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Abstract

and structural alignments.

Background: Structural genomics approaches, particularly those solving the 3D structures of many proteins with
unknown functions, have increased the desire for structure-based function predictions. However, prediction of
enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other
members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational
changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by
which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based
methods for prediction of function is the absence (despite its importance) of a measure of similarity of the
physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed
around catalytic sites should be considered in addition to structural and sequence similarities.

Results: We showed that radial distribution functions (RDFs), which are associated with the local structural and
physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by
function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure
of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic
residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence

Conclusions: Our results demonstrate that the application of RDFs provides advantages in the functional
classification of enzymes by providing information about catalytic sites.

Background

High-throughput methods for structural genomics have
produced an increasing number of protein structures to
be solved by X-ray crystallography. The abundance of
protein structure information in the Protein Data Bank
(PDB) has increased the need and desire for structure-
based function prediction [1] and has contributed to
structure-based drug design [2]. However, two problems
remain regarding the prediction of enzyme function.
First, proteins within a superfamily, which are usually
expected to share the same catalytic properties, can
catalyze different reactions. There are reports that
enzymes with 98% sequence identity, such as melamine

* Correspondence: endo@isthokudai.ac.jp

“Graduate School of Information Science and Technology, Hokkaido
University, North 14 West 9, Sapporo, Hokkaido 060-0814, Japan

Full list of author information is available at the end of the article

( BioMed Central

deaminase and atrazine chlorohydrolase, may catalyze
different reactions [3]. Second, two enzymes belonging
to different superfamilies or fold classes can catalyze al-
most identical reactions [4].

The function of a protein can be affected by a small
number of residues in a localized region of its three-di-
mensional structure [5]. Moreover, the specific arrange-
ment and conformation of these residues can be crucial
to a protein’s function and may be strongly conserved
during its evolution, even when the protein sequence
and structure change significantly [5]. For example, it
was reported that the positioning of the reactive region
of a substrate with respect to a cofactor is generally con-
served in flavoenzymes [6].

Two methods for the description of local structures
have been developed for predicting enzymatic functions.
First, in the element-based description of catalytic

© 2012 Ueno et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:endo@ist.hokudai.ac.jp

Ueno et al. BMC Structural Biology 2012, 12:5
http://www.biomedcentral.com/1472-6807/12/5

residues, the catalytic roles in an enzymatic reaction are
defined as acid-base, stabilizer or modulator roles [7].
Some insight into enzymatic reactions can be gained
using this method, but manual annotation is inherently
required. In addition, it is often difficult to differentiate
between the acid—base and stabilizer roles because most
structures solved by X-ray crystallography provide no in-
formation about hydrogen atoms. The second method is
based on descriptions of substructures within the local
structures of enzymes [8-23]. Many approaches to
analyze and compare local structures have been pro-
posed. One group of algorithms, which includes the
PINTS [8], ETA [9-11] and FLORA [12] algorithms,
scans protein structural databases using pre-calculated
or automatically generated templates. Another group
includes algorithms that compare the substructural epi-
topes of proteins using geometric hashing [13-15]. Simi-
larly, SiteEngine [16] uses the concept of pseudocenters
[17] to define the properties of the corresponding sur-
face. None of these approaches can characterize catalytic
sites and create feature vectors, even though they assess
the similarity between catalytic sites.

In this study, we examine the structures of oxidoreduc-
tases and transferases using radial distribution functions
(RDFs) that encode radially distributed properties of ac-
tive sites centered around the reacting points of bound
ligands. Thus, element-based and substructure descrip-
tions are integrated into the RDF, assuming that catalytic
roles are restricted by distances and that different cata-
lytic residues can play identical roles. Although the topo-
logical correlation vector method of Stahl et al. [18] and
WaveGeoMap, developed by Kupas et al. [19], provide
feature vectors related to enzyme cavities, these descrip-
tions use patches of active sites, regardless of the orienta-
tion of the catalytic residues. Therefore, it is still unclear
whether the orientation of active sites around a reacting
point is related to enzymatic function and how much of
the orientation is conserved. Our method provides a dif-
ferent view of enzymatic function by focusing on the
physicochemical properties surrounding a reacting point
found in enzyme cofactors.

Results

Characteristic physicochemical pattern of active sites

To examine how catalytic residues contribute to the ra-
dially distributed properties of active sites, we decom-
posed the RDF into the total charge for each residue.
Figure 1 shows the contributions made to the peaks and
minima of the RDFs by the various catalytic residues sur-
rounding the carbon atom (C4N) of the nicotinamide ad-
enine dinucleotide (NAD) molecule in 1dc6 and the iron
atom (FE) of the heme (HEM) molecule in 1sog (PDB).
The first local minimum in 1dc6 corresponded to the
nucleophilic cysteine residue and the asparagine residue
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that binds NAD (Figure 1A). The second local minimum
and the last two minima were affected by the threonine
residue that binds the substrate (Figure 1A). The peak at
6 A corresponded to the histidine residue that activates
the thiol group of the cysteine residue and to the cyst-
eine residue itself (Figure 1A). The last two peaks were
derived from the arginine residue that binds the sub-
strate (Figure 1A). All of these five residues in 1dc6 are
known to be critical for the enzymatic reaction. The first
peak in 1sog corresponded to the proximal histidine resi-
due (the heme axial ligand) and the distal histidine resi-
due (the proton acceptor) (Figure 1B). The subsequent
minimum at 7.5 A was slightly affected by the histidine
residues and the arginine residue (a transition state
stabilizer) (Figure 1B). The small peak at 8.5 A shown in
Figure 1B was derived from the tryptophan residue (a
radical intermediate). We can show that all of the four
residues described in 1sog also play an important role in
the catalytic reaction. Moreover, the degenerated total
charge of the catalytic residues corresponded to the RDF
with a range from 0 to 5 A for both enzymes (Figure 1C,
D). The bias of the RDFs toward a negative charge may
be due to ignoring hydrogen atoms. These results show
that catalytic residues are primarily responsible for the
physicochemical properties of active sites.

Subsequently, to investigate whether the RDFs ad-
equately discriminate between active sites, we selected
pairs including the wild-type and a mutant form of the
enzymes from the dataset. We then calculated the aver-
aged Euclidean distances or cosine distances (1 minus
the cosine similarity) of matched pairs (wild/wild or mu-
tant/mutant) and mismatched pairs (wild/mutant) for
each enzyme compared to the distance measure (the
complement 100 minus the match score) obtained using
SiteEngine (Table 1). As shown in Table 1, most of the
pairs were agglomerated within a Euclidean distance of
222, and the RDFs were successful in revealing their
similarity. The pairs from MDH_ECOLI were located ap-
proximately at a Euclidean distance of 322 from each
other; however, two identical mutants were reported to
have different conformations (PDB code: 1ib6 and 1lie3)
[24]. Long distances were observed between the mis-
matched pairs compared to those of the matched pairs
(Table 1). Of the mismatched pairs, the CCPR_YEAST
proteins were particularly close to each other (< a Eu-
clidean distance of 199), and the RDFs failed to identify
their dissimilarity. However, the conformation of the
catalytic site in the CCPR_YEAST protein is not altered
by the mutation included in this analysis (PDB code:
3cep) [25]. These results show that the Euclidean dis-
tance between the RDFs reflects the conformational
changes in the active sites. The match scores from
SiteEngine were similar to the distances between the
RDFs. Although the distances between the RDFs were
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Figure 1 RDF of total charge. The line indicates the distances contributing to each catalytic residue peak for (A) the C4N atom of NAD in 1dc6
and (B) the FE atom of HEM in 1sog (PDB) and to each peak of degenerated catalytic residues and the RDFs for (C) 1dc6 and (D) 1sog (PDB).

Table 1 Effect of mutations on the physicochemical
properties of active sites

UniProt Ligand RDF SiteEngine

Euclidean 1 - cosine 100 - match

score
w/w, w/m w/w, w/m w/w, w/m

m/m m/m m/m
CCPR_YEAST HEM 198 195 0.0041 00041 30.7 24.5
CHOD_STRSO FAD 222 358 0.0015 0.0039 519 594
FPRA_MYCTU FAD 168 231 00039 00053 30.7 56.6
NDP/ODP 228 340 00073 00147 38.2 74.4
FRDA_SHEFN FAD 219 605 0.0054 0.0400 14.1 132
G3P_BACST  NAD 131 164 0.0017 0.0023 23.1 26.9
IDH_ECOLI NAP 370 369 00357 00312 19.5 55.8
MDH_ECOLI  NAD 322 385 00023 00133 295 322
NIAT_MAIZE  FAD 163 300 0.0037 00132 250 37.2
OYE1_SACPS FMN 201 224 00051 00064 343 403

The w/w and m/m columns show wild-type/wild-type or mutant/mutant pairs.

The w/m columns show wild-type/mutant pairs. The results with statistically
significant differences between the match and mismatch are shown in bold
font. The statistical significance was assessed by Wilcoxon rank sum tests with
a 5% significance level.

slightly poorer than the match scores in terms of the
number of successful discriminations, the feature vector
of the RDF is almost equivalent to the measure of
SiteEngine in discriminating between the active sites.
Thus, the active sites are characterized based on the phy-
sicochemical patterns of the RDFs.

Active site properties as the critical determinants of
enzyme function
To investigate whether the RDFs account for a major
part of the enzyme function, clustering of the RDFs was
performed using a self-organizing map (SOM) ap-
proach. Figure 2 shows the results for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and cytochrome
¢ peroxidase (CCP). The GAPDH residues were mainly
distributed in the area around node [39, 6], including
the two different catalytic sites (Figure 2). Within the
GAPDH distribution, 1 dc6 from Escherichia coli and
1ng5 from Bacillus stearothermophilus (PDB) were
closely positioned at nodes [38, 5] and [38, 9], respect-
ively. The only difference between the catalytic sites in
this orthologous pair is the replacement of cysteine 149
with serine leading to a 10*-fold reduction in dehydro-
genase activity [26] (Figure 3A).

Similarly, the CCP residues were mainly localized in the
area around node [33, 10], including the two different
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Figure 2 Nonlinear projection of RDFs. The SOM was run using an RDF with an Epanechnikov neighborhood function in a [46, 28]-sized
rectangular lattice (left) and a magnified section (right). Following training, each node was colored according to the enzymes or catalytic residues
in the RDFs that were mapped onto it. The size of the squares or triangles indicates the relative frequency of the mapped RDFs.
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catalytic sites (Figure 2). Within the CCP distribution,
1sog and 1dso from Saccharomyces cerevisiae (PDB) were
positioned at nodes [36, 8] and [34, 13], respectively. In
the active site of 1dso, histidine 175 is replaced by glycine
(Figure 3B). Thus, the results show that the obtained clus-
ters of enzymes consist of clusters of their catalytic sites,
suggesting that the RDFs of active sites account for a major
part of the enzyme function.

Prediction of enzyme functions based on the
physicochemical properties of active sites

In this study, we sought to identify functionally related
enzymes by clustering active sites. First, we utilized the
EC number for assignment of RDFs to analyze the SOM
clustering. An overview of the SOM is summarized in
Additional files 1-4, for Additional file 1: Tables S1,
Additional file 2: Table S2, Additional file 3: Figure S1,

The replaced residues are denoted and colored.

Figure 3 Comparison between active sites in homologous enzymes mapped onto the SOM. (A) Superposition of 3-phospho-
glyceraldehyde dehydrogenase (PDB code 1dc6, node [38, 5]; and PDB code 1ng5, node [38, 9]). (B) Superposition of cytochrome ¢ peroxidase
(PDB code 1sog, node [36, 8]; and PDB code 1dso, node [34, 13]). The catalytic sites are indicated by light blue (1dc6, 1sog) and gray (1ng5, 1dso).
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Additional file 4: Figure S2. Tables 2 and 3 show the div-
ision of the RDFs into nodes, each of which is labeled
with its EC number. The partial RDFs labeled with the
EC numbers indicated a well-defined segregation, dis-
criminating among 76% of the EC numbers of oxidore-
ductases and among 55% of the EC numbers of
transferases.

Then, to evaluate how many of the active sites are asso-
ciated with enzyme functions, we performed a statistical
analysis of the results of the SOM clustering. The averaged
F-measure of all of the assigned EC numbers of oxidore-
ductases was 0.87, ranging from 0.22 to 1.00. Over 88% of
the active sites of oxidoreductases were assigned to an EC
number (see Additional file 5: Table S3). Similarly, the
averaged F-measure of all of the assigned EC numbers of
transferases was 0.88, ranging from 0.33 to 1.00. Over 88%
of the active sites of transferases were assigned to an EC
number (see Additional file 6: Table S4).

Prediction performance in comparison with sequence and
structural alignment-based annotation

To clarify the contribution of the RDFs to the functional
annotation of the enzymes, we examined the relationship
of the RDFs with different measures, such as sequence
and structural alignment. First, we performed statistical
analyses of these measures. Tables 4 and 5 show the par-
tial correlation coefficients between the SOM distance,
active site distance, local and global sequence similarities
and structural similarity. The SOM distance among the
RDFs was distinct from the other methods.

Next, the SOM distances among the RDFs were evalu-
ated for their ability to annotate enzyme function in
datasets that had not been correlated with known func-
tions by either structural or sequence alignments due to
pairwise identities below 25%. Tables 6 and 7 show the
area under curve (AUC) values of the SOM distances for
these datasets. In oxidoreductases, these values, ranging
from 0.729 to 0.746, represented higher performance
compared to the values obtained using sequence and
structural alignments (Table 6). In transferases, the AUC
values of 0.800 and 0.790 for the datasets with pairwise
identities below 15% also represented higher performance
compared to the values obtained using sequence and
structural alignments (Table 7). These results showed

Table 2 SOM assignment of RDFs of oxidoreductases

Node composition EC SCOP® Catalytic residues
Occupied by one class 2,929 (156) 1,966 (77) 949 (67)

Conflict* 129 (27) 42 (9) 112 (15)

All RDFs 4,092 (241) 2,526 (100) 1,910 (231)

The numbers indicate the RDF counts assigned to the nodes, and the number
of classes is shown in parentheses. The SOM was performed by the RDF with
an Epanechnikov neighborhood function in a [46, 28]-sized rectangular lattice
*One class is more than 80% of the total. The nodes were labeled using SCOP[44].
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Table 3 SOM assignment of RDFs of transferases

Node composition EC scop’ Catalytic residues
Occupied by one class 885 (59) 526 (37) 356 (40)

Conflict* 25 (6) 12 (3) 1)

All RDFs 1,444 (119) 797 (60) 736 (122)

The numbers indicate the RDF counts assigned to the nodes, and the number
of classes is shown in parentheses. The SOM was performed by the RDF with a
cut-Gaussian neighborhood function in a [40, 19]-sized rectangular lattice.

*One class is more than 80% of the total. "The nodes were labeled using SCOP[44].

that the SOM distance predicts enzyme function, even
for enzymes with weak conventional similarities. More-
over, the SOM distance outperformed the match score of
the SiteEngine based on substructure.

We then confirmed the ability of detecting enzymes
with pairwise identities below 25%. While the ETA
detected 63 oxidoreductases and 65 transferases, the
numbers of enzymes assigned to the nodes within the
SOM distance of 5 nodes were 454 of oxidoreductases
and 387 of transferases, suggesting that the coverage of
the SOM detection was higher than that of the ETA
(Table 8).

Structural genomics prediction

To perform a blind validation for proteins with unknown
function, we used the SOMs trained by oxidoreductases
and transferases to predict enzyme functions of 102 pro-
teins in structural genomics. While the coverage of the
ETA predictions was 31%, the SOM predictions covered
57% of the query structures (Table 9). Of the predicted
EC numbers, the rates of validated prediction that the
EC number is compatible with the bound ligands were
59% of the ETA predictions and 72% of the SOM predic-
tions, suggesting the SOM predictions provide a clue to
annotate these functions (Table 9).

Discussion

Without using any templates, the RDFs centered around
active sites are capable of clustering oxidoreductases and
transferases based on their function. In this study, we ap-
plied our method only to the oxidoreductase and

Table 4 Partial correlation between the different
measures of oxidoreductases

Measures MAMMOTH Needleman-  Smith- Site SOM
Wunsch  Waterman Engine* distance

MAMMOTH 0.409 0.148 -0318 -0.084

Needleman- 0409 0404 -0.198  0.009

Wunsch

Smith- —0.148 0.404 -0.101  -0.015

Waterman

SiteEngine* -0318 —0.198 —-0.101 0.052

SOM distance —0.084 0.009 -0.015 0.052

*The complement 100 minus the match score.
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Table 5 Partial correlation between the different
measures of transferases
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Table 7 Evaluation of the SOM distance with the RDFs for
the prediction of enzyme function of transferases

Measures MAMMOTH Needleman- Smith- Site SOM
Wunsch  Waterman Engine* distance

MAMMOTH 0375 —-0.020 -0.284 -0078

Needleman- 0375 0.642 -0309 —-0.006

Wunsch

Smith- —0.020 0.642 -0.142  -0.058

Waterman

Site -0.284 -0.309 -0.142 0.049

Engine*

SOM -0.078 —0.006 —0.058 0.049

distance

*The complement 100 minus the match score.

transferases classes of proteins. We focused on these
classes for the following reasons. First, oxidoreductases
exhibit a great variety of catalytic sites compared to other
known classes, possibly because the redox potential is
modulated by oxidoreductases. Second, the reaction cen-
ters are well-defined in oxidoreductases and transferases,
consisting of a substrate and cofactor that mechanistic-
ally exchange electrons and protons. The catalytic resi-
dues are generally capable of assisting in the migration
of protons from the reaction center, a role that strongly
resembles the roles of other enzyme classes. For ex-
ample, caspase-1 is a hydrolase that catalyzes the hydro-
lytic reaction of peptides; the cysteine residue
nucleophilically attacks the substrate, which is followed
by protonation of the histidine [27]. This mechanism
closely resembles the catalytic behavior observed for
GAPDH, an oxidoreductase [28]. Figure 4 shows the pat-
tern of the Cys-His catalytic diad in 1bmq was similar to
that in 1dc6. The peak shift may be due to the different
position between substrate and cofactor. These similar-
ities suggest that our method can be applied to other
enzymes to predict additional protein functions. To
apply our method to other enzymes, the reaction centers
will require manual annotation. Reaction pairs published
by KEGG RPAIR [29] that include candidate reaction
centers are available for other enzymes and can be used
for this purpose.

Understanding the orientation of catalytic sites is im-
portant for drug design. For a given G protein-coupled

Table 6 Evaluation of the SOM distance with the RDFs for
the prediction of enzyme function of oxidoreductases

Dataset* AUC

SOM distance SiteEngine Alignment
MAMMOTH 0.746 0410 0415
Needleman-Wunsch 0.729 0.558 0654
Smith-Waterman 0.744 0.541 0471

*The datasets were created by culling the pairs with greater than 25% pairwise
identity. The SOM was run using an RDF with an Epanechnikov neighborhood
function in a [46, 28]-sized rectangular lattice.

Dataset* AUC

SOM distance SiteEngine Alignment
MAMMOTH 0.800 0.626 0376
Needleman-Wunsch 0.790 0678 0474

*The datasets were created by culling the pairs with greater than 15% pairwise
identity. The SOM was run using an RDF with a cut-Gaussian neighborhood
function in a [40, 19]-sized rectangular lattice.

Table 8 Identification of remote orthologs assigned to
the same nodes in the SOM

PDB query PDBtarget EC number Identity (%) ETA
TjTwWA 1xkdB 1.1.142 9.9 -
2aczA 1jryA 1.3.99.1 17.1 detected
TnekA TjrxA 1.3.99.1 174 -
TnenA TjrxA 1.3.99.1 174 -
1qjdA 2aczA 1.3.99.1 174 detected
1d4dA 2b76A 1.3.99.1 18 detected
Td4eA TkfyM 1.3.99.1 18 -
1i2zA Tuh5A 1.3.19 214 -
2gsmA 2qpeA 1.9.3.1 214 -
TocrA 2gpeA 1931 226 -
TgleA 2qpeA 1.93.1 226 -
TartA 2qpeA 1931 23 -
1qr6B 2dvmA 1.1.1.38 231 detected
2dvmA 1pjE 1.1.1.38 23.1 -
1d1gA 1rb2A 1513 24.9 -
Tra2A 1d1gA 1513 24.9 -
TcmOA 1fy7A 23.148 9.8 -
1cmOA TmjoA 23.148 10.6 -
2dpmA Tnw5A 2.1.1.720 136 -
Tnw7A 2orek 2.1.1.720 14 -
1gc3E T0x0A 26.1.1 155 -
1gc3F 9aatA 26.1.1 15.5 -
TahgA 1j32B 26.1.1 15.8 -
TakaA 1gc3F 26.1.1 16 -
3bo5A 1zkkB 2.1.1430 17.5 -
1g55A 2qrvD 2.1.1.370 17.6 -
3pgtA 2cagA 25.1.18 19.2 -
2fyfA 1bjoA 26.1.52 19.6 -
1dI5B TiTnA 2.1.1.770 20.5 -
1dI5B Tkr5A 2.1.1.770 20.5 -
TiTnA 1dI5A 2.1.1.770 20.5 -
Tkr5A 1dI5A 2.1.1.770 20.5 detected
3aatA 1gc3H 26.1.1 225 -
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Table 9 SOM predictions for the proteins with unknown
function in structural genomics

PDB (Ligand) SOM ETA

1h2hA (NAD)  1.3.1.26 1.4.1, 431

TnpdA (NAD)  1.14.99.3 1.1.1,54.99

1061A (PLP) 2.1.1.104 2.6.1, 634

108cA (NDP) 1.1.1.2 233,544,632

1rljA (FMN) 1.8.1.2 241

1t57A (FMN) 1.8.1.9 321

Tue8A (HEM) 1219 1.14.14,232,277,354, 361,
4299513

1ve3A (SAM) 2.1.1.104 2.1.1,3.13

1ve3B (SAM) 26.1.1 2.1.1,3.13,353,513

1xg6A (NAP) 1244 1.6.5

1y81A (COA) 2.3.1.85 1.13.11,232,27.10, 281, 36.1, 363,
412,431,632

1yoaA (FAD) 1312415130 13.1,1.6.8,274,3421,37.1

1yreD (COA) 2.1.1.79 1.1.1,23.1,34.11,34.22,42.99

2e6uX (COA) 25118 351

2eisA (COA) 2516 312

2gluA (SAM) 23.1.168 2.1.1,3424

2gqgfA (FAD) 13.1.26 1.1.1,1.186,133,1.7.1,27.1,277,
32.1,332,3421,41.1,633,63.5

2gswA (FMN)  1.18.1.2 151,171,314

2ptfA (FMN) 1.8.1.7 1.14.13

2g46A (NAP) 1244 1.6.5

3cgvA (FAD) 1.14.14.1 241,611

3dmeB (FAD)  1.18.1.2 352

3f2vA (FMN) 1.6.5.2, 1.6.99.2 1.10.99

The EC numbers compatible with the bound ligands are shown in bold font.

receptor, there are several types of ligands, classified as
conformational change inducers, agonists, antagonists
and inverse agonists [30]. The RDFs describe the orienta-
tion of catalytic sites, detecting conformational changes
as well as enzyme function (Table 1). In addition, the de-
scription of the microenvironment produced by the RDF
is better than simple superposition of catalytic sites when
a particular functional group is not present (Figure 3).

In structural genomics, the RDFs would be advanta-
geous for finding remote orthologs, especially when evo-
lutionary pressure has enhanced sequence/structural
divergence. Although sequence-based methods are the
first choice for functional annotation, proteins with
sequence identities of < 20-35% are problematic [31].
Measuring structural similarity is more informative for
enzyme functions exhibiting distant relationships and/or
convergent evolution. However, proteins within well-
known superfamilies sharing the same structural top-
ology, such as TIM barrels, do not always have the same
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functions [32]. In these cases, the measure of structural
similarity alone does not correspond to functional simi-
larity. Therefore, a specific measure representing func-
tionality is desirable. We focused specifically on the local
features around the catalytic site. Compared to the struc-
tural alignment, the functional annotation was reinforced
by focusing on the reaction center (Tables 6 and 7). It is
also likely that convergent evolution of an enzyme func-
tion depend less on evolutional process than on physico-
chemical properties of active sites (Tables 8 and 9). For
proteins with unknown function, 41% of query structures
were newly classified into the EC numbers (Table 9).
However, the true performance of our method will be
evaluated by revealing the actual function of those pro-
teins. The combination of results obtained using differ-
ent approaches will also improve the accuracy of
function predictions.

Conclusion

We propose a novel classification method for the predic-
tion of enzymatic function based on the physicochemical
properties of catalytic sites. The RDFs for predicting en-
zymatic functions are thus far limited to enzymes with
bound ligands. For ligand-unbound structures, either
homology modeling or superposition based on ligand-
bound structures can be applied to our method. Our
results suggest that the RDF provides a different perspec-
tive compared to structural and sequence alignments by
focusing on a local feature because catalytic sites are
thought to be more highly conserved than the overall
sequences or structures of enzymes.

Methods

Dataset of active sites

Two sets of 1,880 oxidoreductase (EC1) and 789 transfer-
ase (EC2) protein structures were initially obtained from
the PDB. In the case of NMR data, we used the first model
in the PDB file. To simplify the filtering of the candidate
active sites, structures including at least one cofactor or
analogous compound were manually selected based on the
annotation of PDBsum [33]. In this study, we used the sub-
structures within 10 A from the reaction centers of these
cofactors as active site data. The reaction centers [34] of
the cofactors are extensionally defined as follows: (1) atoms
associated with bond formation and cleavage; (2) atoms
exhibiting a change in charge; and (3) corresponding atoms
in analogous compounds (see Additional files 1 and 2,
Additional file 1: Tables S1, Additional file 2: Table S2). In
oxidoreductases, a cofactor generally forms a part of the
reaction center, acting as a donor and acceptor. Finally,
based on this definition, 4,092 oxidoreductase and 1,444
transferase active sites corresponding to reaction centers
were obtained. The subsequent encoding for comparison
of active sites also used the Cartesian coordinates of these
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Figure 4 Comparison between active sites in caspase-1 and 3-phospho-glyceraldehyde dehydrogenase. Structures of active sites in (A)
caspase-1 (PDB code 1bmq) and (B) 3-phospho-glyceraldehyde dehydrogenase (PDB code 1dc6) are drawn in stick representation. Comparison of
the RDFs of the total charge for (C) Tbmg and (D) 1dc6, where the line indicates the distances contributing to each peak of the Cys-His catalytic
diad and the RDFs for the C27 atom of MNO in 1Tbmg and the C4N atom of NAD in 1dc6.

reaction centers as a starting point. In addition, a set of
102 protein structures with the key words of “structural
genomics” and “unknown function” in the PDB was used
for a blind validation of function prediction.

Characterization of physicochemical properties of active
sites

The values of physicochemical atomic properties, in-
cluding the main chain of the amino acid residues, were
empirically calculated by the PETRA server [35,36]. The
atomic properties included were the total charge for
electrostatic interactions and o-electronegativity, n-elec-
tronegativity and effective atom polarizability for van
der Waals interactions. These properties are based on
the Partial Equalization of Orbital Electronegativities
(PEOE) [35], which is independent of 3D structures. Be-
cause the side chains of proteins show various confor-
mations, PEOE 1is suitable for describing their
properties.

Physicochemical encoding of active sites for the RDFs

The RDFs integrate the Gaussian distributions propor-
tional to a physicochemical property at a distance from a
starting point. Encoding of the RDF was performed by
the method of Aires-de-Sousa et al [37] with slight
modification, as described below. The RDF as a function
of the distance, 1, is given by the following equation:

W 1 (r—r)*
= Zi:l N (— TF) (1)

where N is the number of atoms in the active site residues;
r; is a constant for the inter-atomic distance between atom
i and the reaction center atom (see Additional file 1: Table
S1); @ is the fluctuation of the atoms around their aver-
aged positions; and p is an atomic property (see Add-
itional file 7: Figure S3). Thus, the RDFs naturally
combine active site structures and their physicochemical
properties, which exhibit an isotropic and rotationally

g(r)
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invariant nature. In addition, we tested the effect of
large ¢° in the RDFs to investigate the robustness to
conformational change, suggesting that the RDFs were
robust over a large range of B-factor (= 8m”0”/3) in the
PDB (see Additional file 8: Figure S4).

SOM clustering and SOM distance

SOMs provide a topology-preserving map using a non-
linear projection of high-dimensional data onto a low-
dimensional grid [38]. The low-dimensional grid is
composed of nodes that represent data clusters. The
neighboring nodes are connected to each other in the
sense that they receive similar updates. Hence, SOMs
provide information on the similarity between nodes.
The SOM was run using a batch algorithm with an
Epanechnikov or cut-Gaussian neighborhood function
and an initial update radius of 5 or 10 nodes via im-
plementation in the SOM Toolbox for Matlab (Math-
works, Inc.), which was developed in the Laboratory of
Computer and Information Science of the Helsinki
University of Technology.

In addition to the clustering, we also defined the SOM
distance, which is the Euclidean distance between the
SOM locations of the nodes on the grid, to obtain the
distance measure between the active sites encoded by
the RDFs.

Software for the alignment of sequences, structures and
active sites for comparative experiments

The sequences and structures were aligned using the
Smith-Waterman algorithm [39] or the Needleman-
Wunsch algorithm [40], both of which are implemented
in the EMBOSS program package [41], or the structure-
based alignment algorithms in the MAMMOTH pro-
gram package [42]. All of the pairwise alignments were
performed with the default parameters. The active sites
were compared using a geometric hashing algorithm
implemented in SiteEngine [16].

Evaluation of SOM clustering

The F-measure is defined as a harmonic mean of both pre-
cision and recall that measures the extent to which a clus-
ter contains only enzymes of particular EC classes and all
enzymes of that EC class. A cluster was defined as all
nodes labeled by an identical EC class. For a particular
node in the SOM, we can calculate the centroid by finding
the arithmetic mean of all of the RDFs. If an RDF in the
centroid vector has a high value, then the corresponding
EC class occurs frequently within the node. These EC
classes can be used as labels for the node. The F-measure
of a cluster with respect to an EC class was defined by the
following equation:
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Fe 2 X precision X recall

(2)

precision + recall

The precision of a cluster with respect to an EC class
was defined as follows:

.. m
precision = - (3)

where M is the number of enzymes in a specific cluster,
and m is the number of enzymes of the specified EC
class in the cluster. Recall is the extent to which a cluster
contains all of the enzymes of a specified EC class. The
recall of a cluster with respect to an EC class was defined
as follows:

m
I=— 4
recall = (4)

where N is the number of enzymes in the EC class. The
averaged F-measure for the validation of the classifica-
tion performance was obtained by calculating the average
of all of the EC classes, with 1 being the best value and 0
being the worst value.

Evaluation of the measures for predicting enzyme
functions

To estimate the degree of separation between two different
functions when using a certain pairwise measure, analysis
of a receiver operating characteristic (ROC) curve for the
SOM distance was performed as well as local, global and
structural alignments. Based on the cutoffs that determine
whether the protein-protein pairs are predicted to be
involved in the same function, i.e., true (match) or false
(mismatch), the data are divided into true positives (7TP),
false positives (FP), false negatives (FN), and true negatives
(TN). The true positive rate (TPR) and false positive rate
(FPR) are defined as follows:

P

TPR = ——
R=7p +FN (5)
and
FPR— 1T ()
 FP+ TN

The ROC curve is a graphical plot of TPR versus FPR,
showing the fidelity of discrimination at varying thresh-
olds. The AUC is defined as the area under the ROC
curve, representing the overall performance of discrimin-
ation. In this study, the SOM distances represented the
dissimilarities among the RDFs. In the alignments, the
similarities were the percentages of the number of
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aligned residues in the shortest protein.

Partial correlation coefficients between the measures

To remove the influence of another variable from the Pear-
son correlation, the partial correlation coefficients between
the measures were calculated from the correlation matrix,
Y. First, we computed the inverse matrix X7 = (1) of the
correlation matrix. Then, the partial correlation 6;; between
the measures i and j was defined by the following equation:

_ M (7)
In this study, we used the pseudo-inverse of the correl-
ation matrix in the first step [43].

6; =

Additional files

Additional file 1: Table S1. Descriptions of the oxidoreductases
mapped onto the SOM. File “TableS1xls” contains results of the SOM of
oxidoreductases. The 4,092 RDFs were mapped onto a [46, 28]-sized
rectangular lattice. The columns include a map position of a PDB code
with functional annotation.

Additional file 2: Table S2. Descriptions of the transferases mapped
onto the SOM. File "TableS2.xIs” contains results of the SOM of
transferases. The 1,444 RDFs were mapped onto a [40, 19]-sized
rectangular lattice. The columns include a map position of a PDB code
with functional annotation.

Additional file 3: Figure S1. The SOM labeled with the EC numbers
of oxidoreductases. File “FigS1.pdf” contains results of the SOM of
oxidoreductases. The 4,092 RDFs were mapped onto a [46, 28]-sized
rectangular lattice, where each color of the node shows the major EC
number in a node. The details of catalytic sites mapped onto the SOM
were described in Table S1.

Additional file 4: Figure S2. The SOM labeled with the EC numbers
of transferases. File "FigS2.pdf" contains results of the SOM of
transferases. The 1,444 RDFs were mapped onto a [40, 19]-sized
rectangular lattice, where each color of the node shows the major EC
number in a node. The details of catalytic sites mapped onto the SOM
were described in Table S2.

Additional file 5: Table S3. Confusion matrix of the SOM for the EC
numbers of oxidoreductases. File “TableS3.xIs" contains the confusion
matrix of the SOM for the EC numbers of oxidoreductases. Each column
of the matrix shows the number of RDFs in the assigned EC number, and
rows represent the oxidoreductase list of the actual EC numbers.

Additional file 6: Table S4. Confusion matrix of the SOM for the EC
numbers of transferases. File “TableS4.xIs" contains the confusion matrix
of the SOM for the EC numbers of transferases. Each column of the
matrix shows the number of RDFs in the assigned EC number, and rows
represent the transferase list of the actual EC numbers.

Additional file 7: Figure S3. An example of an RDF. File “FigS3.pdf”

contains an example of an RDF for the total charge, o-electronegativity,
m-electronegativity and effective atom polarizability, which constitute a
160-dimensional variable as a feature vector.

Additional file 8: Figure S4. Robustness of functional classification
to conformational change. File “FigS4.pdf” contains the performance of
the SOM clustering for the EC numbers as a B-factor in the RDFs is varied.
The large B-factor in the RDFs corresponds to conformational change.
The F-measure indicates the robustness of the classification performance.
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