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Abstract
Background: SCOP and CATH are widely used as gold standards to benchmark novel protein
structure comparison methods as well as to train machine learning approaches for protein
structure classification and prediction. The two hierarchies result from different protocols which
may result in differing classifications of the same protein. Ignoring such differences leads to
problems when being used to train or benchmark automatic structure classification methods. Here,
we propose a method to compare SCOP and CATH in detail and discuss possible applications of
this analysis.

Results: We create a new mapping between SCOP and CATH and define a consistent benchmark
set which is shown to largely reduce errors made by structure comparison methods such as TM-
Align and has useful further applications, e.g. for machine learning methods being trained for protein
structure classification. Additionally, we extract additional connections in the topology of the
protein fold space from the orthogonal features contained in SCOP and CATH.

Conclusion: Via an all-to-all comparison, we find that there are large and unexpected differences
between SCOP and CATH w.r.t. their domain definitions as well as their hierarchic partitioning of
the fold space on every level of the two classifications. A consistent mapping of SCOP and CATH
can be exploited for automated structure comparison and classification.

Availability: Benchmark sets and an interactive SCOP-CATH browser are available at http://
www.bio.ifi.lmu.de/SCOPCath.

Background
The classification and comparison of the more than
50'000 protein structures deposited in the PDB [1] (Janu-
ary 2009) is an essential step to extract valuable knowl-
edge from protein structure data. Today, the two most
prominent protein structure classification schemes are
SCOP [2] and CATH [3]. Both partition proteins into
domains. These domains are classified in a hierarchical

manner: SCOP sorts protein domains into classes, folds,
superfamilies and families while the four major levels of
CATH are class, architecture, topology and homologous
superfamily. The SCOP database is mainly based on
expert knowledge and, on the first level of the hierarchy,
defines four major classes namely all α, all β, α/β as well
as α + β describing the content of secondary structure ele-
ments in the domain. According to the SCOP authors,
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domains in a common fold have the same major second-
ary structures in the same arrangement with the same top-
ological connections. In the same superfamily, domains
share low sequence identities but their structures and, in
many cases, functional features suggest that a common
evolutionary origin is probable while domains clustered
in the same family are likely to have a common evolution-
ary origin based on sequence similarity or functional evi-
dence.

The building process of CATH contains more automatic
steps and less human intervention compared to SCOP.
Analogous to SCOP, CATH starts at the class level defining
three major classes of secondary structure content (all α,
all β and α/β). The second layer, called architecture, clus-
ters domains with common general features with respect
to the overall protein-fold shape but does not take con-
nectivity into account. The topology level is analogous to
the SCOP fold level and groups structures that have a sim-
ilar number and arrangement of secondary structure ele-
ments with the same connectivity. The last (major) level,
homologous superfamily, clusters domains with a high
structural similarity and similar functions, which suggest
that they may have evolved from a common ancestor.

In the last years, SCOP and CATH have been used to
address various questions in structural biology and are
further employed as training and gold-standard databases
making them invaluable resources in structural bioinfor-
matics. They have been used to study the interplay of pro-
tein structure and protein sequence evolution [4,5] or to
explore the connection between alternative splicing and
protein structure evolution [6].

Besides those analyses, they are often used in the context
of automatic protein structure classification and protein
structure prediction when training and evaluating the
respective methods. Automatic protein structure classifi-
cation (given the resolved structure) has become an
important topic with the faster growing number of PDB
structures in order to analyze structural and functional
features of proteins. Methods which are specifically suited
for an accurate and automatic assignment of structures to
their respective class often use SCOP or CATH as reference
and template datasets or to evaluate their performance.
Among those methods which heavily use SCOP or CATH
for structure prediction from the sequence are AutoSCOP
[7] and PFRES [8]. Examples for methods to compute pro-
tein structure alignments and to predict similarities
between structures are Vorolign [9], PPM [10], FatCat [11]
or TM-Align [12]. In the context of machine learning, var-
ious methods to discriminate between structural classes
defined by SCOP or CATH, e.g. using Support Vector
Machines [13,14], have been published.

Also, various methods which aim at the prediction of a
proteins structure from the sequence [15] have been
developed in the last years, especially in the context of the
CASP experiments reviewed e.g. in [16] (and references
within) where reference databases such as SCOP and
CATH are used in the prediction and the assessment
phase. Of course, differences in the reference sets will
inevitably lead to differences in the assessment reflecting
the performance with respect to the criteria used to con-
struct the reference sets.

Although the two hierarchies have become the gold stand-
ard in the field, their goals and the methods used to clas-
sify structures are not the same which leads to different
classifications of the same protein. Differences are found
with respect to the domain partitioning of the protein
chain, as well as in the classification of a domain into its
corresponding structure class. Differences and similarities
between SCOP and CATH have already been evaluated
[17,18] and those analyses allowed for valuable insights
into the problems and challenges of classifying protein
structures. Since the most recent study [18] the number of
protein structures available in the PDB has more than
doubled. This fact may have also increased the problem
classifying all known structures in a consistent manner. In
contrast to previous studies, we will focus on the extrac-
tion of consensus classifications based on the detailed
comparison of the two hierarchies which should be a use-
ful resource for gaining insights in functional and evolu-
tionary relationsships and for (machine learning)
methods for protein structure classification and predic-
tion. In more detail, we propose a new approach to com-
pare SCOP and CATH on the different levels of the two
hierarchies using a similarity measure for sets of domains.
Based on an initial mapping of individual domains
defined in both hierarchies and on the similarity of two
sets of domains, we identify for each set from one hierar-
chy the corresponding overlapping set(s) from the other
hierarchy. This allows to map sets of domains on different
levels of SCOP and CATH and to analyze the differences
and similarities of the two hierarchies in detail.

SCOP and CATH are often used as 'standard of truth' data-
sets and inconsistencies and differences in the hierarchies
unavoidably lead to problems in the training phase (since
wrong or misleading concepts are learned) as well as in
the testing/benchmarking phase. Proteins classified to be
different by one hierarchy may indeed be similar accord-
ing to the other classification leading to an overestimation
of the errors made. To overcome those problems, we
extract sets of pairs of protein domains from our SCOP-
CATH mapping which are consistently classified in both
hierarchies. Those pairs represent a novel and comprehen-
sive benchmark (training) set which allows for a more
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consistent evaluation (and training) of protein structure
comparison and protein structure prediction methods.

Finally, we utilize our mapping as orthogonal evidence in
order to identify potential connections between different
folds in one hierarchy which may be revealed via a con-
nection of the two folds suggested by the respective other
hierarchy. Such connections between different folds
(which are supposed not to be evolutionary related due to
the SCOP or CATH definition) provide interesting starting
points to further analyze the protein sequence-structure
space.

Results and Discussion
Datasets
For our analysis we use the most current version of SCOP
(1.73, September 2007) as well as CATH version 3.1.0
(January 2007) which contains a similar number of pro-
teins. The mapping containing the more recent CATH ver-
sion 3.2.0 can be found on the supplementary website at
http://www.bio.ifi.lmu.de/SCOPCath. The website and
the benchmark datasets will be updated regularly when
new versions of SCOP and CATH are released. SCOP 1.73
contains 34'495 proteins deposited in the PDB (97'178
domains) which are classified into 11 classes, 1'283 folds,
2'034 superfamilies and 3'751 families. CATH comprises
30'028 PDB proteins which are partitioned into 93885
domains and sorted into 4 classes, 40 architectures, 1'084
topologies and 2'091 homologous superfamilies. The
union set of the proteins in the two classification schemes
contains 36'970 proteins. 27'553 PDB proteins are classi-
fied in both hierarchies. Please note that throughout this
article we regard the following levels of SCOP and CATH
to correspond to each other: SCOP family/superfamily ↔
CATH homologous superfamily, SCOP fold ↔ CATH
topology, SCOP class ↔ CATH class.

Detailed Comparison of SCOP and CATH
In the following we present the results of our analysis of
similarities and differences between SCOP and CATH. We
will first discuss the results of mapping the different
domain definitions of SCOP and CATH onto each other,
showing that there are surprisingly large differences
between SCOP and CATH with respect to their domain
definitions. We will then use the set of mappable domains
(for which domain definitions largely agree), restrict the
respective hierarchies to those domains and compute the
mapping of inner nodes of the two restricted hierarchies.
We then analyze this mapping of inner nodes in detail
which turns out to be very complex indicating many
inconsistencies between SCOP and CATH. For interesting
examples see Additional File 1. The usefulness of the
SCOP-CATH mapping is demonstrated by two applica-
tions.

Our analysis depends on whether we map SCOP to CATH
or vice versa. We present the results of the (non symmet-
ric) mapping of SCOP → CATH in the following. The
results for the mapping of CATH → SCOP are available in
the supplementary material on http://www .bio.if i .lmu
.de/SCOPCath.

Domain mapping
In order to analyze the different domain definitions in
SCOP and CATH, we keep a domain defined in one hier-
archy fixed and count how often one or more domains
from the respective other classification are mapped onto
it. A domain is mapped iff the overlap o, as defined in the
Methods section, is greater than 0, i.e. we map all domains
which have at least one residue in common with the query
domain. The results are shown in Table 1 and confirm
results from previous studies [17] that SCOP tends to
define larger domains which may be represented by sev-
eral, smaller domains in CATH.

For our final mapping of domains we use a much more
restrictive overlap threshold of To = 0.8. This implies a
unique and bijective mapping of domains onto each
other but leaves many domains unmapped. Including
protein domains which overlap to only a small extent
would lead to additional problems when comparing the
two hierarchies, especially since domains are also classi-
fied according to their secondary structure elements and
content (see [19] for further discussion). Therefore,
including secondary structure elements in the domain of
one hierarchy while not including them in the other one
is likely to lead to differing classifications. The strict
threshold of 0.8 assures that only domains which are
defined as the same parts of the protein structures in
SCOP and in CATH are contained in the final dataset.

As shown in the following, differing domain assignments
have a large impact on the resulting classification. Out of
the 27'553 proteins which are classified in both hierar-

Table 1: Mapping of the domain definitions of the two 
hierarchies

1 2 3 4 5 6

SCOP 49'251 17'162 1'885 435 130 29
CATH 68'270 11'018 492 3 0 0

Mapping of the domain definitions of the two hierarchies. An overlap 
threshold > 0 is used, i.e. all domains which share at least one residue 
are mapped onto each other. The SCOP row shows the number of 
CATH domains mapped onto a single SCOP domain, while the CATH 
row describes the number of SCOP domains mapped onto one 
domain defined in CATH. A single domain in SCOP may be 
partitioned into up to 6 domains in CATH. Overall, about 20'000 
(19'641) out of about 70'000 (68'892) SCOP domains map more than 
one CATH domain while about 11'500 (11'513) out of about 80'000 
(79'783) CATH single domains map to more than one SCOP domain.
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chies, for only 19'266 (about 70%) the domain defini-
tions are similar enough leading to 56'104 domains in the
final dataset (increasing up to 66'128 mappable domains
with an overlap threshold To > 0.5). In SCOP, those
domains are classified into 11 classes, 754 folds, 1'258
superfamilies and 2'228 families which means that on the
other hand, for 538 folds, 776 superfamilies and 1'523
families already the domain definitions of SCOP and
CATH differ to such a large extent that they can not be
meaningfully mapped onto each other. According to
CATH, the proteins belong to 4 classes, 38 architectures,
736 topologies and 1'462 homologous superfamilies.
Two architectures, 348 topologies and 629 superfamilies
of CATH remain unmapped. Those values show a surpris-
ingly large number of domains in either of the two hierar-
chies which are defined in a very different manner in the
respective other classification scheme according to their
domain boundaries and result in the fact that for only
70% of the proteins the classifications can be compared.
Moreover also only 70% of all SCOP families and CATH
superfamilies are retained in the mapping due to differing
domain assignments.

Mapping of Inner Nodes
Given the set of mappable domains as discussed above,
we computed the mapping of inner nodes of the two hier-
archies as described in the Methods section. The results
are shown in Table 2. Using the F-measure (see Methods)
we are able to identify for every inner node of SCOP the
corresponding, i.e. best fitting, node in the CATH. In such
a mapping one would e.g. expect that SCOP superfamilies
(and families) map best to the CATH homologous super-
family level.

Surprisingly, when using a F-measure threshold of 0 (we
map every query SCOP node onto the CATH node with

maximal F-measure), the mapping of inner nodes and,
therefore, the partitioning of the fold space according to
SCOP and CATH appears to be more complicated than
expected and many inconsistencies can actually be
observed. When we require a certain quality for a map-
ping, i.e. setting the F-measure threshold to 0.8, a large
number of inner nodes do not find a partner in the other
hierarchy. SCOP and CATH therefore define their sets of
domains on every level of the hierarchies and for many
cases very differently and a large number of unexpected
mappings (all the cases except for the cells marked bold in
Table 2) can be observed. For example 240 (178) homol-
ogous superfamilies in CATH can not be mapped to a cor-
responding SCOP superfamily or family for a F-measure
threshold of 0 (0.8). The complete mapping and the
observed differences between SCOP and CATH can be
interactively and comprehensively explored on http://
www.bio.ifi.lmu.de/SCOPCath.

Comparison of domain pairs
In order to analyze the surprisingly large number of
inconsistencies between SCOP and CATH in more detail,
we tested all pairs of domains in the set of mappable
domains for their consistency in the respective other hier-
archy. For example, we test if a pair from the same SCOP
superfamily is also classified to be in the same homolo-
gous superfamily level in CATH. The results of this pair-
wise comparison of the two hierarchies are shown in
Tables 3 and 4. This analysis reveals a very large number
of domain pairs which are not classified consistently in
the two hierarchies. Even on the family level, where the
evolutionary relationship of the proteins should be clear,
98% of the pairs are consistently defined, more than
130'000 pairs classified into 70 different folds and 102
superfamilies are not classified in a consistent manner.
More than 700'000 pairwise errors are observed on the
superfamily and more than two million errors on the fold
level. Table 4 allows for a more detailed analysis of the
mapping between the different levels of SCOP and CATH
and the errors that occur. For example 0.866% (corre-

Table 2: Mapping distribution of SCOP onto CATH nodes

F > 0 Unmapped C A T H

fold class 0 4 2 1 4
Fold 0 0 5 504 236
superfamily 0 0 2 32 1'224
Family 0 0 1 9 2'218

F > 0.8 Unmapped C A T H

fold class 8 2 0 0 1
Fold 125 0 4 439 177
superfamily 236 0 1 24 997
Family 1'055 0 1 6 1'166

Number of inner nodes from a hierarchy level in SCOP mapping best 
to a node from some level in CATH. Consistent mapping are 
displayed in bold. Two different F-measure thresholds of 0 and 0.8 are 
shown. For example, 504 SCOP folds map best to a CATH topology 
node given a threshold of 0 dropping down to 439 nodes for a F-
measure threshold of 0.8.

Table 3: Inconsistencies between SCOP and CATH

consistent inconsistent folds superfamilies

family 7'970'415 133'335 70 102
superfamily 8'208'965 713'181 121 159

fold 10'879'564 2'389'191 84 500
class 268'747'988 62'849'692 745 1'258

other class 962'011'672 249'897'353 745 1'258

Shows the inconsistencies between SCOP and CATH with respect to 
the levels of the SCOP hierarchy. The second column displays the 
number of consistent pairs (pairs of proteins from folds, superfamilies 
and families in the cells marked bold in Table 4) and the third column 
the number of inconsistent pairs. Columns four and five display the 
number of distinct folds and superfamilies which account for the 
inconsistencies observed.
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sponding to 70'188 pairs) of the domain pairs from the
same SCOP family are classified to be in different topolo-
gies (of the same CATH class) in CATH.

Fortunately, many errors are contributed by a relatively
small number of 'superfolds' (Rossmann folds, immu-
noglobulin and some others). Those fold classes also
build clusters of similar folds which are further discussed
in the context of interfold similarities below.

Nevertheless, a large number of inconsistencies can not be
explained by these well known superfolds. All inconsist-
ent pairs can be interactively explored on http://
www.bio.ifi.lmu.de/SCOPCath. An interesting example is
the pair d1bbxd_ and d1rhpa_. The domains are classified
to belong to two different classes in SCOP (b.34.13.1 and
d.9.1.1, respectively) and are indeed very different on the
structure level, but belong to the same homology level
according to CATH (2.40.50.40). A second example is the
pair d1ku7a_ and d1j9ia_ (classified as a.6.1.5 and
a.4.13.2). The two domains are indeed structurally similar
(though they have a different number of helices). They are
classified as different folds SCOP but belong to the same
homology level in CATH (1.10.10.10). More examples
and structural superpositions of such pairs can be found
in Additional file 1.

All inconsistencies will lead to problems when bench-
marking automatic structure classification methods. Also,
they may lead to learning wrong concepts in the training
phase of machine learning methods for protein structure
classification for two reasons: 1.) decision criteria are only
learned with respect to one classification and 2.) criteria
are ignored in the learning phase because of inconsisten-
cies.

Extraction of a novel benchmark set
The pairwise comparison also allows us to extract sets of
domain pairs which are consistently defined across the
hierarchies and which may be used as novel benchmark
sets to train and evaluate structure comparison methods.
In particular, we extracted two sets of domain pairs:

• domains which are consistently defined as being
similar in both hierarchies (in the following denoted
as the SCOP-CATH set) corresponding to the consist-
ent fold, superfamily and family pairs in Table 3.

• non-similar, negative domain pairs, i.e. domains in
the same class, which are consistently classified into
different folds.

Also, to avoid an overrepresentation of very similar
domains in the dataset, we clustered the domains accord-
ing to their sequence similarity. All domains with a pair-
wise sequence identity of more than 50% were clustered
together. For each cluster we retained only one represent-
ative domain in the final benchmark set (SCOP-CATH50
set). The sets can be obtained at http://
www.bio.ifi.lmu.de/SCOPCath. We also provide addi-
tional data, i.e. the details of the clustering process, which
allows users to define their own benchmark sets using dif-
ferent sequence identity cutoffs in case that other
sequence identity thresholds are appropriate for the spe-
cific application.

Redfern et al. also used a consistent set between SCOP and
CATH in benchmarking their CATHEDRAL method [13].
Our approach is designed to contain all pairs of proteins
which are consistently defined between the two databases.
This is an important feature for benchmarking structure
classification methods in very detail on a large set of dif-
ferent fold topologies. In contrast, the Redfern dataset,
designed for a different purpose, focuses on consistently
defined superfamilies whose members overlap to at least
80%. Extracting protein pairs from these consistent super-
families would lead to a large number of pairs in the
benchmark set (up to 20% of the proteins in a super-
family) which would be actually classified inconsistently
between SCOP and CATH.

Our dataset can directly be employed for training and
benchmarking novel methods developed in the field on
different levels of the hierarchies and therefore different
levels of structural similarity. In the following, we show
that this novel benchmark set allows for a much more
consistent evaluation of structure comparison methods
which is not biased by inconsistencies in the different
gold standards.

Applications of the SCOP-CATH mapping
In the following, we discuss the results of two applications
of our detailed SCOP-CATH comparison.

Benchmarking Structure-Comparison methods
For benchmarking purposes, and as an examplary struc-
ture comparison method, we used the TM-align method
which computes a structural alignment optimizing the
TM-Score [20]. The TM-Score measures the similarity of

Table 4: Detailed mappings of domain pairs in percent from 
SCOP onto CATH

outer class fold superfamily family

outer 79.38% 8.31% 0.99% 0.40% 0.03%
class 18.16% 56.15% 2.55% 1.88% 0.87%
arch 2.42% 24.90% 2.80% 1.27% 0.09%
top 0.04% 10.50% 81.99% 4.44% 0.66%

hom 0.002% 0.14% 11.66% 92.01% 98.34%

Displays the detailed mappings of domain pairs in percent from SCOP 
(columns) onto CATH (rows). Columns sum up to 100% and table 
cells marked in bold display consistent mappings. Please note that due 
to the very large number of pairs, even small percentage values 
correspond to many examples (see Table 3 for details).
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two structures by an optimized rigid body superposition
and a TM-score of above 0.4 has been described to indi-
cate structural similarity [21,22]. TM-align has been cho-
sen for this study since the TM-Score has already been
used to discriminate between similar and non-similar
proteins and should therefore allow for a good discrimi-
nation of similar and non-similar protein domains. Fur-
thermore, the method is quite fast allowing for the
computation of the more than 5'000'000 structural align-
ments in reasonable time.

For our analysis, we compare the performance of TM-align
on the complete benchmark set with the performance on
the novel benchmark set proposed in this paper. The only
difference between the two sets are the pairs being evalu-
ated. While all pairs which are similar according to SCOP
are evaluated in the original setting, our novel benchmark
set contains only those pairs which are consistently
defined to be similar or different in both SCOP and
CATH. Therefore, while the domains contained in the sets
are the same, the number of pairs being compared is
much smaller in our novel benchmark set than in the orig-
inal set (16% of the positive pairs have been removed).

In the following we will discuss the plots shown in Figure
1 which evaluate the performance of TM-align on the two
benchmark sets in detail.

Plots (a) and (b) show the distribution of TM-Scores of
domain pairs within the same class/fold/superfamily/
family. The distributions of the scores are very similar
between both sets indicating that the main properties of
the benchmark sets are similar. There is no apparent bias
in the benchmark set proposed here towards domains
which are easier to classify and both sets appear to be
equally difficult regarding their similarity relationships.

Plots (c) and (d) in row two as well as (e) and (f) in row
three introduce a novel type of plot to benchmark the per-
formance of structure comparison methods. The plots can
be used for any structure comparison method to evaluate
in detail the classification performance and in particular
the errors made by a method. Especially, they allow to
estimate the performance of a method given a template
database where members of the family and superfamily
are missing and analyze in detail the number of domains
for which problems occur in a set of domains and also
quantify the dimension of the problem. Plots (c) and (d)
show the number of domains for which we observe prob-
lems according to the structural similarity detected by TM-
Align. For every query domain, we show how many
domains from a different fold have a higher similarity
score than the highest scoring member of the domain's
own family (red cross), superfamily (green x) or fold (blue
star). On the x-axis we show all query domains for which

we observe problems, while on the y-axis, the number of
problematic cases for a query (i.e. the number of domains
from different a different fold ranked higher than the own
family/superfamily/fold) is plotted. For example if there
are ten domains from a different fold scoring better than
the most similar member from the domain's own family
a red cross (at (x,10)) would be plotted. Similarly a blue
dot is plotted if wrong proteins score better than a mem-
ber of the query superfamily and a green x is plotted in the
case of wrong domains scoring better than the own fold.
Also, domains in columns which contain blue dots would
not be assigned to their correct folds in the case of missing
family and superfamily members since the best hit comes
from a different fold.

Panels (e)-(f) in row three are similar to panels (c)-(d),
but instead of displaying the number of domains, they
show the number of distinct folds (different from the
domains own fold) which score better than the respective
own family, superfamily or fold.

Comparing the plots that are computed based on the
complete set of domain pairs (left column) with the plots
computed on the benchmark set of consistent domain
pairs (right column) we find that TM-Score/TM-align pro-
duces errors for only half of the domains tested and the
dimension of the errors (i.e. the number of domains/folds
which score better) also strongly decreases.

The only difference between the two sets tested is the
removal of pairs which are inconsistently defined between
SCOP and CATH. While we remove about 16% of the pos-
itive pairs (in SCOP) to obtain the consistent set, the
number of errors observed is reduced by 53% (compared
to 16% error reduction which would be expected when
removing arbitrary pairs). Therefore, the removal of pairs
which are inconsistently defined in SCOP and CATH
allows to over-proportionally reduce the number of
errors. Our conclusions are twofold: many errors reported
for protein structure classification methods originate from
pairs of domains which are similar to one another, but are
classified differently by SCOP or CATH. A different set of
errors results from pairs that are e.g. classified in the same
family but not similar enough to be distinguished from
random pairs by a structure-based comparison method.
Using only pairs of domains consistently defined in SCOP
and CATH allows to reduce the amount of errors signifi-
cantly and to separate erroneous behaviour of a method
(e.g. errors in the similarity model for protein structures
implemented in a method) from problems arrising due to
pairs of domains for which even gold standards and
experts disagree in their classification.

This figure is completed and summarized by the plots (g)
and (h). To compute them, we sort the results obtained
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Detailed comparison of protein structure benchmark setsFigure 1
Detailed comparison of protein structure benchmark sets. The figure compares the performance of TM-align on the 
complete set of similarity relationships defined by SCOP (left column) and the performance on the novel SCOP-CATH con-
sensus benchmark set proposed in this study (right column). For this purpose, the TM-Align performance is visualized via vari-
ous plots which show in some detail the evaluation of classification errors. Panels (a) and (b) shows the distribution of scores 
for the various levels of the classifications. Although the fold scores are somewhat shifted to the right, the score distributions 
overlap significantly, which allows no clear thresholds for safe classifications of structure pairs. Panels (b)-(f) compare the vari-
ous errors for the comprehensive and consensus benchmark sets. As errors we count wrong domains scored better than cor-
rect domains. The errors are significantly reduced on the consensus set (d) and (f). Finally, in panels (g)-(h) the errors (number 
of wrong folds scored better than certain correct folds) are summarized as boxplots. Again less errors are observed in the 
consensus set: whereas for the best scored correct domains quite few wrong folds are scored better in both sets, quite many 
better scoring but wrong folds are observed for the correct members with low scores. See main text for a more detailed 
description. Overall the number of errors is reduced over-proportionally (about 50% error reduction) as compared to the 
reduction of pairs in the consensus benchmark (about 16% pairs reduction).
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for every query domain according to their similarity
scores. Then, we count for every member of the query
fold, how many distinct other folds score better than the
respective fold member (please note that every fold is
counted only once even if multiple domains from a fold
lead to errors). The boxplot in (g)-(h) shows the errors for
five specific fold members: for the best and worst scoring
fold members, as well as for the fold member placed at the
25%, median and 75% positions in the sorted list. As,
unfortunately, correct fold members score quite differ-
ently, this allows to assess the overall performance of fold
members by showing how often wrong members score
better than the selected five fold member representatives.
The boxplot now simply summarizes these numbers for
all queries. Thus the boxplots give a summarized overview
of the observed errors. By comparing the two boxplots for
the comprehensive and the consensus sets we again find a
substantial reduction of errors in the consensus set. While
the number of errors for the best scoring fold member is
generally small, the errors for the low-scoring fold mem-
bers quickly increase in both sets, but much more drasti-
cally in the comprehensive set as compared to the
consensus set. For example, if we look at the fold mem-
bers scored in the lower quarter (75%) of the fold mem-
bers, we find 10 different random folds before a correct
domain in the original dataset and only one fold in the
novel benchmark set. This again indicates, that the
number of errors as well as their quantity are significantly
lower in the novel benchmark set compared to the origi-
nal benchmark set.

Overall, the novel benchmark set proposed here is much
more consistent than the original pairwise relationships
defined by SCOP. It results in a much smaller number of
errors (less than half the amount of the errors in the orig-
inal set). Due to the largely reduced inconsistencies the set
should also be well suited for training novel machine
learning algorithms for protein structure classification,
since it may allow for learning more consistent concepts
from the input data.

Furthermore, we expect that the new benchmark set and
also the new type of plots allow for a more instructive and
objective evaluation of other structure comparison meth-
ods as well. The benchmark set has already been applied
to measure the performance of PPM, Vorolign and TM-
align in [10].

Inter-Fold Similarities revealed by Consistency Checks
As a second application, we have used our mapping of the
two hierarchies in order to identify similarities of different
folds/topologies defined in one hierarchy which are
implied by mapping them onto the same fold/topology in
the respective other classification scheme. Methods to
detect possible interfold similarities have already been
described for example by Friedberg et al. [23] and the

CATH developers [24]. Here, we do not propose a novel
approach to analyze such similarities from a structural
point of view but utilize the orthogonal criteria and
knowledge from two curated classification schemes to
identify them. More specific, we search for folds f1 defined
in SCOP which map to a topology level in CATH t while
this topology level in CATH also maps to a second fold f2
in SCOP (see also Figure 2a).

The identification of such similarities provides interesting
insights into the differences and similarities of fold classi-
fications in SCOP and CATH and further allows to iden-
tify interesting links in the fold space. In order to propose
a link we currently require the existence of at least five
domains, which do not share a sequence identity of more
than 50%, to support the link.

This analysis reveals a large number of singletons, i.e.
folds/topologies with no link to another fold. 1137 folds
in SCOP as well as 904 topologies in CATH turn out to be
singletons. For relatively few folds/topologies similarities
with other folds are identified which are interesting cases
for further analyses in the context of protein structure and
sequence evolution.

For SCOP, we identified 29 subgraphs, i.e. groups of folds
which are connected via a link in CATH to another fold.
18 of the groups represent graphs of size 2, i.e pairs of
folds while the other 11 subgraphs connect up to 39 dif-
ferent folds in SCOP. The largest graph contains a cluster
of SCOP folds representing domains which are classified
as Rossmann fold topology (3.40.50) in CATH but are
splitted into 38 different folds in SCOP. Another large
cluster comprises β-sandwich proteins with Greek-key
topology which represent a cluster of 7 folds.

Two further interesting examples are shown in Figure 2.
Figure 2b shows the interfold similarity of α-hairpin pro-
teins in SCOP which are clustered in the same fold accord-
ing to CATH (1.10.287). Part 2c shows a more
complicated fold graph clustering proteins of immu-
noglobulin (CATH 2.60.40) and jelly-roll topologies
(CATH 2.60.120) in a subgraph which also shows that
those graphs do not necessarily form a clique.

Conclusion
Protein structure classification is an essential step towards
a deeper understanding into the interplay of protein struc-
ture and protein sequence evolution. Here, we have car-
ried out a detailed study of the similarities and differences
between the two most prominent databases, namely
SCOP and CATH, which have become gold standards in
the field and are used in various machine learning
approaches and assessments of structure prediction and
classification like the CASP experiments.
Page 8 of 11
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We find that there are essential differences between the
two classification schemes due to their way of partitioning
proteins into domains (which has already been described
and discussed by [25]). SCOP tends to partition domains
into fewer but larger components than CATH. In total,
only about 70% of the domain definitions for proteins
classified in SCOP and CATH agree (at an overlap thresh-
old of 80%) and about one third of the families in SCOP
and homologous superfamilies in CATH can not be
mapped on domains of the respective other hierarchy.

For the remaining set of about 20'000 proteins we then
tested how well their classifications agreed with the classi-
fication in the respective other hierarchy. For this compar-
ison we have used the F-measure to determine the
similarity of two sets of domains on a specific level of two
hierarchies. We find that both hierarchies show significant
differences and often disagree in their way to partition the
protein structure space also in cases of nearly identical
domain definitions.

Given those findings and our mapping of SCOP and
CATH hierarchy nodes, we extract a novel benchmark set
of protein domain pairs which are defined consistently
across both hierarchies. We show that benchmarking TM-
align (as an examplary structure classification method) on
the novel benchmark set leads to a largely improved per-
formance in comparison to the original set where the sim-
ilarities as defined with respect to SCOP. This is due to the
fact that errors (proteins which are similar according to
one hierarchy but separated into different classes in the
other one) which occur due to inconsistencies are
removed from the novel benchmark set. Therefore, the
benchmark set proposed here allows for a more objective
evaluation of the performance of protein structure com-

parison methods as the remaining errors observed are
more likely to be due to the method itself. Furthermore,
this set should have advantages for both, training and test-
ing all kinds of prediction methods, especially machine
learning approaches to protein structure classification
since more consistent concepts may be learned in the
training phase.

Finally, the mapping between SCOP and CATH provides
interesting, orthogonal knowledge on the topology of the
protein structure space which allows to identify non-triv-
ial links between different folds in e.g. SCOP via their con-
nection observed in CATH. There are some very
interesting and large (up to more than 30 folds) sets
which may be clustered together in SCOP according to
CATH. Among them are some known clusters of folds like
the Rossmann fold topology. But there are also several
other clusters of folds which may be interesting starting
points for a further analysis of their sequence-structure
properties and may help to further understand the inter-
play of protein sequence and protein structure evolution,
also in the context of alternative splicing [6], as different
structure classifications reflect different viewpoints and
criteria on structural and evolutionary similarity.

Methods
In the following, we will handle the two hierarchies
(SCOP and CATH) as labeled trees, where the leaves cor-
respond to the domains classified in the corresponding
hierarchy. Inner nodes represent sets of protein domains
which are clustered together on a specific level of the hier-
archy. For SCOP, inner nodes represent classes, folds,
superfamiles or families. For CATH, inner nodes corre-
spond to classes, architectures, topologies and homolo-
gous superfamilies. We denote the underlying sets of

Linking different folds via consistency checksFigure 2
Linking different folds via consistency checks. a) Shows the method of connecting different folds in i.e. SCOP via a link 
proposed by the mapping of SCOP and CATH. Nodes in the graph represent SCOP folds, edges connect two nodes iff at least 
5 members of the SCOP fold are mapped to the same CATH topology b) Shows the interfold similarity of α-hairpin proteins 
in SCOP which are clustered in the same fold according to CATH (1.10.287). c) Shows a more complicated fold graph cluster-
ing proteins of immunoglobulin (CATH 2.60.40) and jelly-roll topologies (CATH 2.60.120) in a non-clique subgraph. All fold 
graphs may be interactively explored on http://www.bio.ifi.lmu.de/SCOPCath.
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domains of the two hierarchies with D1 and D2 and the
hierarchy trees themselves as H1 and H2. We further define
Hi = (Vi, Ei) where Di ⊆ Vi are the leaves of the tree. Since
domain definitions in different hierarchies also may be
different, we have to map the domains defined by SCOP
(D1) and CATH (D2) in a first step. In a second step we
will define and compute a mapping between inner nodes
of the hierarchies.

Mapping of domain assignments
A protein domain is defined as a set of segments within
one protein, where a segment is defined as a consecutive
part of one chain of the protein. Note that this definition
also allows to define discontinuous domains and
domains spanning different chains of a protein. In order
to compare different domain assignments of the same
protein we have to compare sets of segments. To do so, we
use the sets RP(d) of residue positions for all segments of
domain d and define the similarity of domains via the
intersection of their RP sets. Such a mapping is not neces-
sarily unique, i.e. it is possible that a domain in D1 maps
to more than one domain in D2 or, more generally, that n
domains in D1 correspond to m domains in D2. In such
cases the definitions of the domains may be very different
and we exclude domains from D1, D2 if their overlap o (see
below) is smaller than a specified threshold To. For two
domains d1 and d2 from D1 or D2, respectively, we define
the overlap o of two domains as:

If we use a threshold To > 0.5 the mapping will be unique
(but not necessarily complete).

Mapping inner nodes of the hierarchies
While the mapping of domains is more or less trivial
(except for cases where the domain definitions differ to a
large extent), mapping inner nodes of the hierarchy
appears to be more complicated. As already mentioned
inner nodes represent sets of domains. The image of a set
of domains in one hierarchy is the set of domains in the
other hierarchy where To exceeds a given threshold, i.e. for
S1 ⊆ D1 (equivalently for S2 ⊆ D2) the image of S1 is
defined as follows:

Further, we define the sensitivity, specificity and the F-
measure of a domain mapping of two sets S1 ⊆ img(D2) ⊆
D1 and S2 ⊆ img(D1) ⊆ D2 on the restricted hierarchies as:

In order to map sets of domains, we search for all inner
nodes S1 from hierarchy H1 and S2 from hierarchy H2
where F-measure(S1, S2) > 0, i.e. there needs to be at least
one domain which occurs in both sets. The F-measure is
especially useful as it accounts for a tradeoff between sen-
sitivity and specificity. This is necessary since, obviously,
the most sensitive mapping will be always the root, the
most specific one the direct parent nodes of two mappable
domains.

Given the F-measure for every pair of nodes which have at
least one mappable domain in common, we identify the
nodes in H2 which match best to a given node n1 in H1.
From each path from the root to n2 in H2, only one node
(the best one according to the F-measure) will be used in
the mapping. Nevertheless, there may be different paths
in H2 containing nodes mapped to the query node from
H1. In those cases matches from different paths are also
sorted according to their F-measures.

Based on those definitions we calculate for each non-leaf
node n1 in H1 a sorted (by their F-measures) set MS(n1)
consisting of all best matching non-leaf nodes for every
path mapped to n1 in H2. These sets can be explored inter-
actively via the browser at http://www.bio.ifi.lmu.de/
SCOPCath.
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