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of this family is DnrK, anO-methyltransferase involved in
the biosynthesis of the anticancer agent daunorubicin
[10]. Methyltransferases of this family consist of three
domains: the N-terminal helical domain is responsible for
the dimerization via domain swapping, the central helical
domain forms a lid over the active site, and the C-
terminal Rossmann-fold domain bears a SAM binding
motif and the catalytic residues, and forms a part of the
substrate-binding pocket. Despite 30-40 % sequence iden-
tity among the methyltransferases of this family, structures
of these enzymes exhibit numerous differences in mutual
disposition of the domains, secondary structural ele-
ments, and other structural variability, likely as a result
of evolutionary divergence to accept substrates of dif-
ferent structures and sizes. In many cases, including
CalO6, endogenous substrates of these enzymes are not
known, as their determination depends on the detailed
elucidation of the biosynthetic pathways. Therefore,
structural information can help shed light into these com-
plex assembly processes. In this study, we determine a
crystal structure of theO-methyltransferase CalO6.

Methods
Materials and instrumentation
Chemically competentE. coli TOP10 and BL21(DE3)
cells were purchased from Invitrogen.Pfu DNA poly-
merase was from Stratagene. T4 DNA ligase was from
New England BioLabs. DNA primers were from Inte-
grated DNA Technologies. The pET28a was from
Novagen. Cell disruption was performed with a QSonica
Q500 sonicator. Gel filtration was performed on a fast
protein liquid chromatography (FPLC) Bio-Rad BioLogic
DuoFlow system using a HighPrep™ 20/60 Sephacryl™ S-
200 HR column. Amicon Ultra-15 filtration unit was from
Millipore.

Construction of the pCalO6-pET28a overexpression clone
The calO6gene was amplified by polymerase chain reac-
tion (PCR) from Micromonospora echinosporagenomic
DNA with Pfu DNA polymerase using the forward pri-
mer 5� -GTCATACATATGGAACTCACCACGACCG-3�
and the reverse primer 5� -CAGTGCCTCGAGTCAGC
TCCCGTCCGG-3� , which introduced aNdeI and a XhoI
restriction site (underlined), respectively. The resulting
PCR fragment was inserted into theNdeI and XhoI sites of
the linearizedE. coliexpression vector pET28a, generating
a construct of CalO6 bearing an N-terminal hexa-histidine
tag cleavable by thrombin. After transformation into chem-
ically competentE. coliTOP10 cells, the pCalO6-pET28a
DNA was isolated. The sequencing of the construct yielded
an insert sequence that was in perfect agreement with the
annotated sequence ofcalO6 from Micromonospora echi-
nospora(accession number: AAM70356).

Expression and purification of CalO6
The pCalO6-pET28a construct was transformed into
chemically competentE. coliBL21(DE3) cells. A 1 % in-
oculum of transformants containing the pCalO6-pET28a
was grown (in 6 × 1 L; 37 °C, shaking at 200 rpm) in
Luria-Bertani (LB) broth supplemented with kanamycin
(50 μg/mL) until attenuance of 0.6 at 600 nm. After in-
duction with 100 μM isopropyl-1-thio-β-galactopyrano-
side (IPTG), the cultures were grown for 17 h at 25 °C.
Cells were harvested by centrifugation at 5,000 × g for
15 min at 4 °C, and resuspended in lysis buffer [25 mM
Tris-HCl (pH 8.0, adjusted at room temperature (rt)),
400 mM NaCl, and 10 % (v/v) glycerol]. After cell dis-
ruption by intermittent sonication on ice and removal of
the cell debris by centrifugation at 40,000 × g for 45 min
at 4 °C, the clarified lysate was passed through a
0.45μm PVDF filter, and then imidazole was added at a
final concentration of 2 mM. The lysate was loaded onto
a Ni-affinity chromatography column (5 mL HP HiTrap
IMAC column; GE Healthcare), followed by 3 × 5 mL of
lysis buffer with 40 mM imidazole, 3 × 5 mL of lysis buf-
fer with 100 mM imidazole, and 6 × 5 mL of lysis buffer
with 200 mM imidazole. Fractions containing pure
CalO6, as determined by SDS-PAGE, were pooled and
dialyzed overnight in dialysis buffer [50 mM Tris-HCl
pH 8.0, 100 mM NaCl, 0.1 mM EDTA (pH 8.0, adjusted
at room temperature), and 10 % (v/v) glycerol]. The pro-
tein was concentrated to 3 mg/mL, and the hexa-histidine
tag was cut at 4 °C for 30 h by thrombin. CalO6 was then
purified away from the tag and thrombin by gel filtra-
tion (GF) chromatography in GF buffer [50 mM Tris-
HCl (pH 8.0, adjusted at rt), 100 mM NaCl, 0.1 mM
EDTA, and 1 mM DTT]. Fractions containing pure
CalO6 (as determined by SDS-PAGE), were pooled and
the protein was concentrated to ~14 mg/mL in an
Amicon Ultra-15 filtration unit and stored at 4 °C for
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Fig. 1 ProposedO-methylation of orsellinic acid likely tethered to
the ACP domain of CalO5 (indicated by an R) by CalO6 during
calicheamicin (CAL) biosynthesis
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use in crystallization experiments. The purified protein
(Additional file 1: Figure S1 in Supporting information)
was assayed as reported previously [8] and exhibited
similar activity in methylating S-N-acetylcysteaminyl
orsellinic acid, as detected by HPLC. SeMet-substituted
CalO6 was prepared as previously described [11] and
purified analogously to the unsubstituted CalO6.

Crystallization, data collection, and crystal structure
determination
Crystals of CalO6 were grown by vapor diffusion in
hanging drops made by mixing 1μL of protein with
1 μL of crystallization buffer [0.1 M NaCl, 0.1 M Bis-
Tris (pH 5.8, adjusted with HCl at room temperature),
and 1.10-1.25 M ammonium sulfate], incubated over
1 mL of crystallization buffer. Rod shaped crystals of
CalO6 (0.1 mm × 0.1 mm × 0.3 mm in size) grew in
3 days at 21 °C and were transferred to cryoprotectant
solution [0.1 M NaCl, 0.1 M Bis-Tris pH 5.8 (adjusted
with HCl at room temperature), 1.10-1.25 M ammonium
sulfate, 15 % (v/v) glycerol] by increasing glycerol con-
centration in steps of 3 %, then incubated there for
40 min and quickly immersed into liquid nitrogen.
SeMet-substituted CalO6 displayed much lower solubil-
ity (precipitated at ~3 mg/mL) than unsubstituted CalO6
due to a large number of Met residues. Crystals of
SeMet CalO6 took 2-3 weeks to grow and did not dif-
fract well enough (resolution >4 Å, streaky reflections)
to be useful for phasing. Likewise, CalO6 did not form
suitable crystals in the presence of 1-2 mM SAM, SAH,
or 2-5 mM substrateN-acetylcysteamine orsellinic acid
(SNAC-OSA; used with or without SAH), nor did we
observe these ligands in the electron density map upon
soaking them into crystals of CalO6 grown in their ab-
sence. These ligand concentrations were several-fold
higher than the previously reportedKm values (0.3 mM
for SAM and 1.3 mM for SNAC-OSA) [8], which en-
sured that most CalO6 is in a ligand-bound form at the
conditions of the reported activity assays. However, we
could not exclude a possibility that the ligand binding
was disfavored in the crystallization solution. Ethyl mer-
cury phosphate (EMP)-derivative crystals of CalO6 were
prepared by soaking crystals of native CalO6 in the cryo-
protectant solution containing 2 mM of EMP overnight
prior to flash-freezing in liquid nitrogen. A number of
other mercury, platinum, tantalum, and other reactive
and inert heavy metal salts were tried, but did not yield
useful derivatives.

X-ray diffraction data were collected at beamline X-12 at
the National Synchrotron Light Source at the Brookhaven
National Laboratory and processed with HKL2000 [12].
The diffraction was highly anisotropic, with the useful data
extending only to a modest-lowresolution (Table 1), mak-
ing structure determination challenging. The anisotropy

analysis by the anisotropy server [13] indicated that the
data were strongly anisotropic (the spread in values of the
three principal components of scale factors is 33.62 Å2),
with resolution limits of 3.6 Å, 3.6 Å, and 3.1 Å along three
principal component axes. The crystals were not merohed-
rally twinned, as analyzed by using XTRIAGE [14] pro-
gram in PHENIX suite [15]. In addition, EMP derivative
crystals were highly non-isomorphous with native CalO6
crystals. Three-wavelength data set was collected with the
EMP derivative, but due to rapid crystal decay in the X-ray
beam, only the data set collected at 1.007 Å was used for

Table 1 X-ray diffraction data collection and refinement
statistics for CalO6

Data collection EMPa derivative Native

Space group R32 R32

Number of monomers
per asymmetric unit

1 1

Unit cell dimensions

a, b, c (Å) 126.8, 126.8, 105.7 130.0, 130.0, 105.2

α, β, γ (°) 90, 90, 120 90, 90, 120

Resolution (Å) 50.0-3.1 (3.2-3.1)b 50.0-3.1 (3.15-3.10)

I/σ 28 (1.9) 34.3 (2.6)

Completeness (%) 98.1 (92.8) 99.7 (98.3)

Redundancy 3.4 (3.2) 7.1 (5.4)

Rmeas 0.046 (0.571) 0.077 (0.697)

C1/2
c in the highest

resolution shell
0.76 0.89

Number of unique
reflections

11759 (1102) 6322 (296)

Structure refinement
statistics

Resolution (Å)d 25.0-3.4

R (%) 32.5

Rfree (%) 33.3

Number of non-hydrogen
atoms

2194

Bond length deviation (rmsd)
from ideal (Å)

0.009

Bond angle deviation (rmsd)
from ideal (°)

1.44

Clashscore 6

Ramachandran plot statisticse

% residues in allowed
regions

93.7

% residues in generously
allowed regions

3.9

% residues in disallowed
regions

2.4

aEMP stands for ethyl mercury phosphate
bNumbers in parentheses indicate the values in the highest-resolution shell
cC1/2 is calculated as defined previously [31]
dDue to strong anisotropy, data to 3.4 Å was usable in the refinement
eIndicates Procheck [32] statistics
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structure determination. The anomalous signal was meas-
urable to 4.1 Å according to XTRIAGE output; with 25 %
of strong (>3σ) intensities displaying strong anomalous sig-
nal (the magnitude of the Bijvoet intensity difference over
3σ) in the lowest resolution shell and 5 % of strong inten-
sities with strong anomalous signal at resolution ~4.1 Å.
Four mercury sites were found by SOLVE [16], but the
resulting electron density map quality was insufficient for
model building.

Molecular replacement (MR) was attempted by using the
data collected with the native CalO6 crystal with all avail-
able crystal structures of different CalO6 homologues as
search models, by using PHASER [17] and MOLREP [18].
The only structure that yielded a molecular replacement
(MR) solution was that of aclacinomycin-10-hydroxylase
RdmB (PDB ID: 1QZZ) [19], the only known non-
methyltransferase in this structural family. Specifically, only
the C-terminal domain of RdmB as a search model yielded
an MR solution; neither searching with the full-length
RdmB nor searching with the N-terminal domain of RdmB
after placing the C-terminal domain were productive. The
resulting electron density map was not of high enough
quality for model building. However, the phase provided by
the MR solution when used with the anomalous difference
signal from the EMP derivative SAD data yielded 2 mer-
cury sites in the anomalous difference Fourier map. With
these mercury sites as an input, we used AUTOSOLVE
[20, 21] in PHENIX package [15], to combine the MR and
the SAD phases to find 5 additional sites and yield an inter-
pretable electron density map with the figure of merit of
0.46 after density modification (Fig. 2). The electron dens-
ity for the missing N-terminal domain was clearly discern-
ible in the difference density map. The structure was then
built by ~50 cycles of iterative model building with Coot
[22] and refinement with REFMAC [23] by using the EMP
derivative data set. Tight geometric restraints were used in
REFMAC to prevent divergence and preserve proper bond

geometry, which also keptR and Rfree values similar to
each other. The resolution cut-off was chosen as 3.4 Å, as
no map or statistic improvement was achieved upon
including higher resolution data in the refinement, also
consistent with the anisotropy analysis. Using the data ex-
tending to 3.1 Å in resolution after the ellipsoidal trunca-
tion by the anisotropy server did not lead to improvement
either. Potential twinning in R3 space group to mimic
apparent R32 was excluded based on the Britton plot
analysis by XTRIAGE program [15]. Refinement of a
model that contained two CalO6 monomers per asym-
metric unit with the data reduced in R3 did not yield
further improvement in map quality or refinement sta-
tistics. All mercury sites were located near sulfur atoms
of the Cys residues of the refined structure, confirming
the proper residue register. The data collection and refine-
ment statistics are given in Table 1. Due to an apparently
complex non-isomorphism and very high anisotropy, the
native CalO6 crystal data did not improve the resolution
or map quality, even after molecular replacement with in-
dividual domains as search models.

Fig. 2 A fragment of the electron density map after density
modification in AUTOSOLVE, contoured at 1 rmsd. The respective part
of the refined CalO6 structure is shown in grey sticks as a reference

Fig. 3 A cartoon representation of the structure of CalO6 dimer. The
second monomer was generated by a crystal symmetry operation
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Results and discussion
CalO6 is a rareO-methyltransferase crystallized in the
absence of cofactors or substrates; in fact co-crystals
with its ligands either did not grow (with SAH) or were
not of high enough quality for data collection (with
SAM), and crystal soaking experiments did not yield
stably bound complexes, likely because those were disfa-
vored by the crystallization conditions or crystal packing.
The different behavior of CalO6 in the absence and
presence of SAM and SAH in the crystallization experi-
ments suggested that the protein may undergo conform-
ational changes upon cofactor binding. The crystal
structure of CalO6 was determined by a combination of
molecular replacement by using diffraction data col-
lected with native crystals with single anomalous disper-
sion (SAD) using an EMP derivative, as described in
Materials and Methods. Locations of all mercury sites
were consistent with covalent Cys modification. These
were only partially occupied, explaining insufficient phas-
ing power of the SAD data alone. The partial occupancy
may have been caused by poor steric accessibility of Cys
thiols or quenching of EMP by nucleophilic ammonia
generated by high concentrations of ammonium sulfate
[24]. However, because of severe anisotropy of the native
crystal data and strong non-isomorphism between the na-
tive and the mercury derivative data, only the EMP deriva-
tive data set was used throughout the structure building
and refinement process.

Crystals of CalO6 belong to space group R32, with one
monomer in the asymmetric unit (Table 1). The other
monomer in the dimer is generated by a crystal symmetry

operation (Fig. 3). Methyltransferases similar to CalO6 in
sequence and structure, with sequence identity to CalO6
in the 30-40 % range, occur in all three domains of life;
they perform O-methylation in biosynthesis of secondary
metabolites and signaling molecules. Examples of such
methyltransferases include caffeic acidO-methyltransfer-
ase from perennial ryegrass [25], humanN-acetyl sero-
tonin O-methyltransferase [26], as well as chalcone and
isoflavoneO-methyltransferases from alphalpha [27]. It is
proposed that the catalysis in these enzymes occurs
through the activation of the hydroxyl group to be methyl-
ated through abstracting its hydrogen by a catalytic His
residue in the enzyme active site (His252 in CalO6;
Fig. 4a). This phenolate group then acts as a nucleophile
and attacks the electrophilic methyl carbon of SAM. The
list of similar proteins also includes SAM-dependent
aclacinomycin-10-hydroxylase RdmB, in which the active
site His residue is replaced by a Leu, and there is no other
residue that could act as a catalytic base within 7 Å of the
methyl group of SAM [19]. Instead of methylation, RdmB
catalyzes decarboxylation (the resulting carbanion is stabi-
lized by SAM) followed by oxidation through formation of
a hydroxyperoxide intermediate [28]. This example illus-
trates divergence of not only the substrates, but also the
catalytic functions in this enzyme family. Similarly to these
homologues, CalO6 consists of three domains. The en-
tirely helical N-terminal domain of CalO6 (residues 1 to
105) is involved in dimerization, and the C-terminal
Rossman-fold domain (residues 162 to 356) containing
the SAM-binding motif, is involved in substrate binding
and the catalysis of the transfer of the methyl group from

A B

Fig. 4 a. The active site of CalO6. A SAM molecule (colored sticks with C in green, N in blue, O in red, and S in yellow) was modeled to be
bound to CalO6 similarly to its binding to RdmB (PDB ID: 1XDS [28]) with confidence based on highly superimposable SAM binding motifs of
CalO6 and RdmB. The disordered middle domain is shown by the dashed curve. The SAM interacting residues are shown in orange sticks; the
proposed catalytic His252 and a putative substrate binding Phe163 are shown as red sticks.b. Structure of the active site of RdmB in complex
with SAM (same colors as panela) and 11-deoxy-3-β-rhodomycin (blue sticks). The folded middle domain capping the active site is shown in red
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SAM onto a hydroxyl group of the substrate. A normally
helical region between these two domains (residues 106 to
161; called a middle domain in some studies), which forms
a part of the substrate-binding pocket in other methyl-
transferases, is disordered and not visible in the electron
density map (as indicated by a dashed line in Fig. 4a). This
region appears to act as a lid that is closed onto a bound
substrate, as exemplified by the structure of RdmB in
complex with SAM and 11-deoxy-3-β-rhodomycin
(Fig. 4b) [28]. As a consequence, the substrate-binding
pocket in CalO6 is much more open than in otherO-
methyltransferase structures. Disorder in this region has
been observed previously in homologues of CalO6, includ-
ing chalconeO-methyltransferase [27] and RdmB [28].
Furthermore, a recent series of crystal structures of a
more distant single-domain homologue outside of the
DnrK family, human catechol-O-methyltransferase, an im-
portant drug target of nervous system disorders, display
significant disorder in respective regions (termedα2/α3 in
that system) in the apo-form, with ordering and closing
these region onto the active site upon binding of SAM
and/or inhibitors that mimic SAM or the substrate [29].
Therefore, disorder of this region in the absence of bound
substrate or co-substrate appears to be common among
this broad class ofO-methyltransferases. CalO6 appears to
be the most extreme case, where the entire middle region
is disordered or is in different positions relative to the rest
of the protein in different CalO6 monomers in the crystal.
Because a part of the middle domain interacts with SAM
in other similar methyltransferases, this region likely
undergoes at least partial coupled folding upon SAM
binding. The less ordered state of CalO6, crystallized in
the apo-form, explains why crystal structures of homo-
logues of this methyltransferase in the apo form are
extremely rare, since disorder or dynamic nature is associ-
ated with poor crystallizability [30].

The N-terminal domain is oriented at a different angle
with respect to the catalytic domain from that seen in
other methyltransferases bound to SAM, opening the ac-
tive site even further. For example, with the C-terminal
domains superimposed, the tip of the N-terminal do-
main furthest from the pivot point is located 13 Å away
from its position in RdmB (the closest CalO6 structural
homologue with the rmsd of the distances between the
Cα atoms of 1.5 Å for the C-terminal domain) and 15 Å
away from its position in mitomycinC-methyltransferase
MmcR (the closest CalO6 sequence homologue). These
differences correspond to rotations of the N-terminal
domains by ~35° for RdmB and MmcR. Because the N-
terminal domain interacts with the middle domain in
the ligand-bound structures of similar enzymes (Fig. 4b),
the orientation of the N-terminal domain and the con-
formation of the middle domain likely change in a con-
certed way upon binding of the co-substrate and the

substrate, in an induced-fit mechanism. The difference
in the relative orientation of the N-terminal and the C-
terminal domains for the same methyltransferase de-
pending on a bound substrate was previously observed
in RdmB [28] and recognized as the conserved feature
allowing the adaptability of the same structural fold to a
wide variety of substrates. These observations are also
consistent with the different crystallization properties of
ligand bound and apo CalO6, and strongly suggest that
CalO6 and similar enzymes undergo a conformational
change upon their co-substrate and substrate binding.

Conclusions
An example of challenging structure determination, CalO6,
a dimeric Dnrk family O-methyltransferase, was crystal-
lized in the absence of a cofactor or a substrate. The struc-
ture of CalO6 indicates a dynamic nature of the middle
domain, which serves as an active site lid in this unbound
form, as well as suggests that the relative disposition of all
the domains changes to position the co-substrate and the
substrate for catalysis.

Availability of supporting data
The structure factor amplitudes and atomic coordinates
are available in the Protein Data Bank repository, Acces-
sion Code 4Z2Y.

Additional file

Additional file 1: The supporting information contains a figure
showing the coomasie blue-stained 15 % Tris-HCl SDS-PAGE gel of
the purified CalO6 protein used for crystallization studies.
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