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Abstract

Background: Computational models of RNA 3D structure often present various inaccuracies caused by
simplifications used in structure prediction methods, such as template-based modeling or coarse-grained
simulations. To obtain a high-quality model, the preliminary RNA structural model needs to be refined, taking into
account atomic interactions. The goal of the refinement is not only to improve the local quality of the model but
to bring it globally closer to the true structure.

Results: We present QRNAS, a software tool for fine-grained refinement of nucleic acid structures, which is an
extension of the AMBER simulation method with additional restraints. QRNAS is capable of handling RNA, DNA,
chimeras, and hybrids thereof, and enables modeling of nucleic acids containing modified residues.

Conclusions: We demonstrate the ability of QRNAS to improve the quality of models generated with different
methods. QRNAS was able to improve MolProbity scores of NMR structures, as well as of computational models
generated in the course of the RNA-Puzzles experiment. The overall geometry improvement may be associated
with increased model accuracy, especially on the level of correctly modeled base-pairs, but the systematic
improvement of root mean square deviation to the reference structure should not be expected. The method has
been integrated into a computational modeling workflow, enabling improved RNA 3D structure prediction.
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Background
Ribonucleic acid (RNA) molecules play pivotal roles in
living organisms. RNAs are involved in a variety of bio-
logical processes: they transmit genetic information, they
sense and communicate responses to cellular signals,
and even catalyze chemical reactions [1]. With the very
rapid discovery of new classes of RNA molecules, new
functions beyond storing genetic information are also
being discovered. The functions of RNA molecules and
interactions of proteins, RNAs, and their complexes,
often depend on their structure, which in turn is
encoded in the linear sequence of ribonucleotide resi-
dues. Thus, the understanding of the molecular basis of
RNA function requires the knowledge of RNA structure.

The experimental determination of RNA 3D structures
is expensive and difficult [2, 3]. However, the ribonucleo-
tide sequence determines RNA structure (in a similar
manner as amino acid sequence determined protein
structure), it is theoretically possible to infer the RNA
structures from sequences. Since the historically first
prediction of tRNA 3D structure in 1969 [4], throughout
the decades, numerous computational methods were de-
veloped to generate RNA 3D structure from sequence.
Currently, the field of research on RNA structure predic-
tion is quite advanced, and the advantages and limitations
of different methods are known, in particular from the as-
sessment within the RNA-Puzzles community-wide ex-
periment [5–7], which has been inspired by the CASP
experiment for protein structure prediction [8].
Because of the very high costs of all-atom simula-

tions, RNA 3D structures are usually not predicted by
simulating all the details of the physical process of
macromolecular folding, starting from sequence alone.
The most successful general strategy for RNA 3D struc-
ture prediction that emerged from the RNA-Puzzles
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experiment involves the following approaches or their
combination: 1) identification of pre-existing informa-
tion in databases of molecular structure and e.g., using
known structures as templates to develop a compara-
tive model for the whole structure or its part; 2) run-
ning a simulation, often using a coarse-grained strategy,
with restraints to represent all possible knowledge
about the target structure, to generate ensembles of
structurally similar conformations with possibly best
scores. In this strategy, a typical approach is to derive
potentials (scoring functions) based on a statistical ana-
lysis of experimentally determined structures. Statistical
potentials can be used to replace or supplement the
calculation of the physical free energy by evaluating
the relative frequencies of features, such as pairwise
distances of atoms (bonded and non-bonded) and
mutual orientations of chemical groups (e.g., torsion
angles). In this methodological framework, the most
frequently observed structural features are also the
most probable ones.
Simplifications applied in the process of RNA 3D

structure prediction come with a cost of the loss of fine
structural details. Computational models often present
imperfect stereochemistry, unnatural bond lengths or
steric conflicts. These deficiencies are clearly visible
when using quality assessment tools, such as MolProbity
[9, 10]. To obtain a high-quality model, a structure ob-
tained from template-based modeling or from
coarse-grained simulations needs to be further refined.
However, even models perceived as correct by validation
tools can still be far from their native structures. The
most challenging task faced by the refinement is not
only to improve the visible quality of the model but to
bring it closer to the ‘true’ structure (which in case of
real predictions is unknown at the time of the model-
ing). According to RNA-Puzzles, the best models of
medium-sized RNA molecules exhibit root mean square
deviation (RMSD) of 5–10 Å from the reference struc-
ture. It is tempting to ask whether a dedicated software
tool could improve these results.
In this article, we present QRNAS, a new software

tool for fine-grained refinement of nucleic acid struc-
tures, dedicated to improving the quality of models
generated by low- to medium-resolution methods
commonly used, e.g., for RNA 3D structure modeling.
QRNAS is capable of handling RNA, DNA or chi-
meras and hybrids thereof, and enables modeling of
nucleic acids containing modified residues. We dem-
onstrate the ability of QRNAS to improve the quality
of models generated in the course of RNA-Puzzles,
often with improvement in the model accuracy, as
compared to the reference structure. QRNAS is also
able to improve MolProbity scores of NMR structures
from Protein Data Bank.

Implementation
Force field
The force field used by QRNAS is a modified version of
AMBER [11, 12] adopted to represent 107 modified nu-
cleotides currently known to be present in RNA [13].
Currently, 130 residues are parametrized, including four
canonical ribonucleotides (A, G, C, U) and deoxyribonu-
cleotides (dA, dC, dG, dT) as well as naturally occurring
modifications thereof (e.g., m7G, m1A, dU, wybutosine,
queuosine, etc.). The key novel feature of QRNAS is an
extension of the AMBER force field with energy terms
that allow for modeling of restrained structures and en-
force the backbone regularization. Imposition of second-
ary structure is also possible due to interaction types
that go beyond the original AMBER force field, namely:
explicit hydrogen bonds and enforcement of base pair
co-planarity. These two interaction types are often
poorly modeled in structures generated by computa-
tional structure prediction methods, and in our experi-
ence, their enforcement is a critical element of
high-resolution refinement. Application of custom dis-
tance restraints required the introduction of pairwise
harmonic interactions. Regularization of backbone tor-
sions was realized by introduction of a knowledge-based
energy term. All these add-ons carry along a certain de-
gree of arbitrariness, and for this reason, we made them
optional. In particular, our program falls back to plain
AMBER [13] when all four additional terms are disabled.
Similarly, electrostatics and van der Waals interactions
can be disabled by the user (e.g., to speed up the calcula-
tion). With electrostatics enabled, the user can choose
between generalized Born solvent and vacuum environ-
ment. In either case, the system is assumed to be
non-periodic.
The new energy terms associated with hydrogen

bonds, base pairs, backbone irregularities, and custom
restraints are given, respectively, by Eqs. (1)–(4) (see
below).

Explicit hydrogen bonds
Although hydrogen bonds in AMBER are currently han-
dled by means of electrostatic and van der Waals inter-
actions, we decided to reintroduce an additional explicit
description. Our goal was to gain finer control over the
strength of this interaction. This was prompted in part
by our observation, e.g., in the context of the
RNA-Puzzles experiment, that in computational models
of RNA structure obtained by low- to medium-reso-
lution computational methods, interactions based on
hydrogen bonding are often poorly modeled [5–7].
Computationally modeled structures often present an
“almost correct” orientation of hydrogen bond donors
and acceptors, which nonetheless deviates from the
values typically observed in high-resolution structures.
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In these computational models, a relatively small adjust-
ment of geometry often leads not only to an interaction
that can be detected as a “proper” hydrogen bond by
software for structure analysis but to an improved over-
all orientation of base moieties involved in pairing via
these hydrogen bonds. Thus, with high force constant,
explicit hydrogen bonds can be used as restraints when
imposing secondary structure on the modeled nucleic
acid molecule. Another benefit of enforcing strong
hydrogen bonds in the structure optimization procedure
is that geometrically correct contacts are preserved
throughout the computational simulation once they are
formed.
According to Lu et al., the statistical analysis of the

hydrogen-bonds obtained from simulations shows that
the strengths of hydrogen bonds in liquid water conform
to a Gaussian distribution [14]. Therefore, the energy
term associated with hydrogen bond (EH-bond) was
chosen to be Gaussian in its length with an exponential
dependence on the cosine of its angle:

EH−bond ¼ k1 exp −r2ij=d
� �

exp cos θijk−θ0
� �� � ð1Þ

Where k1 denotes the force constant, rij is the hydro-
gen bond length between donor hydrogen i and acceptor
j, and θijk is the bond angle between
donor-hydrogen-acceptor. The parameters k1, i, θ0 were
iteratively tuned to reproduce experimental hydro-
gen bond lengths. The multiplier was arbitrarily set at a
value of − 1 kcal/mol, which proved to provide good per-
sistence of contacts in the course of energy
minimization.

Base pair co-planarity
Models of RNA structure obtained by computational
methods (in particular by coarse-grained methods and in
the process of comparative modeling) often present vari-
ous deviations of base-pair geometry. In particular, ca-
nonical Watson-Crick base pairs often deviate from
co-planarity. Therefore, QRNAS was equipped with an
optional feature that performs the idealization of base
pair planarity. When enabled, Watson-Crick base pairs
are not only restrained by explicit hydrogen bonds but
also additionally flattened. The flattening is implemented
by application of force to the atoms of each base accord-
ing to Eq. (2):

EBP ¼ k2
X

i∈base
r2i0 ð2Þ

where k2 denotes the force constant; ri0 is the distance
from the i-th atom of the base to the plane that best
matches the base pair. The plane is least-squares fitted
to the atoms of both bases. The magnitude of the force
acting on each atom is proportional to its distance from

the plane of the base, while the direction of the force is
perpendicular to this plane. Base pair restraints are in-
troduced only at startup. For two Watson-Crick bases to
be considered as a pair, the energy resulting from term
(2) must be below − 2 kcal/mol. A user can also override
this behavior by providing secondary structure in Vienna
format (for a single chain) or as a list of contacts (in
general case). In such case automatic detection of base
pairs is disabled.

Backbone regularization
The feature of backbone regularization is intended to
correct outlying conformers reported by MolProbity.
Upon energy minimization, it drags the backbone atoms
of each residue to a known conformation, stored in an
internal database. The database of preferred conforma-
tions was populated with data from all crystal structures
of RNA stored in Protein Data Bank (PDB) [15] with a
resolution below 1.4 Å as of June 2013. QRNAS identi-
fies a local backbone conformation in a fragment stored
in the database that is closest to the one in the input
model according to a minimal Root Mean Square
Deviation (RMSD) value. The forces acting on atoms are
harmonic, as given by Eq. (3).

Eregul ¼ k3
X

i∈backbone
ri
!−bi

!� �2 ð3Þ

The parameter k3 denotes the force constant; bi is the
position of i-th backbone atom in a reference backbone.
Coordinates bi are transformed by translations and rota-
tions to minimize the RMSD between the optimized
backbone and the reference one. A similar library-based
approach has been used in RNAfitme web-server for re-
modeling of nucleic-acid residue conformations of RNA
structures [16].
Noteworthy, the original force field parameters were

subject to minor tuning, to generate structures with bet-
ter MolProbity scores. We changed the rest values of
OP1-P-OP2 and N9-C1’-O4’ angles to 119.62° and
109.00° respectively, thereby allowing for the elimination
of most ‘bad angles’ reported by MolProbity.

Custom restraints
Distance restraints are implemented as simple harmonic
forces, as given by Eq. (4).

Espring ¼ k4 ri
!− ci

!� �2 ð4Þ

k4 denotes the force constant which can be set by the
user. The spring forces can be used as positional or dis-
tance restraints since their anchor points ci can be con-
stituted by both atoms and arbitrary points in space.
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Minimization
After setting up the model, QRNAS starts to minimize
the energy of the system. All force field terms in our
model are analytically differentiable, enabling us to use
minimization schemes with explicit gradient informa-
tion. We implemented two algorithms: steepest descent
with golden section search and Polak-Ribiere conjugate
gradients [17].

Performance optimization
Calculation of electrostatics was parallelized for ma-
chines with symmetric multiprocessing (SMP) capability,
i.e., multicore workstations. Parallelism was achieved by
processing of the ‘electrostatic interaction matrix’ in
blocks that share no common atoms. Consequently, the
proposed algorithm is nearly lock-free and has
much-improved cache hit rate compared to a version
which processes pairwise interactions in a random order.
We tuned the parameters of the algorithm (block size
and pointer hashing function) to achieve good perform-
ance on workstations with up to 8 cores. As a proof of
concept, we successfully conducted minimization of
ribosomal RNA taken from the 60S subunit of the
eukaryotic ribosome (PDB code: 4A18) achieving the
performance of 0.2 golden-section search steps per hour.
Example run-times for representative models of RNA

structure analyzed in this paper, minimized for 1000
steps on a single core of 2.40 GHz Intel® Xeon-E5620
CPU (Linux 4.15.0–45-generic-x86_64/Ubuntu 18.04.1
with g++/gcc 7.3.0 compiler) with/without new options
(explicit hydrogen bonds, base pair co-planarity, and
backbone regularization): 1byx (16 residues): 39.48 s/
39.12 s; 2lu0 (49 residues): 254.00 s /250.19 s; 2jyf (86
residues): 689.26.s /685.86 s.

Results
Regularization of NMR structures
First, we tested QRNAS on a set of twelve nucleic acid
3D structures determined by solution NMR (1A60 [18],
1B36 [19], 2L7D [20], 1P5M [21], 1YG3 [22], 2JYF, 2LC8
[23], 2 LU0 [24], 2M4Q [25], 2M58 [26], 1BYX [27],
1DXN [28] in the Protein Data Bank). The common fea-
ture of the targets chosen for this analysis were subopti-
mal scores reported by MolProbity [9]. The test set
included mostly RNA structures, except for three
chimeric and hybrid (RNA/DNA) structures (2L7D,
1BYX, 1DXN). Whenever an ensemble of models was
present, we used the first model. All models except two
(2LC8, 1BYX) suffered from high clash-scores. All
models except two (2L7D, 1DXN) were reported as hav-
ing bad backbone conformations. Some bad bonds were
detected in 1A60, 1YG3 and bad angles were found in
1A60, 1YG3, 2LC8, 2M58, 1BYX, 1DXN respectively.

We used QRNAS with restraints on explicit hydro-
gen bonds, restraints on base pair co-planarity, and
backbone regularization. No custom restraints were used
at this stage. QRNAS was able to resolve all clashes in
the studied set, outperforming both the RNAfitme web
server (which uses NAMD with CHARMM force-field
for optimizing RNA structures) and sander from the
AMBER package (Table 1). The mean amount of bad an-
gles was reduced from 3.46 to 1.31%. The average frac-
tion of wrong backbone conformations was reduced
from 27.43 to 14.83%. On the contrary, RNAfitme and
sander increased the percentages of bad angle and
wrong backbone conformations upon refinement. None
of the methods has shown consistent improvement of
the fraction of bad bonds. This analysis demonstrates
the ability of QRNAS to regularize structures and im-
prove their MolProbity scores, and also shows the limi-
tations of current methods. For practical application of
QRNAS to optimize NMR-derived RNA models it will
be worthwhile to use NMR-derived data as additional
custom restraints in the optimization process and to val-
idate the optimized structures against the NMR data
that were not used in the optimization.

Assessment of model accuracy
In molecular modeling, one of the essential steps is the
selection of the potentially best models. Once the differ-
ent conformations are generated, a scoring function can
be applied to assess the global and local features of the
model, aiming at discriminating models that are closer
to the ‘true’ structure (usually represented as a model
obtained in the course of X-ray crystallography or NMR
experiments and used as a reference) from those that
are less accurate. While the selection of models was not
the primary goal of QRNAS, we tested its ability to score
models. In general, in our various analyses, we did not
observe the correlation of QRNAS single point energy
values (combined with additional scoring from our
custom terms) with the model quality (data not shown)
[6, 7, 29–31]. We suspected that this might be caused by
the fine-grained character of the scoring function and its
extreme sensitivity to the ruggedness of the RNA energy
landscape. In other words, we expected that QRNAS
might be able to discriminate ‘good’ and ‘bad’ models
only very close to the global energy minimum corre-
sponding to the reference structure. On the other hand,
in typical modeling exercises, models generated compu-
tationally are relatively far from the reference structure,
and their RMSD values rarely fall below 5 Å.
Instead of looking at models generated by folding

simulation, we started from six experimentally deter-
mined structures which include P4-P6 ribozyme domain
of group I intron (PDB code: 1GID [32]), GBS/omegaG
group-I intron (PDB code: 1K2G [33]), ai5-gamma group
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II self-splicing intron (PDB code: 1KXK [34]), viral RNA
pseudoknot (PDB code: 1L2X [35]), G-riboswitch apta-
mer (PDB code: 1Y27 [36]), and fluoride riboswitch
(PDB code: 4ENC [37]); and we generated models by
introducing minor random perturbations to positions of
all atoms. From the pool of generated models, we selected
1000 structures with RMSD to the starting/reference
structure ranging from near 0.00 to 5.00 Å. Scoring these
models with QRNAS revealed a funnel-like shape, indica-
tive of an energy/score minimum near the native structure
(Fig. 1). Alas, the funnel was very narrow, less than 2 Å,
which indicated that QRNAS could discriminate only be-
tween models that were extremely close to the reference
and all the others, but it was incapable of discriminating
between models that are very good (RMSD, e.g., around 2
Å) and those that are much worse. This also suggested
that the optimization of QRNAS score (e.g., in the course
of model refinement) is unlikely to improve the global ac-
curacy of models unless the starting models are already
extremely close to the ‘true’ structure. For models of lower
accuracy, statistical potentials can be used, such as RASP
[38] or the energy functions used in 3D structure predic-
tion methods such as SimRNA [31, 39] or ROSETTA/
FARNA/FARFAR [40, 41]. It is worth emphasizing that

computational improvement of model accuracy remains a
difficult problem, for which no perfect solution exists.
QRNAS addresses one of the aspects of this problem, at
the level of local geometry.

Refinement of models in RNA-puzzles experiment
We analyzed the performance of QRNAS on models for
two targets of the RNA-Puzzles experiment (Puzzle #1 –
relatively easy [5], Puzzle #6 – very difficult [6]), and the
resulting broad range of model accuracy. We analyzed
up to five top first structures submitted by various par-
ticipants, generated with different modeling methods,
and hence presenting different types of errors and inac-
curacies. The modeling methods used by different
groups for Puzzles #1 and #6 include ModeRNA [42]
and SimRNA [31, 39] (Bujnicki group), Vfold [43] (Chen
group), FARNA/FARFAR [40, 41] (Das group),
iFoldRNA [44] (Dokholyan group), MC-Fold|MC-Sym
[45] (Major group), and RNA123 software suite [46]
(SantaLucia group). The models were obtained from the
RNA-Puzzles experiment website (currently: http://rna
puzzles.org/). In Puzzle #1 the average RMSD of models
was 4.93 Å (best model exhibited 3.42 Å), while in Puzzle

Fig. 1 QRNAS single point energy vs. RMSD on sets of decoys derived from the six different experimentally determined structures (1GID, 1KXK,
1L2X, 1Y27, and 4ENC solved by X-ray crystallography and 1K2G by NMR). No correlation between the QRNAS score and model quality is
observed, except for the immediate vicinity of the reference structures (RMSD 0–2 Å). 3D models of the native structures are displayed as an inset
in the respective plots
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#6 the model deviated from the reference structure by
23.05 Å on the average (best model exhibited 11.29 Å).
To assess the capabilities of QRNAS, we conducted a

full refinement with default parameters for 10,000 steps.
For comparison, we performed refinement with RNA-
fitme and minimization with sander from the Amber 14
package [47]. RNAfitme was run with the default set-
tings on the web server. Minimization with sander was
performed in a truncated octahedral box of 10 Å with
TIP3P water model [48] and leaprc.ff14SB variant of the
forcefield [49, 50]. The following parameters were used
while running sander: imin 1, maxcyc 10,000, cut 300,
igb 2, saltcon 0.2, gbsa 1, ntpr 10, ntx 1, ntb 0. For the
resulting models, we calculated the value of global
RMSD to assess the overall accuracy, and the Interaction
Network Fidelity (INF) to compare the accuracy of
residue-residue contacts identified in the original and
optimized structures [51]. INF values are calculated for
all types of contacts including canonical and
non-canonical base-pairs and stacking. For the detection
of base pairs, we have used our in-house method
ClaRNA [52].
In all cases, QRNAS improved MolProbity scores, in

particular, it resolved nearly all steric clashes (Tables 2
and 3). For Puzzle #1 (Table 2), the average change of
RMSD was − 0.01 for QRNAS vs. 0.26 for sander (i.e.,
essentially no change vs. minimal deterioration). How-
ever, the average INF value decreases from 0.802 to
0.768, 0.759, and 0.482, calculated from the optimized
models using QRNAS, sander and RNAfitme web server,
respectively. For Puzzle #6 (Table 3) the average change
of RMSD was 0.53 for QRNAS vs. 0.51 for sander and
0.52 for RNAfitme (negligible deterioration), and the
average improvement of INF was 0.001 (for QRNAS)
compare to 0.00 (for sander) and − 0.04 (for RNAfitme)
in respect to the starting models. To evaluate the per-
formance of QRNAS to see how it can optimize the
non-canonical contacts, we have calculated INF consid-
ering only the non-Watson-Crick contacts (INF_nWC)
for the models of RNA-Puzzles #1 and #6. In both the
rounds, QRNAS improved the INF_nWC values with re-
spect to the starting models. Though QRNAS and RNA-
fitme have comparable (very minor) improvement of
non-canonical contacts, sander does not improve such
contacts. Summarizing, in terms of RMSD, the struc-
tures changed very little; sometimes the models im-
proved slightly, sometimes they deteriorated slightly.
This was expectable because in all cases the models were
so far from the reference structure that the local refine-
ment was not expected to drive them towards the global
energy minimum, but rather towards a local minimum,
which could be further away from the reference
structure. On the other hand, we could observe a small
increase in the INF values, indicating a small

improvement of predicted contacts. We attribute this
small change to the ability of QRNAS to improve the
local geometry, in particular in the case of base pairs. In
models that are reasonably close to the ‘true’ structure
and exhibit residues that are ‘almost’ in proper contact
with each other (as in many models for Puzzle #1), the
optimization by QRNAS can refine these contacts and
enable the formation of proper base pairs. The smaller
improvement of contacts in models of Puzzle #6 can be
explained by the low quality of the starting structures,
and the lower fraction of ‘nearly correct’ contacts that
could be optimized.

Previously published examples of QRNAS application
Following the development and initial tests of QRNAS,
we applied it in various modeling studies. In the course
of collaborative work on models generated by all groups
for Puzzles #5, #6, and #10, we found that models sub-
mitted by the Das group had poor clash scores, despite
their overall relative accuracy, as measured in terms of
RMSD to the reference structure. We have therefore run
QRNAS on all Das models submitted for Puzzles #5, #6,
and #10 (17 models total). In all cases, a dramatic reduc-
tion of clash scores was obtained; in 10 models even
down to zero. Only in three cases, the clash scores
remained larger than 4; however, these models had ini-
tial Clash Scores of nearly 30. Details of this analysis
were reported in an article describing RNA-Puzzles
Round II [6].
In order to evaluate the performance of QRNAS for

blind predictions (at the time when the experimentally
determined structure was not available), we calculated
the MolProbity scores of RNA-Puzzles #6 models gener-
ated in our group before the refinement. The MolProbity
scores show improvement in the quality of the models
as the average Clashscores reduced from 8.99 to 1.99
(Table 4). The current version of QRNAS has also re-
duced the bad conformations, bad angles, and bad bonds
in the models submitted for RNA-Puzzles #6 (Table 3).
In the case of group I intron modeling study [29],

QRNAS was used as the final step of a workflow to im-
prove a model generated with ModeRNA [42] and
SimRNA [31]. It reduced the clash-score from 184.69 to
0.37, bad bonds from 4.12 to 0.00%, bad angles from
6.53 to 0.88%, without major changes of the deviation
from the reference structure (10.9 Å to 11.0 Å).

Conclusions
QRNAS is a software tool for fine-grained refinement of
nucleic acid structures, based on the AMBER force field
with additional restraints. QRNAS is capable of handling
RNA, DNA, chimeras, and hybrids thereof, and enables
modeling of nucleic acids containing modified residues.
We demonstrate the ability of QRNAS to improve the
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quality of RNA 3D structure models generated with dif-
ferent methods. QRNAS was able to improve MolProb-
ity scores of NMR structures, as well as of
computational models generated in the course of the
RNA-Puzzles experiment. The overall geometry im-
provement may be associated with the improvement of
local contacts, but the systematic improvement of root
mean square deviation to the reference structure should
not be expected. QRNAS can be integrated into a com-
putational modeling workflow with other tools, enabling
improved RNA 3D structure prediction. Our group sys-
tematically uses QRNAS at the final stage of model re-
finement in the context of the RNA-Puzzles experiment.

Availability and requirements
Project name: QRNAS
Project home page: http://genesilico.pl/software/stand-

alone/qrnas
GitHub page (Mirror): https://github.com/sunandan-

mukherjee/QRNAS.git
Operating systems: GNU/Linux, MacOS and WSL on

Windows 10.
Programming language: C++
License: GNU GPLv3+
Any restrictions to use by non-academics: None
For the compilation of QRNAS, a C++ compiler, such

as GNU g++ is required. A Makefile is provided for the
compilation of the package. Download the software from
http://genesilico.pl/software/stand-alone/qrnas or clone
it from https://github.com/sunandanmukherjee/QRNAS.
git. Unzip the archive, and compile it with the command
make to create an executable version of QRNAS. To
execute the program use the command …/path/to/
QRNAS/QRNA –i input.pdb –o output.pdb where
input.pdb is the file to be optimized and output.pdb is
the optimized structure. For more advanced usage of
QRNAS, users should consult the user manual and the
README.txt file in the QRNAS package.
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