0.923 0.402 0.775 0.98

2 1 0.252 1.336 0.149 1.609 0.295 1.215 0.106 1.571

2 0.718 0.994 0.528 1.116 0.78 0.679 0.704 0.913

3 0.856 0.848 0.657 0.931 0.824 0.607 0.719 0.785

4 0.898 0.805 0.691 1.097 0.896 0.466 0.747 1.06

5 0.921 0.824 0.677 1.131 0.92 0.41 0.786 0.988

3 1 0.212 1.37 0.105 1.623 0.26 1.245 0.045 1.621

2 0.773 0.845 0.66 0.85 0.79 0.663 0.725 0.949

3 0.864 0.819 0.68 1.088 0.819 0.617 0.731 0.796

4 0.922 0.889 0.623 1.007 0.897 0.465 0.728 0.728

5 0.956 1.002 0.521 0.87 0.916 0.419 0.772 0.816
aAbbreviations: r2, correlation coefficient; SDEC, standard deviation of errors of correlation; q2, predictive correlation coefficient; SDEP, standard deviation of errors
of prediction.
bData set 1, all the BACE-1/inhibitor complexes were built from the A chain of 1 W51 and each of the co-crystallized ligands. All the co-crystallized ligands were
translocated directly to the binding pocket of 1 W51 by a superimposition method using the Cα atoms (1 W51 structure as the reference), after this process, each
BACE-1/inhibitor complex was energy minimized using the AMBER 9.0 program.
Data set 2, all the BACE-1/inhibitor complexes were the actual complexes present in the PDB and energy minimized with the AMBER 9.0 program.
cThe three types of electrostatic models. Model 1: a distance-dependent dielectric constant model. Model 2: a uniform dielectric constant model. Model 3: a
sigmoidal model. The values in bold highlight the best quality models.
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It is worthwhile to note that a ligand docked within
2 Å of the crystallographic pose can give rise to interac-
tions with active site residues that are different from
those found in the original X-ray crystal structures.
Therefore, we performed a similar COMBINE analysis
using the complexes present in the PDB and subjecting
these complexes to a similar energy refinement men-
tioned above. In order to ensure the feasibility of per-
forming the COMBINE analysis, the 1 W51 structure
was set as the reference structure and all crystal struc-
tures were superimposed using the Cα atoms. In cases
where the number of amino acids differed between com-
plexes, we normalized all the crystal structures using a
common number of residues. As indicated in Tables 2 and
3, the 4-PC or 5-PC COMBINE models generated from
the complexes present in the PDB, was superior to the
models built from the three protocols we used, regardless
of which type of electrostatic model was applied. Table 2
shows that the 5-PC sigmoidal electrostatic model was the
best, which yielded an r2 of 0.92, a q2 of 0.79 and an SDEC
value of 0.41. The SDEP value for the external validation
was 0.99. The predicted pIC50 values are presented in
Table 3 and plotted against the experimental pIC50 values
for the model with five latent variables in Figure 2B.
We are not surprised by the above results. A possible

reason for these observations is that the application of
the actual protein crystals was always considered to be
more reliable than the artificial docking method. In
addition, when building the COMBINE models with
actual protein crystals, consideration for the effects of
two or three water molecules in the catalytic site did
improve the accuracy of the predictions. In comparison
to the approach used, e.g., the COMBINE model built
from a single X-ray crystal structure (1W51), the method
using the actual complexes in the PDB was similar to
the flexible docking approach, in which the effects of
side-chains of several residues were considered.
As depicted in Figure 2A and B, both the 3-PC model

(built from a single X-ray crystal structure) and 5-PC
model (built from the actual complexes present in the
PDB) behaved well for most of the compounds, How-
ever, the 1TQF ligand (inhibitor 2, co-crystallized ligand
32P [27]) was always determined to be an outlier in the
COMBINE analysis, whether or not it was refined before
being placed into the binding pocket of 1W51, or built
from the actual complexes present in the PDB. Even
when the water molecules in the catalytic site were taken
into consideration, the 1TQF ligand was always an out-
lier, which differed by more than one order of magnitude
between the predicted and experimental results. The pri-
mary reason was the different binding mode of the
1TQF ligand when compared with the binding modes of



Table 3 The RMSD values of three alignment protocols

Compound Number Pdb ID Ligand RMSD(Å)a RMSD(Å)b RMSD(Å)c pIC50
d pIC50

e pIC50
f

1 1 W51 L01 0.36 0.36 0.645 6.7 7.337 6.72

2 1TQF 32P 0.328 0.409 3.608 5.857 8.627 8.23

3 1YM2 AUA 0.38 0.348 0.95 8.0 7.617 8.34

4 1YM4 AMK 0.305 0.485 2.24 7.41 7.74 7.38

5 2B8V 3BN 0.416 0.47 1.739 7.01 7.27 7.28

6 2F3E AXQ 0.27 0.242 0.676 6.81 7.23 7.26

7 2F3F AXF 0.27 0.344 1.445 6.72 6.69 6.98

8 2IQG F2I 0.398 0.404 0.846 8.3 7.72 7.55

9 2IRZ I02 0.401 0.354 2.219 7.92 8.08 7.24

10 2IS0 I03 0.483 0.556 2.184 6.7 8.05 7.42

11 2OAH QIN 0.857 0.525 2.145 7.96 7.7 7.61

12 2OHL 2AQ 0.144 0.192 0.08 2.7 3.51 3.01

13 2OHM 8AP 0.36 0.468 1.524 3.51 4.12 4.06

14 2OHP 6IP 0.576 0.535 2.432 4.03 4.34 4.22

15 2OHQ 7IP 0.35 0.501 1.29 4.6 5.15 4.27

16 2OHR 8IP 0.297 0.359 2.428 5.0 4.74 4.45

17 2OHS 9IP 0.256 0.314 2.438 5.4 5.06 5.33

18 2OHT IP6 0.455 0.464 1.743 5.04 4.6 5.13

19 2OHU IP7 0.906 0.942 1.921 5.38 5.06 4.87

20 2P83 MR0 0.345 0.363 1.903 7.96 7.54 7.28

21 2PH6 712 0.371 0.563 3.184 7.57 7.97 7.58

22 2B8L 5HA 0.316 0.433 2.51 8.0 8.12 7.72

23 2QZL IXS 0.41 0.4 2.122 8.1 8.68 8.37

24 2ZE1 411 0.825 0.851 0.946 5.25 5.21 5.56

25 2QP8 SC7 0.355 0.342 0.652 8.15 7.61 8.13

26 2VIE VG0 0.396 0.52 1.705 7.48 7.58 7.77

27 2VJ7 VG6 0.765 0.692 2.0 7.31 7.3 7.46

28 2VJ9 VG7 0.413 0.475 1.094 6.74 7.25 7.21

29 2VNM CM8 0.387 0.572 2.457 8.52 8.09 8.3

30 2VNN CM7 0.366 0.333 1.58 8.7 8.0 8.38

31 2WF0 ZY0 0.51 0.527 1.133 6.68 7.25 7.54

32 2WF1 ZY1 0.377 0.361 2.342 8.7 8.19 8.41

33 2ZDZ 310 0.871 0.901 1.642 6.15 5.57 5.95

34 2FDP FRP 0.415 0.428 2.18 7.59 7.13 7.0

35 3CIB 314 0.343 0.355 0.558 7.85 7.58 7.99

36 3CIC 316 0.308 0.291 2.565 8.52 7.62 8.37

37 3CID 318 0.336 0.356 0.816 8.3 7.64 8.37

38 3DM6 757 0.659 0.716 2.814 7.43 8.57 7.88

39 3DUY AFJ 0.443 0.653 1.749 5.85 6.78 6.1

40 3DV1 AR9 0.267 0.251 0.608 6.23 6.61 6.37

41 2P4J 23I 0.614 0.645 4.611 8.96 8.55 8.15

42 3FKT SII 0.596 0.723 1.749 5.55 4.76 6.22

43 2QK5 CS5 0.405 0.392 2.416 7.7 7.63 7.99

44 1XS7 MMI 0.628 0.604 1.37 7.59 7.2 6.47
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Table 3 The RMSD values of three alignment protocols (Continued)

45 1FKN OM99-2 1.262 1.56 3.3 8.8 8.58 9.03

46 1M4H OM00-3 1.137 1.68 3.9 9.51 9.24 9.3
aProtocol 1. The 46 co-crystallized ligands were aligned in the binding pocket of 1W51 by the superimposition method using the Cα atoms (1W51 structure as the
reference). Subsequently, each BACE-1/inhibitor complex (each inhibitor and A chain of 1W51) was energy minimized using the AMBER 9.0 program.
bProtocol 2. The 46 co-crystallized ligands were refined before translocation and energy minimization that was adopted in protocol 1.
cProtocol 3. The 46 co-crystallized ligands were docked into 1W51 using the Surflex program (version 2.11), followed by the energy minimization routine
mentioned above.
dexperimental.
epredicted with the 3-PC distance-dependent dielectric constant model (built from a single X-ray crystal structure).
fpredicted with the 5-PC sigmoidal electrostatic model (built from the actual complexes present in the PDB).
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the other 45 ligands. In examining the enzyme-inhibitor
complex (1TQF), the S4 to S1 subsites were found to be
occupied by the inhibitor, and we did not observe any
direct contact between the inhibitor and the catalytic
aspartic dyad, Asp32 and Asp228. Instead, the inhibitor’s
oxyacetamide NH moiety forms a hydrogen bond with a
water molecule situated between the catalytic aspartic
acids. Additionally, regarding the stereochemistry of the
R-methyl-benzamide ligand, the structure reveals the
presence of a novel S3 sub-pocket that binds the
p-fluorophenyl ring.
To investigate the distribution of the 38 complexes

(training set) in the space defined by their ligand-receptor
interaction energies, a principal component analysis
(PCA) was performed on the pretreated variables. As
mentioned above, because there are 375 amino acids in
the protein, and two energy contributions (van der Waals
and electrostatic) were considered for each residue, an X
matrix was built with 750 columns, representing each of
these energy terms, and 38 rows representing each inhibi-
tor in the series. A final column containing inhibitory
activities is then added to the matrix. The X matrix was
Figure 2 Scatter plot comparing experimental vs. predicted activities
and the test series. A. The 3-PC distance-dependent dielectric constant m
electrostatic model (built from the actual complexes present in the PDB).
then transformed so that each column of data had an
average of zero and a standard deviation of one. After re-
moving those variables with a standard deviation below
0.01 kcal/mol, 49 residues were retained for the COM-
BINE interaction energy calculation, and 98 variables were
selected to build the final PLS model. The dimensionality
of the data matrix was reduced using a PCA method,
while keeping the amount of information loss to a mini-
mum. The number of latent variables (PCs) chosen for the
model was that yielding the best cross-validated perform-
ance. The coefficients in a given PC provide information
on the relative weight of the different terms and can be
used to deduce the relevance of each individual ligand-
residue interaction to explain the variance in activity.
From the point of view of statistical research, the first

principal component (PC1) accounts for the maximum
variance (eigenvalue) in the original dataset. The second
principal component (PC2) is orthogonal (uncorrelated)
to the first one, and it accounts for most of the remaining
variance. This procedure is continued until the total vari-
ance is accounted for. The COMBINE analysis aims to
tackle the X matrix with PCA analysis, and then use a
in COMBINE models for the 46 compounds of the training series
odel (built from a single X-ray crystal structure). B. The 5-PC sigmoidal



Figure 3 Score plot of the first (PC1) and the second (PC2) principal components for COMBINE. The relevant energy descriptors have been
labeled.
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multiple linear regression method to build a PLS model
[31-37]. The q2 is a well-known indicator for evaluating
the function of the number of principal components (PCs)
Figure 4 Loading plot of the first (PC1) and the second (PC2) principa
been labeled.
extracted. Although using the 5-PC model (shown the on
right side of Table 2 with bold type) for predicating the ac-
tivity of the inhibitors gave a higher accuracy (a q2 value
l components for COMBINE. The relevant energy descriptors have



Figure 5 Normalized PLS coefficients for each of the (A) van der Waals and (B) electrostatic interaction energies studied.
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of 0.786), among all the 3-PC models, the distance-
dependent dielectric constant 3-PC model (shown on the
left side of Table 2 with bold type) was the top one, with a
q2 value of 0.74. Selection of a smaller number of latent
variables (PCs) chosen for the COMBINE model was
more beneficial and simpler for the following research on
identifying the nature of the interactions between the
ligand and receptor. Such information is considered to be
the most important factor that guides drug design. There-
fore, in the next part of the discussion, we will focus on
results calculated from the 3-PC model (shown on the left
side of Table 2 with bold type).
The essential data patterns can be easily visualized by

plotting the complexes in the space defined by the first
and second PCs (score plot), and the score plot of the
first two principal components (PC1 and PC2) is shown
in Figure 3. Alternatively, the relationship between the
original variables and the new orthogonal latent variables
can be revealed by plotting the contributions of the calcu-
lated energy descriptors to each of these PCs (loading
plot), and the loading plots are shown in Figure 4.
As can be seen in Figures 3 and 4, the first PC extracted,

which consists primarily of the van der Waals contribu-
tions involving Tyr71, Thr72, Thr231 and Gln73 and the
electrostatic contributions from Arg235, Arg128 and
Lys224, is sufficient to classify 38 inhibitors (training set)
into two groups. One group was primarily composed of
aminopyridine analogues, which are characterized by low
affinity and low molecular weights, whereas the other
group was mainly composed of high-molecular-weight
compounds, including some peptidomimetic inhibitors.
The second PC, with major contributions from the van
der Waals interactions involving Thr231, Gln73 and
Thr232 and the electrostatic contributions involving
Arg128, Lys224, Arg235 and Lys321, is also able to distin-
guish the 38 inhibitors of the training set into two groups,
similar to the first PC. In addition to the two groups men-
tioned above, there are some outliers scattered in the
lower right portion of the quadrant in the score plot
(Figure 4), such as the eight-residue transition-state
inhibitors 45 and 46 (OM99-2[52] and OM00-3 [53]),
which fill all eight binding subsites (from S4 to S4').
The most powerful variable in the first PC is the van

der Waals interaction energy of Tyr71. A favorable inter-
action with Tyr71 is observed for inhibitors 45 and 46
(OM99-2 and OM00-3), whereas unfavorable interac-
tions are observed with the aminopyridine analogues in
the first principal component. This observation can be
explained as follows: Tyr71 is a flap residue that occu-
pies the S1 pocket. When analyzed by the X-ray com-
plexes, the FLAP loop was observed to be in an open
conformation when BACE-1 bound to the low molecular
weight aminopyridine analogues. This conformation
results in weak van der Waals interactions between the



Figure 6 Forty-six inhibitors were superimposed into the active site of BACE-1 (1 W51 structure). The semitransparent surface enveloping
the BACE-1 target has been spectrum-colored using the van der Waals (A) and electrostatic (B) PLS coefficients from the fourth column (B-factor)
in the PDB file generated by gCOMBINE. A color scale is provided in the bottom-right corner of the both figures.
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inhibitors and Tyr71. However, when bound to high-
molecular-weight inhibitors such as OM99-2 and
OM00-3, the FLAP loop was in a closed conformation,
which indicates that strong van der Waals interactions
occurred between the inhibitors and Tyr71. Note that
Tyr71 is involved in a chain of hydrogen bonds with sev-
eral residues in the binding pocket [46], thus fixing the
flap in a closed conformation upon binding of a high-
affinity inhibitor.
It is apparent from the COMBINE analysis that only a

limited number of interactions have a strong influence
for most of the binding differences observed among the
BACE-1 inhibitors. Although BACE-1 contains 375 amino
Figure 7 Schematic representation of the main interactions of compo
acid residues, a large portion of these residues were not
considered in the COMBINE analysis. The normalized
PLS coefficients can quantitatively and rapidly help us
to understand the different ligand-residue interactions
that result in different activities (pIC50). According to
Eq 2, the pIC50 values are mainly determined by the
large PLS coefficients, wi, and the large interaction en-
ergies, ui. The normalized PLS regression coefficients
in the first three latent variables (LV1-3) are shown in
Figure 5, and the PLS regression coefficients can be
color-coded and displayed on a surface representation
of the protein, as shown in Figure 6. In addition, Figure 7
indicates the main interactions of compound 1 with the
und 1 with the BACE-1 catalytic site.
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BACE-1 “key” amino acid residues named in this work. In
order to investigate the RMSD between the ‘open’ and
‘closed’ conformations of BACE-1, based on main chain
conformations, the 46 ligand-bound X-ray structures
could be formed four distinct clusters. From which,
1W51, 1FKN, 2OHL, and 2OHS were chosen and super-
imposed together (Additional file 2: Figure S2).
We used a threshold of 0.05 on the PLS coefficients to

extract important van der Waals variables with large PLS
coefficients and a threshold of 0.02 on the PLS coefficients
for the important electrostatic variables. With respect to
the van der Waals block, it can be seen in Figure 5A that
there are negative PLS coefficients for Gly11, Gln12,
Gly34, Thr72, Gln73, Ile110, Tyr198, Thr231, Thr232 and
Asn233, indicating that favorable van de Waals interac-
tions with these residues are beneficial for activity. These
residues form hydrophobic pockets (S1, S2, S3 sp, S1’, S2’)
to accommodate the substituents of the inhibitors. Of all
of these ligand interactions, Thr231 appears to be the
most discriminatory for activity. As mentioned above,
after the X-ray complexes were superimposed, some dif-
ferences emerged in the side-chain conformations of
Thr231, Thr232 and Gln73, which indicates that these
residues can move and rotate, with the most notable
movement occurring for Gln73, to better accommodate
the inhibitors. Additionally, some expected flexibility was
also observed in various residues lining the binding site
cleft such as Arg128, Arg307 and Arg235.
Ile110 and Gly11 are situated in the S3 subpocket (S3 sp).

The S3 and S1 pockets (Tyr71, Phe108 and Trp115) are
contiguous in BACE-1, and the S3 pocket is rather
hydrophobic in nature. Many inhibitors formed favor-
able contacts at this site in the S3 pocket, and this loca-
tion was considered to be a useful area to target in
drug design. The extension of this pocket primarily
depends on the conformation of the 10S loop. From the
comparative analysis of the BACE-1 X-ray structures, it
is clear that the 10S loop, a short loop located at the
base of the S3 sp, displays two primary low-energy confor-
mations: an open conformation (e.g., 1W51, 1TQF, 2F3E
and 2B8V) and a closed conformation (e.g., 1FKN, 1M4H
and 1XS7).
Tyr198 is located in the hydrophobic S2’ pocket

(Tyr198, Tyr71 and Arg128) and the hydrophobic S1’
pocket (Tyr198, Ile226 and Val332). We found that the
P2’ moiety of some inhibitors entirely fills the S2’ pocket
with a benzyl ring. Because of its limited dimensions, the
hydrophobic S1’ pocket only appears to tolerate an alkyl or
cycloalkyl chain with a maximum of three carbon atoms.
This position was employed to achieve selective BACE
inhibition and should be investigated further.
It is worth noting that Tyr71 has a small negative PLS

coefficient, highlighting the fact that the van der Waals
interactions with this residue are slightly correlated with
activity. However, in the first principal component, this
residue is the most important van der Waals interaction
energy variable. The PLS analysis seeks variables that
can provide effective discrimination between weak and
tight binders, and these variables do not need to be
those with the greater absolute values, meaning that dif-
ferences in the van der Waals interaction energies in-
volving Tyr71 cannot be used in the chemometric
method for the purposes of correlation with differences
in inhibitory potency. Thus, this interaction, although
important for binding, undoubtedly constitutes a rela-
tively small contribution to the inhibitory activity.
In terms of the electrostatic block, it can be seen in

Figure 5B that the negative PLS coefficients for Arg128,
Gly230, Thr232, Asn233, Arg235, Arg307 and Ser325
co-existed with the positive PLS coefficients for Asp32,
Gly34, Thr72, Tyr198 and Lys224, indicating that favor-
able electrostatic interactions with these residues are
beneficial for activity.
As depicted in Figures 5 and 6, Asn233, Arg235 and

Ser325, which are located in the S2 open region, can be
either hydrophobic or polar. It was found that a sulfona-
mide or a hydrophobic phenyl ring of the inhibitors can
interact with these surrounding residues, suggesting that
more negative or more hydrophobic substituents are fa-
vorable in this region to improve the inhibitory activity.
For the positively charged Arg128 residue, located in the
S2’ pocket, inhibitors including one or more acidic
groups on the P2’ branch are expected to favor the inter-
action with BACE-1. Most inhibitors donate a hydrogen
bond to the backbone carbonyl of Gly230, which is located
on the edge of the S3 pocket as shown in Figures 6 and 7.
Upon comparing the binding modes of the aligned inhibi-
tors, we noticed that hydrogen bonds with the backbones
of Gly230, Thr72, or Gln73 are frequently present, and
this interaction appears to be vital for high BACE-1 inhibi-
tory activity. The aforementioned S3 sp, Thr232 and
Arg307 are additional points of ligand attachment, which
have negative PLS coefficients. Compounds presenting a
polar interaction with side-chains of these residues can
strengthen the inhibitor binding.
Alternatively, in the catalytic region, which was assigned

by the PLS model to an electrostatic interaction, the cata-
lytic residues (Asp32 and Asp228) are assigned positive
coefficients. This result means that a positive value for the
electrostatic interaction energy of the inhibitor with these
two particular amino acids will favor binding, suggesting
that the inhibitor with a more positive substituent in the
catalytic region would increase the inhibitory potency. In
the 46 X-ray protein/ligand complexes, all of the inhibitors
except 32P (1TQF) formed a hydrogen bond with Asp32
or Asp228.
The abovementioned Tyr198 residue, with a hydroxyl

group, is assigned a positive coefficient. Thus, the positive



Liu et al. BMC Structural Biology 2012, 12:21 Page 15 of 20
http://www.biomedcentral.com/1472-6807/12/21
substituents of the inhibitors should strengthen the bind-
ing of these inhibitors. Gly34, with a backbone carbonyl,
and Thr72, with a hydroxyl group, are assigned positive
coefficients. The positive substituents of the inhibitors
should strengthen the binding of these inhibitors. The
region (Lys224) between the S1 and S1’ pockets also
results in positive coefficients, suggesting that this is
another area where more positively charged substituents
of the inhibitors can interact.

Conclusion
In the present study, we report an application of one of
the newer 3D QSAR methods developed by A. R. Ortiz
[30]. COMparative BINding Energy (COMBINE) [31-37]
to a data set of 46 X-ray co-crystallized inhibitors of
BACE-1. Based on the binding conformations obtained
by superimposing 46 X-ray protein/ligand complexes, two
predictive and robust COMBINE models were developed
by correlating the pIC50 values with the van der Waals
and electrostatic interactions that exist between the inhibi-
tors and each protein residue. The reliability of the models
was verified by the inhibitors in the testing set. The two
models develop were (i) a 3-PC distance-dependent di-
electric constant model (built from a single X-ray crystal
structure) with a q2 value of 0.74 and an SDEC value of
0.52; and (ii) a 5-PC sigmoidal electrostatic model (built
from the actual complexes present in the PDB) with a q2

value of 0.79 and an SDEC value of 0.41.
The conventional 3D-QSAR approaches, such as

CoMFA and CoMSIA [41], are limited because their pre-
diction functions rely solely on the physico-chemical
parameters of substituents in a congeneric series of com-
pounds or on molecular interaction fields calculated at
discrete points in a three-dimensional (3D) lattice. More-
over, they cannot provide information concerning protein-
ligand interactions. The COMBINE method used in the
present study can offer detailed information describing
the protein-ligand interactions and serve as a QSAR
model to assess the activity of the compounds. In our
3-PC COMBINE model, the differences in the inhibi-
tory activity of the set of inhibitors are primarily due to
the van der Waals interactions with Tyr71, Gln73,
Ile110, Tyr198, Thr231, Thr232 and Asn233 and the
electrostatic interactions with Asp32, Gly34, Thr72,
Arg128, Tyr198, Gly230, Thr232, Asn233, Arg235,
Arg307 and Ser325. Thus, a total of 15 active-site resi-
dues of the receptor may be vital for ligand binding.
Accordingly, strong inhibitors should have structural
features that participate in favorable interactions with
these protein residues. These residues are important for
fine-tuning the inhibitory potency.
In our study, we did not investigate the electrostatic deso-

lvation effects computed with a Poisson-Boltzmann model,
which has been proven to yield improved COMBINE
models in several previous studies [31,33,54,55]. Neverthe-
less, our COMBINE models provided useful insights
that can be used to design novel BACE-1 inhibitors for
the treatment of Alzheimer’s disease.

Methods
Data set
The data set used for the QSAR analysis contains 46
BACE-1 inhibitors. All of these inhibitors are ligands
that were co-crystallized with the enzyme and belong to
structurally different classes that were selected from the
literature so as to maintain the spread of biological ac-
tivity and structural diversity within and between the
series. These molecules are derivatives of the following
classes: eight-residue transition-state inhibitors [52,53],
statine-based core structures [56], hydroxyethylamines
[57-60], hydroxy ethylamines [61], hydroxyethyl secondary
amine isosteres [62], isophthalamides [63,64], aminoethy-
lene tetrahedral intermediate isosteres [65], cycloamide–
urethanes [66], macrocyclics [67], macroheterocyclics
[68], macrocyclic tertiary carbinamines [69], aminohetero-
cycles [28], piperidines [28], aliphatic hydroxyls [28], isoni-
cotinamides [70], oxadiazoyl tertiary carbinamines [71],
spiropiperidine iminohydantoins [72], piperazinones [73],
imidazolidinones [73], acylguanidines [74], ψ[CH2NH]
reduced amide isosteres [75], 1,3,5-trisubstituted aromatic
[27], pyrrolidines [76] and piperidines [76]. Based on the
Tanimoto coefficient using the ‘selector’ utility in SYBYL
software (version 8.1) [77], these molecules were found to
meet the structural diversity requirements. The 46 X-ray
structures of BACE-1/inhibitor complexes used in this
study are 1W51, 1TQF, 1YM2, 1YM4, 2B8V, 2F3E, 2F3F,
2IQG, 2IRZ, 2IS0, 2OAH, 2OHL, 2OHM, 2OHP, 2OHQ,
I2OHR, 2OHS, 2OHT, 2OHU, 2P83, 2PH6, 2B8L, 2QZL,
2ZE1, 2QP8, 2VIE, 2VJ7, 2VJ9, 2VNM, 2VNN, 2WF0,
2WF1, 2ZDZ, 2FDP, 3CIB, 3CIC, 3CID, 3DUY, 3DV1,
2P4J, 3FKT, 2QK5, 1XS7, 1FKN and 1M4H. All of these
structures were retrieved from the Brookhaven PDB [42].
The inhibitory activity data were obtained from the

BindingDB database [78]. IC50 values are available for
most inhibitors except for the complexes 1FKN, 1M4H,
1XS7 and 2FDP, for which IC50 values were calculated
from Ki values using the Cheng-Prusoff equation [79,80]:

ΔGbind ¼ RTlnKi ¼ RTln IC50 þ 0:5Cenzyme
� �

� RTlnIC50 ð1Þ

R is the ideal gas constant, T is the temperature in K
and Cenzyme is the concentration of the enzyme. In kin-
etic studies of BACE-1 and test BACE-1 inhibitory
effects of some small molecules, the concentration of
BACE-1 was 10 or 20 nM [81]. In practical applications,
this concentration is negligible and can be omitted.
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The IC50 values were converted to negative logarith-
mic values (i.e., pIC50), which range from 2.7 to 9.5, a
range of almost seven orders of magnitude. Table 1 lists
the molecules used in this study along with their experi-
mental pIC50 values.
Inhibitors alignment
Before superimposition, each of the 46 crystal structures
was inspected, the best quality chain and the co-
crystallized ligand were selected if the crystal structure
has multiple chains, and the other chains were removed.
In addition, except for the water molecules located in
the active site, all other water molecules and cofactors
were removed from the crystal structures. For alignment,
we translocated the other 45 co-crystallized ligands into
the binding pocket of 1 W51 by three protocols. Proto-
col 1. We did not refine the other 45 co-crystallized
ligands inside their respective protein, and translocated
them directly to the binding pocket of 1 W51 by a
superimposition method using the Cα atoms (with the
1 W51 structure as the reference [60]). Using the program
Accelrys DS viewer (version 1.7, Accelrys Inc.) [45], the 46
co-crystallized ligands of BACE-1 were automatically put
into the binding pocket of 1 W51 (Figure 6). Subse-
quently, each BACE-1/inhibitor complex (each inhibitor
and A chain of 1 W51) was energy minimized using the
AMBER 9.0 program [82]. Following the completion of
the molecular alignment processes, each inhibitor con-
formation in the binding pocket was individually
inspected. Protocol 2. We did refine the other 45 co-
crystallized ligands before translocation and then used the
same method discussed in protocol 1 to align the mole-
cules before energy minimization was performed. Proto-
col 3. We used a docking method to translocate the other
45 co-crystallized ligands to the binding pocket of 1 W51
for alignment, followed by the same energy minimization
approach. Docking experiments were performed using the
Surflex program [83,84] with an empirical scoring func-
tion (based on the Hammerhead docking system). The
empirical scoring function has been updated and re-
parameterized with additional negative training data along
with a search engine that relies on a surface-based mo-
lecular similarity method. Standard parameters were used
as implemented in the SYBYL software (version 8.1) [77].
The search strategy of Surflex employs an idealized ligand
(called protomol), which uses various molecular frag-
ments. Molecular fragments were tessellated in the active
site and optimized based on the scoring function. The
search algorithm uses the morphological similarity
function, which is evaluated between the protomol and
the putative ligands. For the docking algorithms, a post-
dock minimization procedure was applied using the BFGS
quasi-Newton method and an internal Dreiding force
field. For each compound, the top 30 ranked poses were
saved.

Parameterization of complexes
The parametrization was performed using the xLEaP
module of the AMBER9.0 program [82]. The all-atom
AMBER 1994 force-field parameters were assigned to
the protein atoms [85]. The aspartate residues located in
the active site were adjusted to an ideal protonation state
(Asp32 was protonated, whereas Asp228 was ionized)
based on previous studies [20,43,46].
Each of the 46 BACE-1 inhibitors was assigned AM1-

BCC charges and fully optimized at the AM1 level using
the MOPAC 6.0 program [86]. The ligand structures
were modified using the antechamber suite of the
AMBER program to create input files that could be read
by Leap to generate the parameter and topology files.
The antechamber suite has been developed to be used
with the general AMBER force field (GAFF) for small
molecules [87].

Energy minimization of complexes
For comparison purposes, we not only performed the
energy minimization on the BACE-1/inhibitor complexes
(each inhibitor and the A chain of 1W51) with the above-
mentioned protocols, but also applied a similar energy
minimization approach on the 46 complexes present in
the PDB. The generalized Born (GB) continuum model
for the solvation free energy is a fast and accurate alterna-
tive to an explicit solvent model for molecular simulations
[88]. The GB model corresponding to igb = 5 in the
AMBER 9.0 program was used. Each BACE-1/inhibitor
complex was energy minimized in a sequential manner.
First, the hydrogen positions were refined with 1000 steps
of steepest descent energy minimization. Then, the entire
system was optimized with 2000 steps of steepest descent
and 3000 steps of conjugate gradient energy minimiza-
tions. The convergence criterion was that the root-mean-
square value of the Cartesian elements of the energy gra-
dient was less than 10−2 kcal/(mol�Å). A nonbonded cutoff
of 10.0 Å and a distance-dependent dielectric constant
(E=4rij) were used. This rather conservative minimization
protocol was deemed sufficient to account for the minor
conformational adjustments reported in the formation of
the various complexes.

COMBINE analysis
The gCOMBINE program [38] (provided by A. Morreale)
was used to decompose the interaction energy between
the inhibitor and the protein in each minimized complex.
That is, this program was used to calculate the Lennard-
Jones and electrostatic interactions between the inhibitor
and each protein residue. gCOMBINE is a GUI based on
Java Swing, and the required external libraries, which are



Liu et al. BMC Structural Biology 2012, 12:21 Page 17 of 20
http://www.biomedcentral.com/1472-6807/12/21
composed primarily of the command-line COMBINE pro-
gram (provided by A. R. Ortiz) [30] for the algorithm of
COMBINE, can be found in many articles [31-37].
In the first step of the COMBINE analysis, a set of

structures of receptor-ligand complexes was prepared
and the total binding energy was calculated for each of
these complexes. The following step was the decompos-
ition of the receptor-ligand interaction energy on a per
residue basis for each of the complexes. An X matrix
was then constructed in which the rows represent the
different compounds studied and the columns contain
the residue-based energy information, which is separated
into two blocks (van der Waals and electrostatic), plus
an additional column containing the experimental binding
affinities. This X matrix was then projected onto a small
number of orthogonal latent variables (PCs) using partial
least-squares (PLS) analysis, and the original energy terms
were given weights, wi, according to their importance in
the model, in the form of PLS pseudocoefficients. The
higher these coefficients are, the more significant they are
for explaining the variance in the experimental data. Thus,
in this study, the van der Waals interactions, ui

vdw, and the
electrostatic interactions, ui

ele, between the inhibitor and
each protein residue in the energy-minimized structures
of the BACE-1/inhibitor complexes were selected to esti-
mate the pIC50 value:

pIC50 ¼
X

i

wvdw
i uvdwi þ

X

i

wele
i uelei þ C ð2Þ

The important residues contributing to the activity
should exhibit large wi

vdw and/or wi
ele values. The vari-
ables that were unimportant for activity were discarded
and the remaining variables were used to build the final
PLS model.
Since there are 375 amino acids in the protein and

two energy contributions (van der Waals and electro-
static) are considered for each residue, 750 variables
were used to characterize each complex. These energy
descriptors comprised the matrix for the gCOMBINE
program. No scaling or variable selection was performed
except for a mild pretreatment that consisted of zeroing
all the variables with absolute values lower than
0.01 kcal/mol and removing those variables with a
standard deviation below 0.01 kcal/mol. This procedure
reduced the number of energy descriptors that entered
the PLS analysis. The optimal dimensionality of the PLS
models was determined by monitoring the cross-validation
indexes as a function of the number of principal compo-
nents (PCs) extracted. The cross-validation procedure
employed the leave-one-out method. The predictive ability
of the resulting models was reported by both the cross-
validated correlation coefficient (q2) and the standard
deviation of error in predictions (SDEP).
Followed by energy minimization, for comparison pur-
poses, we not only performed COMBINE analysis on the
BACE-1/inhibitor complexes (each inhibitor and the A
chain of 1W51), but also performed COMBINE analysis
on the actual complexes present in the PDB after a
similar energy refinement. To guarantee the COMBINE
analysis is successful, it is important to ensure that the
protein is exactly the same for all complexes and that all
the residues are exactly the same. In addition, the same
active site accommodating the various ligands must be
identical for each complex. In the present study, we
found that the number of amino acids differed in some
complexes; therefore we applied a common number of
residues for all the complexes ("normalization") to remedy
this problem.
To study the robustness of the above procedure, the

complexes in the prediction sets were determined as
follows. In the complete data set, the pIC50 values varied
from 2.7 to 9.5, and therefore, the complexes were
classified into seven activity ranges from 2.5 to 9.5 using
increments of 1.0. One randomly chosen complex per
range was assigned to the prediction set, but two
complexes were chosen from the ranges [3.0−4.0] and
[4.0−5.0] because these two ranges contained the majority
of the complexes. As a result, a total of eight randomly
chosen complexes (inhibitors 2, 13, 15, 21, 36, 40, 42 and
44) were included in the prediction set.
Additional files

Additional file 1: Figure S1. Data set of the 46 co-crystallized ligands
of BACE-1 (Elarged pictures) Data set of the 46 co-crystallized ligands of
BACE-1.

Additional file 2: Figure S2. Cartoon representation of the active site
of the four BACE-1 X-ray structures used for the superposition study
(1W51, 1FKN, 2OHL, and 2OHS are in green, cyan, magenta and yellow,
respectively) with compound 1 shown as ball and sticks; hydrogen atoms
are omitted for reasons of clarity.
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