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Abstract

Background: Certain amino acids in proteins play a critical role in determining their structural stability and function.
Examples include flexible regions such as hinges which allow domain motion, and highly conserved residues on
functional interfaces which allow interactions with other proteins. Detecting these regions can aid in the analysis and
simulation of protein rigidity and conformational changes, and helps characterizing protein binding and docking. We
present an analysis of critical residues in proteins using a combination of two complementary techniques. One method
performs in-silico mutations and analyzes the protein’s rigidity to infer the role of a point substitution to Glycine or
Alanine. The other method uses evolutionary conservation to find functional interfaces in proteins.

Results: We applied the two methods to a dataset of proteins, including biomolecules with experimentally known
critical residues as determined by the free energy of unfolding. Our results show that the combination of the two
methods can detect the vast majority of critical residues in tested proteins.

Conclusions: Our results show that the combination of the two methods has the potential to detect more
information than each method separately. Future work will provide a confidence level for the criticalness of a
residue to improve the accuracy of our method and eliminate false positives. Once the combined methods are
integrated into one scoring function, it can be applied to other domains such as estimating functional interfaces.

Introduction
Proteins and protein complexes play a central role in a
large number of cellular processes such as cellular organi-
zation and function, ion transport and regulation, signal
transduction, protein degradation, and transcriptional reg-
ulation [1]. Since the structure of a protein is closely
related to its functionality, analyzing the structural and
dynamical properties of proteins is crucial for understand-
ing their role in cellular processes. Some specific amino
acids in the protein may play a critical role in maintaining
its structure, dynamic, and function. For example, proteins
usually bind to one another through specific sites on their
surfaces which tend to be highly conserved. Another

example is hinge regions, which allow the protein to
undergo small scale conformational changes or large scale
domain motions. Finding these critically important amino
acids can facilitate the analysis of protein flexibility and
improve the performance of docking algorithms.
In this work we use two different methods to analyze the

relative importance of amino acids in a protein - one mea-
sures evolutionary conservation and one uses graph-based
analysis to estimate the effect of single point mutations on
protein rigidity. These two methods use different input
data and measure relative importance in two different
ways, and thus we hypothesize that combining them will
allow us to obtain information about critical residues in a
more comprehensive way.

Related work
One way in which a residue can be identified as critical
is by performing a mutation in a physical protein and
measuring the effect of the mutation on the protein.
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Matthews et al. have designed and analyzed many
mutants of lysozyme from bacteriophage T4, and con-
cluded that the unoccupied volume that is caused by
some mutations induces a collapse of that region, while
in other cases the cavity remains empty [2]. Therefore,
mutating a large residue does not necessarily have a
measurable impact on the stability and structure of a
protein. Also, the authors concluded that residues that
are held relatively rigidly within the core of the protein
make the largest contribution to the protein’s stability
[3], and that residues near the surface of the protein are
often not as critical, because their mutations often have
no bearing on the stability of the molecule. Although
the studies by Matthews and others provide precise,
experimentally verified insight into the role of a residue
based on its mutation, such studies are time consuming
and often cost prohibitive. Moreover, some mutant pro-
teins cannot be expressed due to dramatic destabiliza-
tion caused by the mutation, but we would still like to
infer whether they are critical or not. To address this,
computational and analysis techniques have been
proposed.
Gilis et al. [4], estimated the folding free energy changes

upon mutations using database-derived potentials. They
concluded that hydrophobic interactions contribute most
to the stabilizing of the protein core, and thus residues
that do not engage readily in hydrophobic interactions are
not as critical as those that do. Machine learning and sta-
tistical methods have also been developed to help predict
the effects of mutations and to infer which residues are
critical. Cheng et al. [5] used Support Vector Machines to
predict with 84% accuracy the direction of the stability
change for a protein induced by a single point mutation.
Also, data of amino acid replacements that are tolerated
within families of homologous proteins has been used to
devise stability scores for predicting the effect of residue
substitutions [6], which has been extended and implemen-
ted into an online web server [7]. That tool may be used
to help identify residues that greatly affect the stability
score, and hence are critical.
In another work, Guerois et al. have developed force

fields to help predict protein stability, and to provide a
fast and quantitative estimation of the importance of the
interactions contributing to the stability of molecules
and protein complexes [8]. They concluded that packing
density around each atom is a suitable parameter that
can be used to predict the flexibility of proteins, and
that ranking of residues by their involvement in hydro-
phobic interactions may provide information about the
importance of each residue in maintaining the protein’s
stability.
Thus, progress has been made in predicting whether a

residue is critical. However, many such methods rely on
experimentally measuring the effect of mutations in the

physical protein, or rely on techniques that are compu-
tationally intensive, which makes their use on large pro-
tein datasets impractical. To complement these existing
methods, we seek to apply efficient methods to measure
rigidity and evolutionary conservation to identify critical
residues. This work extends promising initial studies [9].
In the following section, we describe these two methods.

Methods
We use two methods that follow different approaches.
One method uses evolutionary conservation information
among homologue proteins. The other is a rigidity analysis
method that uses a graph-based algorithm to detect resi-
dues that play a role in protein flexibility. In what follows
we explain the two methods in detail.

Identifying conserved interfaces via evolutionary trace
based conservation score
Proteins bind through a specific site on their interfaces,
through a combination of geometric complementarity
and specific chemical interactions. In many cases the
binding site is not known experimentally and therefore
docking algorithms have to scan the entire protein sur-
face for possible binding sites on the protein interface,
or use methods that try to detect the binding site. Iden-
tifying functional interfaces in interacting proteins can
greatly reduce the search time for correct rigid-body
transformations, as the only geometric transformations
that need to be considered are those that match features
residing only on predicted interfaces, while the rest of
the monomeric interface is not considered.
One can estimate the relative importance of amino

acids in a protein through evolutionary conservation.
Some amino acids in a protein, play a much more
important role in the functionality of the protein than
others - for example, amino acids that reside on binding
interface and play a role in protein-protein interactions,
and hence tend to be highly conserved. The Evolution-
ary Trace (ET) method [10] ranks residues in proteins
based on a sequence conservation analysis among
homologues. Proteins belonging to the same family per-
form similar functions and tend to show lower mutation
rates in the residues that contribute the most to the
functionality.
The ET Server [11] provides the residue rank files for

a large number of proteins. In an attempt to identify
clusters of critical residues around interfaces, Akbal-
Delibas et al. [12] devised an evolutionary conservation
score for each residue using the following score:

ci = (μ − residue Rank)/σ (1)

where residueRank is the ET rank value of the residue,
µ and s are the mean and standard deviation of ET rank
values of residues in the chain, respectively. A low ET
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rank value represent lower mutation rates for a given
amino acid which leads to higher conservation value
and vice versa. The more positive the conservation
score, the more critical an atom is. In this work we con-
sidered all residues whose conservation score is positive
(above average) as critical. Using this conservation value,
Akbal-Delibas et al. [12] defined a scoring function to
identify structures that have clusters of functionally or
structurally important residues around interfaces. The
evolutionary conservation score was used for refining
coarsely docked protein complexes and was shown to
significantly improve the input complexes both in terms
of geometry and energy.

Identifying critical residues via rigid body analysis
Rigidity analysis [13] is an efficient graph-based method
alternative to molecular simulations, that gives informa-
tion about the flexibility properties of proteins. Atoms and
their chemical interactions are used to construct a
mechanical model of a molecule, in which covalent bonds
are represented as hinges, and other stabilizing interac-
tions such as hydrogen bonds and hydrophobic interac-
tions are represented as hinges or bars. The mechanical
model is used to construct a graph, in which each body is
associated to a node, a hinge between two bodies is asso-
ciated to five edges between two nodes, and a bar is asso-
ciated to an edge. Efficient algorithms based on the pebble
game paradigm [14] are used to analyze the rigidity of the
graph. The rigidity results are used to infer the rigid and
flexible regions of the mechanical model, and hence the
protein. In Figure 1(a), we show the cartoon rendering of
Staphylococcal Nuclease (PDB ID 1stn). The visualization
of its rigidity properties calculated using KINARI-Web are
shown in Figure 1(b), where color bodies indicate clusters
of atoms that are rigid.
In this study, we used KINARI-Mutagen [15], which is

part of the KINARI [16] software, to perform fast evalua-
tion of the effects of mutations that may not be easy to
perform in vitro, because it is not always possible to
express a protein with a specific amino acid substitution.
The publicly available KINARI-Mutagen tool simulates
the mutation of a residue to glycine by removing its side-
chain hydrogen bonds and hydrophobic interactions from
the molecular model and measuring the effect of the
removal on the stability of the protein structure. A new,
not yet publicly released, feature of KINARI-Mutagen that
was developed specifically for this study was its ability to
in-silico mutate residues to alanine, as well as to glcyine.
Doing so allowed us to compare the rigidity results against
a richer dataset of proteins, for which experimental data
about the role of mutations to alanine is known. This new
feature of in-silico mutating a residue to alanine will be
made publicly available during an upcoming update to the
KINARI web server. KINARI-Mutagen identifies critical

residues based on the degree to which an in silico muta-
tion to glycine affects the protein’s rigidity. It has been
demonstrated in identifying critical residues in Crambin.
Also, its predictive capabilities to identify critical residues
were evaluated on a dataset of 48 mutants from 14 pro-
teins; predictions made by KINARI-Mutagen were corre-
lated against experimental stability measurements [15].

Combination of the two methods
While the two methods described above use two differ-
ent approaches and measure different properties, they
have one important feature in common - both aim to
discover highly important residues in proteins.
Therefore, we hypothesize that combining them can give

us richer, more accurate information about the relative
importance of residues in a protein, than when only one
of the methods were used. Extending prior work [9],
We tested and correlated the two methods on a large
number of proteins, including proteins with experimen-
tally available data on critically important residues. It
should be mentioned that the correlation between the
methods is not expected to be perfect due to the fact that
both measure different properties, but the results show a
rather high correlation between the two methods and also
agreement with experimental data. The lack of perfect cor-
relation should be viewed as a positive observation, since
this shows that combining the two measurements has
potential for a more accurate, complementary evaluation
of amino acid importance.

Results
We compared the two methods to detect the locations
of critical residues in proteins to measure the correla-
tion between the results. Later, we compared our results
to experimentally available data and discuss how the
two methods complement each other. Our goal is to
show that a combined approach provide better predic-
tion about critical residues than any of the methods
separately.

Comparative analysis of the two methods
To perform an in-depth comparison of the two meth-
ods, we first analyzed 42 PDB structure files of mutant
proteins [9]. In particular, we looked for the following
types of residues:

• residues identified as critical by both methods.
• residues identified as non-critical by both methods.
• residues identified as critical by only one method.

Table 1 provides the summary of our results. Conserva-
tion analysis identifies 53.7% of all residues, on average,
as critical, whereas rigidity analysis identifies only 16.8%
as critical. The two methods agreed on the criticalness of
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50.2% of the residues, on average. Out of these, 10.7%
were identified as critical and 39.5% were identified as
non-critical by both methods. Conversely, 43% of all resi-
dues are identified as critical by only conservation analy-
sis (i.e., rigidity analysis identified them as non-critical)
while 6.1% of all residues are identified as critical by
rigidity analysis only (i.e., conservation analysis identified
them as non-critical). It should be noted that for 2XKM
and 1CSP, conservation analysis identified as critical all
the residues considered as critical by the rigidity analysis.
The data in Table 1 suggests that conservation analy-

sis identifies significantly more residues as critical than

rigidity analysis. This is not surprising, as conservation
analysis measures evolutionary conservation which can
be expected in residues that contribute to binding, rigid-
ity and various other functional and structural proper-
ties of the protein, and rigidity analysis measures only a
certain kind of critical residues - those that contribute
to the rigidity of a protein.

Comparison against experimental data
In order to validate the method and obtain more insight
about the difference between the two methods, we used
the methods on proteins for which experimental data

Figure 1 The cartoon rendering of the crystal structure of staphylococcal nuclease (PDB ID 1stn), refined at 1.7Å resolution, is shown in (a).
KINARI-Web was used to calculate the protein’s rigidity properties, visualized in (b); color clusters represent atoms that are rigidly connected (only
clusters made up of more than 15 atoms are shown). KINARI uses chemical bonds and stabilizing interactions to identify bodies, which are sets of
atoms rigidly attached to each other. The three atoms identified in the purple region in (c) form a rigid body because the covalent bonds and
distances imposed by angle constraints (shown as dotted lines) remove all degrees of freedom among the three atoms. The rigid units are used to
construct a mechanical model of the molecule, in which two rigid bodies that have a rotatable bond in common are represented as hinges, as shown
in yellow in (d). In (d), rigid body 1 corresponds to atoms N1, C1a, and C in (c), and rigid body 2 corresponds to atoms C1a, C, and O; the two bodies
share the covalent bond between C1a and C. The pebble game paradigm associates rigid bodies of a mechanical model to a node in a graph, a hinge
in the mechanical model as 5 bars between two nodes, and bars, which represent constraints such as hydrogen bonds and hydrophobic interactions
in the mechanical model, to single bars among nodes in the graph. The pebble game algorithm is used to analyze the graph, the results of which are
used to infer rigid clusters of atoms in the biomolecule. A complete explanation of how modeling is performed by KINARI is described in [16].

Akbal-Delibas et al. BMC Structural Biology 2013, 13(Suppl 1):S6
http://www.biomedcentral.com/1472-6807/13/S1/S6

Page 4 of 11



exists. The first protein that we tested was the 46-residues
plant protein Crambin (PDB ID: 1crn) [17]. Fourteen resi-
dues of Crambin are known to be critical by sequence ana-
lysis among its homologues. Figure 2 shows the known
critical residues vs. the critical residues detected by conser-
vation analysis. Rigidity analysis detects 6 out of those 14
critical residues. The conservation analysis detects all of

the known critical residues except residue 37. However,
we should note that the conservation score for residue 37
is -0.2 and the conservation analysis misses this residue by
a very small margin. The high overlap between the known
residues and critical residues identified by the conservation
analysis is not surprising, since both use the sequence con-
servation analysis among homologues.

Table 1 Critical residue analysis by both methods, for 42 proteins, with mutations to glycine

PDB
ID

No.
residues

% Critical by
Conservation

% Critical by
Rigidity

% Critical by
both methods

% Non-critical by
both methods

% Total
match

% Critical Only by
Conservation

% Critical Only
by Rigidity

1aho 64 50.0 25.0 15.6 40.6 56.3 34.4 9.4

1kiv 80 52.5 16.3 13.8 42.5 56.3 38.8 2.5

1r69 63 46.0 6.3 3.2 50.8 54.0 42.9 3.2

1uln 82 41.5 19.5 3.7 42.7 46.3 37.8 15.9

1wvn 74 52.7 8.1 5.4 44.6 50.0 47.3 2.7

2era 62 41.9 29.0 11.3 40.3 51.6 30.6 17.7

3p7k 45 88.9 8.9 8.9 11.1 20.0 80.0 0.0

1b9w 91 64.8 18.7 16.5 33.0 49.5 48.4 2.2

1mul 90 47.8 7.8 4.4 33.3 37.8 43.3 3.3

1f94 63 66.7 30.2 17.5 20.6 38.1 49.2 12.7

1sif 71 56.3 15.5 9.9 38.0 47.9 46.5 5.6

1x3o 80 56.3 10.0 6.3 40.0 46.3 50.0 3.8

2igd 61 55.7 21.3 16.4 39.3 55.7 39.3 4.9

2qt4 95 53.7 5.3 2.1 43.2 45.3 51.6 3.2

3gbl 97 55.7 35.1 24.7 34.0 58.8 30.9 10.3

1cdz 96 52.1 16.7 10.4 41.7 52.1 41.7 6.3

1mzl 93 48.4 4.3 1.1 48.4 49.5 47.3 3.2

1snb 64 53.1 20.3 14.1 40.6 54.7 39.1 6.3

1vcc 77 51.9 13.0 7.8 42.9 50.6 44.2 5.2

2nls 36 63.9 22.2 19.4 33.3 52.8 44.4 2.8

2xkm 46 78.3 6.5 6.5 21.7 28.3 71.7 0.0

3k2t 56 50.0 12.5 10.7 42.9 53.6 39.3 1.8

1t2i 96 55.2 13.5 9.4 40.6 50.0 45.8 4.2

1yp5 58 56.9 17.2 8.6 34.5 43.1 48.3 8.6

2o37 81 56.8 19.8 12.3 35.8 48.1 44.4 7.4

1wkx 43 53.5 27.9 16.3 34.9 51.2 37.2 11.6

1ucs 64 54.7 4.7 1.6 42.2 43.8 53.1 3.1

1hpt 56 41.1 23.2 12.5 48.2 60.7 28.6 10.7

3cqt 58 50.0 29.3 22.4 43.1 65.5 27.6 6.9

1ug4 60 53.3 25.0 13.3 35.0 48.3 40.0 11.7

2ygs 92 59.8 4.3 2.2 38.0 40.2 57.6 2.2

1csp 67 56.7 6.0 6.0 43.3 49.3 50.7 0.0

1jzb 66 50.0 27.3 19.7 42.4 62.1 30.3 7.6

3llb 81 53.1 29.6 18.5 35.8 54.3 34.6 11.1

1ntn 72 44.4 20.8 9.7 43.1 52.8 34.7 11.1

1whp 94 54.3 20.2 16.0 41.5 57.4 38.3 4.3

2b8i 77 51.9 11.7 10.4 46.8 57.1 41.6 1.3

2pcy 99 44.4 12.1 5.1 48.5 53.5 39.4 7.1

2zeq 78 62.8 20.5 16.7 33.3 50.0 46.2 3.8

3lyw 86 31.4 10.5 4.7 60.5 65.1 26.7 5.8

1pft 87 47.1 16.1 5.7 41.4 47.1 41.4 10.3

2pko 99 49.5 12.1 7.1 45.5 52.5 42.4 5.1
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The other protein that we examined is Lysozyme from
bacteriophage T4 (PDB ID 2lzm). We retrieved the experi-
mental data about Lysozyme from the ProTherm Database
[18], which provides stability information through ΔΔG
measurements for proteins and their mutants. ΔΔG, the
free energy of unfolding, is a measure of the change of
stability with respect to a reference, usually the wild-type
of a protein. Lower values indicate lower stability com-
pared to the reference. Among those results, we focused
on destabilizing mutants where the ΔΔG is between -10
and 0. Following this, 11 of 164 residues are identified as
critical by experimental data.
Figure 3 displays the criticalness data for Lysozyme. The

plot shows, for each amino acid, whether it is considered
as critical or not according to conservation analysis, rigid-
ity analysis, and experimental data. The rigidity analysis
detects 4 of the 11 critical residues identified by the
experimental data, whereas the conservation analysis
detects 7 of them. Out of these 11 residues, only residues
105 and 124 are detected as critical by both our methods.
Two residues were not detected by any method, and 7
residues are detected exclusively by one of the method.
Thus, using just one of the methods, to infer which resi-
dues are critical, would not be adequate. It is also worth
noting that both methods, especially the evolutionary con-
servation based analysis, produce a large number of false
positives. In the future we aim to combine the information
produced by the methods to one ranking function instead
of binary scoring of critical/non-critical.

Mutations to glycine
We searched the ProTherm Database [18] for proteins
for which there is data about change to stability following

a single-point mutations to Glycine. We selected 48 resi-
dues among 14 proteins. Out of the 48 residues, both of
our methods identified 18 residues as critical; 5 are iden-
tified as critical only by the rigidity analysis, and 14 are
identified as critical only by the conservation analysis (see
Table 2). Table 3 shows the experimental results by
means of ΔΔG values. Negative ΔΔG values indicate that
the mutation of that particular residue to Glycine has a
destabilizing effect on the protein, making it critical. The
rigidity analysis values agree well with the ΔΔG values in
the top of the table. However, in the bottom of the table
one can see that the residues with very low ΔΔG values
have no effect on the size of largest rigid body upon
mutation, which is how the rigidity analysis method
infers the criticalness of a residue. The evolutionary con-
servation analysis can detect all of these known critical
residues successfully. The results show that the two
methods can be potentially complementary. Therefore,
we can combine them to obtain more data than what
could be obtained from each of them separately. If both
methods could be used in conjunction, they could cor-
rectly identify 37 critical residues. This is the subject of
current and future work.

Mutations to alanine
We also performed rigidity analysis and conservation
score analysis to predict critical residues, for proteins
which had mutations to alanine. For this purpose,
KINARI-Mutagen was modified, to permit in silico
mutations to alanine in addition to mutations to glycine.
Three proteins were analyzed, for which there was
ample experimental ΔΔG data in the ProTherm
database.

Figure 2 The cartoon rendering of Crambin (PDB ID 1crn) is colored in gray. Known critical residues based on experimental data (a) and
critical residues detected by conservation analysis (b) are depicted as spheres. Different colors represent different residues.
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For the 58-residue Bovine Pancreatic Trypsin Inhibitor,
the ProTherm database contains 29 experimentally
derived ΔΔG measurements, tabulating how the protein
is destabilized in response to a point-mutation to alanine.
The change of the stability of the protein ranged from

-3.3 to -0.1 kCal/mol, in response to the mutation. We
used these experimental values as true predictors of
whether a residue is critical. From among the full 29
mutations of the protein, a combined approach of rigidity
analysis or conservation score analysis (Table 4) detected

Figure 3 Comparisons of Rigidity Analysis and Conservation Analysis against experimental data for Lysozyme. The protein’s 164
residues (divided into 4 subplots for convenience) are indicated on the x-axis. The upper line (labeled 1) designates a residue as critical, and the
lower line (labeled 0) designates a residue as non-critical. A red circle is drawn on the upper line to indicate that the residue is experimentally
known to be critical, or on the lower line to indicate that it is experimentally known to be not critical. Blue diamonds and ×s indicate whether
conservation analysis or rigidity analysis, respectively, identified that residue as critical or non-critical. Residues that have a red circle, blue
diamond, and × on the same line are locations for which the conservation analysis and rigidity analysis methods match the experimental data.
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14 of the 29 residues as critical. In those cases when the
effect of the mutation was significant (ΔΔG less than
-1.0), the combined rigidity analysis, conservation analy-
sis approach correctly detected 62.5% (10 out of 16) of
the residues as critical.
The second protein that we studied, for which there is

ample experimental data on the effect of mutations to
alanine, was the 86-residue acyl-coenzyme A binding
protein (PDB ID 2abd, an NMR structure file, whose first
model was used). The results of our experiments on this
protein are shown in Table 5. Of the 14 entries in the
Protherm Database for structure 2abd, our combined
rigidity analysis and conservation score analysis approach
detected all but one of them as critical, in that at least
one of the methods identified the residue as having a

deleterious effect on the stability of the protein. It is only
the mutation of residue 67 to alanine, with an experimen-
tal ΔΔG value of -0.36, that neither of our methods
detected as critical. However, note that the ΔΔG score
for that mutation is small, only -0.36, so the destabilizing
effect of making the substitution to alanine is not great.
In addition, the Solvent Accessible Surface Area of that
residue is 99.97 Å2, which means that the residue is
highly exposed, which would make it one of the more dif-
ficult residues to identify as critical, using rigidity
analysis.
The third protein that we analyzed, for which there is

ΔΔG data for substitutions to alanine, was the 67-residue
universal nucleic acid-binding domain, from the crystal
structure of the B. subtilis major cold-shock protein

Table 2 Residues that are correctly identified as critical only by the rigidity analysis (top 5) or conservation analysis
(bottom 14)

PDB ID WT Residue WT Residue Hydrophobicity ΔΔG Change to LRB upon in-silico mutation to glycine

1stn D95 - -3.1 5

1iob T9 very -2.6 7

2rn2 S68 - -2.4 12

1rtb V16 very -1.18 9

3mbp V8 very -1.0 6

1stn L37 very -3.9 0

1stn T62 - -3.4 0

3mbp A276 slight -1.5 0

2rn2 A52 slight -2.7 0

1ftg A84 slight -1.25 0

1cto V45 very -1.9 0

1stn L36 very -5.4 0

1rtb V54 very -4.87 0

1rtb P93 - -2.6 0

1lz1 P103 - -0.1 0

1rtb P114 - -3.6 0

1lz1 P71 - -1.6 0

1iob P97 - -1.2 0

3ssi V13 very -9.3 0

The ΔΔG column is the experimental data for physical point mutations to glycine at the specified wild-type residue. LRB=Largest Rigid Body. WT=Wild Type.

Table 3 Rigidity analysis and conservation score analysis for proteins with residue mutations to glycine

PDB
ID

Mutation (WT,
residue number,

mutant)

WT
Residue
SASA (Å2)

ΔΔG % Decrease of LRB when WT
residue in-silico mutated to

glycine

Critical by
Conservation
Score Analysis

Detected critical by
Conservation Score or

Rigidity Analysis

No. of
Binding
Partners

1bpi N43G 0.0 -5.7 1.39 Yes True Positive 0

1bpi Y35G 14.74 -5.0 0.0 Yes True Positive 2

1lz1 V2G 191.52 -2.3 0.0 No False Negative 0

1lz1 V74G 156.35 -0.22 0.0 No False Negative 1

1lz1 V110G 181.77 0.48 1.93 No False positive 0

1lz1 P71G 72.63 -1.6 0.29 Yes True positive 1

1lz1 P103G 146.25 -0.1 0.37 Yes True positive 0

2rn2 K95G 142.44 1.7 0.0 No True Negative 0

LRB=Largest Rigid Body. WT = wild type
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(PDB ID 1csp). The rigidity and conservation score analy-
sis results for that structure (Table 5) detected all three of
the residues 15, 17, and 27, as critical. Note that Conser-
vation Score analysis did not detect residues 15 and 17 as
critical, but rigidity analysis did. Likewise, rigidity analysis
did not detect residue 27 as critical, but conservation
score analysis did. Thus, using either of the two methods
alone would not suffice to identify those critical residues.

Critical residues on binding sites
Experimental data that we have collected shows that
known critical residues may have different percentages of
solvent accessibility. This is plausable since buried critical
residues play an important role in maintaining the overall
structure of the protein, while critical residues on the sur-
face most probably consititute binding sites.
In order to test this hypothesis, we searched the PiSite

Database [19]. A protein can have multiple binding states

and different binding partners. PiSite searches the PDB for
different protein complexes that include the same protein,
and returns information about that protein’s interaction
sites and partners, at the residue level. Using the PiSite
database, we found that Bovine Pancreatic Trypsin Inhibi-
tor (PDB ID 1bpi) has six different binding partners and
ten binding states; and Human Lysozyme (PDB ID 1lz1)
has two binding partners and three binding states. The
number of binding partners for each known critical residue
is shown in the last columns of Table 3 and Table 4. Out of
13 solvent accessible critical residues that have ΔΔG less
than -1.0, 11 residues have at least one binding partner,
meaning that they are on the binding site. These results are
very promising since detecting critical residues on the inter-
face would be very helpful for scientists working on the
docking problem. Halperin et al [20] mention that binding
sites are typically part rigid and part flexible, with far
greater extent of movements in the interface than in any

Table 4 Rigidity analysis and conservation score analysis for protein 1bpi with residue mutations to alanine

PDB
ID

Mutation (WT,
residue number,

mutant)

WT
Residue
SASA (Å2)

ΔΔG % Decrease of LRB upon in-
silico mutation of residue to

alanine

Critical by
Conservation
Score Analysis

Detected critical by
Conservation Score or

Rigidity Analysis

No. of
Binding
Partners

1bpi K46A 177.11 0.1 0 No False Negative 2

1bpi R53A 174.71 -0.1 0 Yes True Positive 2

1bpi T54A 68.66 -0.1 1.3944223108 No True Positive 2

1bpi T32A 114.38 -0.1 0 No False Negative 2

1bpi E49A 116.65 -0.2 0 No False Negative 1

1bpi G56A 20.42 -0.2 0 No False Negative 2

1bpi G57A 39.32 -0.2 0 No False Negative 0

1bpi R17A 211.65 -0.3 0 No False Negative 5

1bpi K15A 196.87 -0.4 0 No False Negative 5

1bpi K41A 105.59 -0.4 0 Yes True Positive 2

1bpi D50A 51.92 -0.4 0 No False Negative 1

1bpi R42A 167.75 -0.5 3.5856573705 No True Positive 2

1bpi Q31A 79.04 -1.0 1.9920318725 No True Positive 1

1bpi G28A 41.29 -1.0 0 No False Negative 1

1bpi Y35A 14.74 -1.1 0 Yes False Negative 2

1bpi P13A 70.66 -1.2 0 Yes True Positive 4

1bpi Y10A 73.8 -1.2 0 No False Negative 1

1bpi V34A 117.65 -1.2 0 No False Negative 3

1bpi I18A 98.24 -1.5 0 No False Negative 4

1bpi S47A 35.24 -1.6 0.796812749 Yes True Positive 1

1bpi M52A 122.96 -1.7 0 No False Negative 2

1bpi G12A 16.54 -1.8 0 No False Negative 4

1bpi R20A 36.99 -1.8 12.9482071713 Yes True Positive 2

1bpi F22A 21.02 -2.0 2.5896414343 Yes True Positive 0

1bpi G36A 0.25 -2.1 0 Yes True Positive 4

1bpi I19A 158 -2.1 0 No False Negative 3

1bpi N24A 35.71 -2.2 2.7888446215 Yes True Positive 0

1bpi G37A 36.14 -2.3 0 Yes True Positive 4

1bpi N44A 19.98 -3.3 3.5856573705 Yes True Positive 2

LRB=Largest Rigid Body. WT=wildtype. The table rows are ordered by ΔΔG; the mutations that are least destabilizing are at the top of the table, while the
mutations that are most destabilizing are towards the bottom of the table.
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other exposed parts of the structure. Hence, information
about critical residues on the surface would not just help in
reducing the search space but also in detecting residues
that are critical for flexibility on the surface. Protein binding
can then be modeled more realistically with the flexible
residues on the binding site for a more compact docking.

Conclusions and future work
Some regions in a protein are especially important for
the structural stability or functionality of the protein.
Mutating critically important amino acids can have a
large impact on the correct structure, function or bind-
ing ability of the protein. Finding these regions and eval-
uating their importance can be very useful in facilitating
the analysis of protein structures, simulating protein
motions and discovering protein-protein interactions
and binding modes.
In this work we investigated whether combining two dif-

ferent methods for evaluating the importance of residues
gives better results than either method alone - one method
performs rigidity analysis through systematic mutation to
discover critical residues that alter the rigidity of a protein,
and the other method uses evolutionary conservation to
discover functional interfaces in proteins. Our results
show that combining the information obtained by the two
methods can detect more information than each method
separately.
Setting a criticalness threshold for both methods result

in boolean data. Such binary classifications introduce the
problem of balancing sensitivity versus specificity - the

number of false positives increases with the number of
true positives detected. However, the actual ci values
computed by the conservation analysis and the ΔΔG
values computed by the rigidity analysis are not boolean;
and using these continuous values to provide a confi-
dence level for the criticalness of a residue can be a bet-
ter way to address this problem.
Future work includes incorporating the conservation

analysis into KINARI software so that KINARI-Web pre-
sents residue conservation values as additional data. Also,
we plan to do a detailed analysis using not only informa-
tion on whether a residue is critical or not but also its
level of criticalness to improve the accuracy of our method
and eliminate false positives. Finally, we aim to integrate
the combined methods into one scoring function which
can be applied to other domains such as estimating func-
tional interfaces.
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Table 5 Rigidity analysis and conservation score analysis for protein 2abd and 1csp, with residue mutations to alanine

PDB
ID

Mutation (WT,
residue number,

mutant)

WT Residue
SASA (Å2)

ΔΔG % Decrease of LRB upon in-silico
mutation of residue to alanine

Critical by
Conservation Score

Analysis

Detected critical by
Conservation Score or Rigidity

Analysis

2abd E67A 99.97 -0.36 0 No False Negative

1csp F17A 57.18 -0.81 4.33 No True Positive

2abd K54A 49.09 -0.86 1.98 Yes True Positive

1csp F27A 70.65 -0.89 0 Yes True Positive

1csp F15A 50.5 -0.96 2.96 No True Positive

2abd K32A 63.06 -1.02 1.18 Yes True Positive

2abd L25A 15.81 -1.02 3.76 Yes True Positive

2abd P44A 49.62 -1.04 3.06 Yes True Positive

2abd P19A 5.59 -1.07 0 Yes True Positive

2abd T35A 51.06 -1.09 0.69 Yes True Positive

2abd V77A 8.94 -1.14 0.59 Yes True Positive

2abd V12A 8.78 -1.69 2.37 Yes True Positive

2abd Y28A 50.63 -2.47 1.28 Yes True Positive

2abd L15A 0.0 -3.1 1.18 Yes True Positive

2abd Q33A 1.59 -3.66 0.99 Yes True Positive

2abd L80A 3.15 -3.7 3.26 Yes True Positive

2abd Y73A 4.5 -4.83 1.28 Yes True Positive

LRB=Largest Rigid Body. WT=Wild Type. The table rows are ordered by ΔΔG; the mutations that are least destabilizing are at the top of the table, while the
mutations that are most destabilizing are towards the bottom of the table.
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