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A library of protein surface patches discriminates
between native structures and decoys generated
by structure prediction servers
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Abstract

Background: Protein surfaces serve as an interface with the molecular environment and are thus tightly bound to
protein function. On the surface, geometric and chemical complementarity to other molecules provides interaction
specificity for ligand binding, docking of bio-macromolecules, and enzymatic catalysis.
As of today, there is no accepted general scheme to represent protein surfaces. Furthermore, most of the research
on protein surface focuses on regions of specific interest such as interaction, ligand binding, and docking sites. We
present a first step toward a general purpose representation of protein surfaces: a novel surface patch library that
represents most surface patches (~98%) in a data set regardless of their functional roles.

Results: Surface patches, in this work, are small fractions of the protein surface. Using a measure of inter-patch
distance, we clustered patches extracted from a data set of high quality, non-redundant, proteins. The surface
patch library is the collection of all the cluster centroids; thus, each of the data set patches is close to one of the
elements in the library.
We demonstrate the biological significance of our method through the ability of the library to capture surface
characteristics of native protein structures as opposed to those of decoy sets generated by state-of-the-art protein
structure prediction methods. The patches of the decoys are significantly less compatible with the library than their
corresponding native structures, allowing us to reliably distinguish native models from models generated by
servers. This trend, however, does not extend to the decoys themselves, as their similarity to the native structures
does not correlate with compatibility with the library.

Conclusions: We expect that this high-quality, generic surface patch library will add a new perspective to the
description of protein structures and improve our ability to predict them. In particular, we expect that it will help
improve the prediction of surface features that are apparently neglected by current techniques.
The surface patch libraries are publicly available at http://www.cs.bgu.ac.il/~keasar/patchLibrary.

Background
Protein surfaces attract numerous studies as they are the
site of molecular binding and enzymatic reactivity. To
date these studies use three levels of protein surface
representations. The oldest represents surfaces as sets of
exposed atoms [1]. A common alternative is to represent
surfaces by sets of mesh points [2-4] that smooth the
exposed atom surfaces. Finally, sets of mesh points may
be coarse grained by descriptor-based methods [5-7]

that allow rapid comparisons of surfaces and surface
patches. These representations have served as an infra-
structure for numerous studies that analyze surface elec-
trostatics [8,9], predict catalytic residues and active sites
[10], and characterize binding sites for small ligands as
well as other proteins (for recent reviews see [7,11,12]).
While these studies mark a major trend in the annota-
tion and prediction of protein function, surfaces are
practically ignored in protein structure prediction. Spe-
cifically, we are not aware of any study that tried to
assess the surfaces of models generated by prediction
methods. This is somewhat surprising as one of the ulti-
mate goals of structure prediction is to allow functional
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annotation of the target proteins and to support struc-
ture-based design of ligands and mutations [13]. The
current study suggests a plausible approach to the
assessment of model surfaces and compares surface
accuracy with standard backbone-based measures such
as Root Mean Square Deviation (RMSD) [14] or Global
Distance Test - Total Score [15].
Notwithstanding the importance of the fine-grained

representations of protein surfaces, their complexity
calls for coarse graining, or abstraction; a coarser per-
spective can reveal new insights about the surface archi-
tecture that are otherwise masked by the plethora of
fine details. Two previous lines of study, [16-18], and
[19-21], suggested coarse-grained representation of pro-
tein surfaces using the notion of surface patches. Their
approaches to the problem were remarkably different,
reflecting the different aims of these studies. Jones and
Thornton [16,17] and later Albou et al. [18] defined sur-
face patches as overlapping sets of proximate surface
residues, and compared binding site patches with non-
binding ones to characterize and predict protein-protein
interaction sites [22]. Baldacci et al. [19,20] defined sur-
face patches as non-overlapping sets of homogeneous
and connected surface points and classified them to
twelve predefined types. They employed data mining
techniques on these patches to identify structural simi-
larity and plausible evolutionary connection between
proteins. Since both applications of the surface patch
concept are so tightly tailored to their specific aim, it is
hard to see how they can be used in a different context.
Here we present a more general representation of sur-

face patches, which is inspired by the central role of
clustering in the study of protein fragments (i.e., contig-
uous structural segments along the protein chain) [23].
Representative fragments, extracted by clustering large
data sets of protein structure fragments, have been used
for a wide range of applications including: studies of
sequence/structure relationships [24,25], sequence align-
ment [26], structural comparison and classification [27],
large scale mapping of the fold space of proteins [28],
and for protein structure prediction [26,29]. Here, we
use the K-means++ [30] clustering algorithm to generate
a library of representative protein surface-patches that
commonly occur in the Protein Data Bank (PDB). To
demonstrate the utility of our approach, we quantify the
differences between the surfaces of native protein struc-
tures and those of decoys generated by state-of-the-art
structure prediction methods. We also suggest a variety
of other applications for future research.
Briefly, a surface patch in this study is a set of surface

atoms within a certain radius around a surface b-carbon,
denoted the pivot (Figure 1). The distance between two
patches is the Root Mean Square Deviation (RMSD)

between their atoms under a mapping that preserves
chemical identity. Pairs of patches of different chemical
compositions are considered infinitely distant. The K-
means++ algorithm uses this distance to break a large
data set of patches into k = 350 structurally homoge-
neous clusters. The centroids of these clusters constitute
our library (Figure 2), which captures genuine features
of native structures surfaces (Figure 3).

Results
We extracted 15,288 surface patches from the training
set domains, calculated all vs. all distances, and weeded
out 200 outlier patches that were too far from most
other patches. Then, using the K-means++ algorithm
[30] we divided the patches to k = 350 clusters. The
algorithm associates each cluster with a representative
centroid. The set of 350 centroids constitutes a library
of surface patches (Figure 2). Given this library, any sur-
face patch may be associated with the closest library ele-
ment, and the surface of any protein structure may be
described by a list of the associated library elements.
Below, we compare the library-compatibility of the

training-set proteins to the compatibilities of the test-set
native structures and their decoys. We further compare
the compatibilities of the decoys themselves, attempting
to correlate it with the decoy quality.

Distribution of native and decoy patch distances from
cluster centroids
Given a library of surface patches, any surface patch
may be marked with its distance to the closest library
element (DCLE). The essence of the K-means algorithm
is optimization of the average DCLE within the clusters.
Thus, one may expect a low average of DCLE values for
training set patches and higher values for unrelated
patches. Figure 3 compares the distribution of training
set DCLE values with six test set distributions: that of
the native structures and those of the first, most confi-
dent, models submitted by five state-of-the-art CASP8
structure prediction servers. The DCLE distribution of
patches extracted from native test set structures is
almost indistinguishable from the training set distribu-
tion, which indicates that the library is not over-fitted.
On the other hand, The DCLE distributions of the
decoy patches, are significantly wider (Wilcoxon rank
sum test, p< 10-30), with larger averages. This difference
is large enough to distinguish native structures from a
set of five decoy structures in 68% of the test set pro-
teins (Table 1). The random expectation is 1/6, i.e., 16.6
(± 7.7)% (where the standard deviation of 7.7 was esti-
mated by 10,000 bootstrap re-sampling iterations).
While compatibility with the surface patch library

discriminates between native structures and decoys, it
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provides a weaker clue regarding the quality of the
decoys themselves. The best decoys (by RMSD), are
only slightly enriched within the most compatible
decoys (Tables 2 and 3), probably because on average
the decoys are more similar to one another than to the
native structure. Decoy quality assessment by GDT_TS
resulted in similar results (data not shown).

The relative size of clusters
Cluster preference is another property that distinguishes
between the patches of native and decoy structures. For-
mally, for a set of patches Q (e.g., patches extracted
from some decoy set) this preference is a vector F(Q) =
{ f(Q,C1) .... f(Q,Ck) }, where f(Q,C) is the fraction of Q
elements that are closest to the centroid of cluster C,

Figure 1 Illustration of surface patches extracted from the crystal structure of asparagine synthetase (12AS). (a) The protein’s atoms,
color coded by solvent exposure from exposed (red) to buried (blue). A surface patch consists of all the exposed atoms within a sphere of
radius r = 7Å (green) around a central surface b-carbon (pivot enlarged for illustration). (b) The surface of a single patch. (c) Neighboring patches
on the protein surface typically overlap (the small magenta spheres represent pivots).

Figure 2 Construction of the patch library. (a) First, we extract the surface patches from the data set; atoms are marked by small spheres in
the patch. (b) Then, we group of the patches into k clusters; the atoms of the patches in each cluster are superimposed on the cluster centroid.
For clarity, we omit the surfaces, and render the atoms of each patch in the cluster in a different color. (c) The surface patch library is
represented by the cluster centroids.
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and k is the number of clusters. Figure 4 presents a
cumulative distribution of Δi = | f(Q0,Ci)- f(Q,Ci)|, per
each data set Q, where Q0 is the set of training patches.
The Δ values of the test set native structures are signifi-
cantly lower than those of the decoys (p< 10-4 by Wil-
coxon rank-sum test), indicating that the native
structure preferences are far more similar to those of
the training set than the preferences of the decoys. Cur-
iously, not only do the native structures differ signifi-
cantly from the decoys, the server structures differ
considerably among themselves.

Discussion and Conclusions
This work presents a new library of surface patches ana-
logous to the fragment libraries that had a considerable
impact on computational structural biology over the last
twenty years [23]. Here, to demonstrate the significance
of our library, we use it to compare patches taken from
native structures and from decoys generated by state-of-

the-art protein structure prediction servers. Our results
show that the clusters are meaningful, and capture genu-
ine aspects of native protein surfaces. Specifically, patches
of decoys generated by servers are significantly different
from patches of native proteins. Furthermore, this differ-
ence has a predictive power allowing us to identify native
protein structures within a set of server models.
This phenomenon can be only partially attributed to

the qualities of the models as measured by the standard
RMSD and GDT_TS scores. Patch-derived measures (e.
g., DCLE) are not correlated with RMSD or GDT_TS
(data not shown), Good models (e.g., of low RMSD) are
as prone to non-native surface patches as bad ones.
Thus, we cannot use it to reliably rank decoys. On the
other hand, we hope that our library will shed light on
inherent limitations of the current modeling techniques.
Such limitations in the representation of surfaces
may be overlooked by the current model assessment

Figure 3 The cumulative distributions of the distance of native and decoy patches to their closest cluster centroid in the surface
patch library. The fit to the library of patches from native structures (in dashed blue and solid black) is significantly different from that of
CASP8 server models (p< 10-42 by Wilcoxon rank sum test).

Table 1 Ranking the native structures among 6
conformations (native and five predictions by servers)

Ranka 1 2 3 4 5 6

% Ranked ± stdb 74 ± 7 14 ± 7 3 ± 7 4.5 ± 7 4.5 ± 7 0 ± 7
a Best fitting structure to the patch library is ranked first
b The random expected value is 16.6%

Table 2 Ranking the model with the best RMS score
(over all residues) among the top models generated by
the five prediction servers

Ranka 1 2 3 4 5

% Ranked ± std b 29 ± 7 20 ± 7 13 ± 7 20 ± 7 18 ± 7
a Best fitting model to the patch library is ranked first
b The random expected value is 20%
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procedures. However, they may drastically reduce the
applicability of models for real life problems that often
involve surface interactions. The characterization of
these discrepancies between model surfaces and the sur-
faces of native structures is an obvious direction to con-
tinue this study. We hope that it would lead to some
insight about the limitations of current modeling proce-
dures and eventually to better model building techni-
ques. A few other future applications are listed below.
Our approach to surface patch sampling requires quite

a few parameters, such as the patch radius and the
number of clusters. Due to the exploratory nature of the
current study, we have decided to avoid a time consum-
ing systematic search for the optimal values of these
parameters. Some of them were assigned arbitrary
values, and for others we sparsely sampled a wide range
of values (data not shown). Although some values

generated better results than others, the results were
qualitatively similar, suggesting that the approach pre-
sented here is stable and viable.
Protein structures are extremely complex entities and

no single perspective exposes all their properties. In the
past, new protein representations (e.g., fragments [23],
and rotamers) opened the way to diverse lines of study.
One may speculate a similar trend here. Possible direc-
tions include functional inference from patch content,
evolutionary conservation, and diversification of patch
content and graphical representation of protein surfaces
with patches as nodes and patch overlap as edges. The
latter suggests new directions for structure-based com-
parison, search, and classification.

Methods
Data Sets
The training set, which is available online at http://www.
cs.bgu.ac.il/~keasar/patchLibrary/domain_names.html, is
the one previously used by Kolodny et al. [25] and
includes 200 unique domains from SCOP version 1.57.
These domains were solved using X-ray crystallography
at high resolution [31] and each of them has the highest
ranking SPACI scores [32] in its SCOP category.
The test set includes both native structures and their

server-predicted models (decoys). These structures

Table 3 Ranking the model with best RMS score (over all
residues) among five models generated by the same
server (CASP8 servers 425 and 426)

Ranka 1 2 3 4 5

Server 425: % Ranked ± std b 28 ± 7 17 ± 7 25 ± 7 7 ± 7 23 ± 7

Server 426: % Ranked ± std b 23 ± 6 25 ± 6 15 ± 6 14 ± 6 23 ± 6
a Best fitting model to the patch library is ranked first
b The random expected value is 20%

Figure 4 Relative cluster preferences (Δ ) of patch sets are represented by cumulative distributions. A bias towards low Δ values
indicates that the cluster preference of the set of patches is similar to that of the training set. The native structures of the test set are
significantly more similar to the training set than the servers’ sets (p < 10-4 by Wilcoxon rank sum test). Note also the considerable differences
between the preferences of the various servers.

Gamliel et al. BMC Structural Biology 2011, 11:20
http://www.biomedcentral.com/1472-6807/11/20

Page 5 of 8

http://www.cs.bgu.ac.il/~keasar/patchLibrary/domain_names.html
http://www.cs.bgu.ac.il/~keasar/patchLibrary/domain_names.html


correspond to 55 CASP8 [33] single domain targets that
were solved by X-ray crystallography and are non-
homologous to the training set proteins. Specifically, the
training set proteins have a BLAST [34] E-value of at
least 10-3 when run against the training set. The decoys
were generated by five top CASP8 servers (Table 4), and
are available through the CASP8 web site. Following the
CASP regulations, each server submitted five models per
target, ordered by confidence.

Identification of surface atoms
We consider an atom of type t (e.g., Alanine-Ca) to
reside on the surface if its accessible surface area, calcu-
lated by PROGEOM [35], is at least a.access_surft (Fig-
ure 1a). Here, access_surft is the 99th percentile of the
cumulative distribution of accessible surface area within
all the atoms of type t, and a = 0.9. The empirical
adjustment of these two parameters reduces the effect
of errors in the crystallographic data (e.g., missing side
chains that superficially expose backbone atoms), and
ensures continuous coverage of protein surfaces.

Patch definition
We define surface patches as sets of surface atoms cen-
tered about all solvent exposed b-carbons, which we
denote pivots (Figure 1). Each patch includes the central
pivot and all surface atoms within a given radius around
it. This radius is a critical parameter as the number of
atoms within a patch is strongly dependent on it. Thus,
a large radius results in large numbers of atoms and
long evaluation times for the combinatorial distance
measure (see below). On the other hand a too small
radius may leave surface regions uncovered. A prelimin-
ary study suggested 7Å as a reasonable compromise that
keeps a manageable number of atoms in a patch
(around 25 on average) and provides a continuous cov-
erage of proteins’ surfaces by overlapping patches.

Measuring the distance between two patches
Given two patches A and B, we look for an optimal
superposition in terms of structure and chemical prop-
erties, and define the distance between A and B as the

minimal RMSD under a set of chemical constraints. If
the compositions (see below) of the patches are too
remote to allow meaningful superposition, we set the
distance to infinity.
More formally: Let the patches be the respective sets

of atoms in A and B, A = {a1,...,an and B = {b1,...,bm. Let
TiA be the number of atoms of type Ti in patch A and
rg(A) the radius of gyration of A (symmetrically for B).

Notice that
∑

i
TiA = n, and

∑
i
TiB = m.

The patches A and B are compatible if
|n − m|

max(n,m)
< �1,∀i

|TiA − TiB|
max(TiA,TiB)

< �2, and∣∣rg(A) − rg(B)
∣∣ < �3

The threshold values for size difference, chemical dif-
ference, and radius of gyration difference were arbitrarily
set to F1 = F2 = 0.2, and F3 = 5Å. The distance
between incompatible patches is infinite.
Let t: {set of all atoms} ® T be a mapping so that for

an atom a, t(a) is the atom’s type. A mapping f, from A
to B, is proper if it satisfies f(a) = b if and only if f(b) =
a and t(a) = t(b).
Let F = {f1,..., fk} be the set of all proper mappings of

A and B.
Then, the distance between A and B is:

D(A,B) =
{
minf∈FRMSD(A,B, f ) ifA,B are compatible

∞ otherwise

where RMSD(A,B,f) is the optimal superposition [14]
of the atoms of A and B that are mapped by f.
In practice, finding the optimal mapping is a hard

combinatorial optimization problem, although the
requirement for compatibility provides a filter that
reduces the number of these calculations considerably.
Thus, the use of the exact distance definition above
might have rendered the calculation of numerous dis-
tances infeasible. Instead, we use a heuristic approxima-
tion that reduces the number of tested mappings. To
this end, we define the inner sphere of a patch to be a
sphere, centered at the pivot, of radius r < 7Å, which is
adjusted so that the number of surface atoms in the
inner sphere is between 4 and 9 (see Figure 5a). We
then exhaustively enumerate all possible chemically
valid mappings between the inner sphere of one patch
and the inner sphere of the other patch (Figure 5b). The
RMSD between these inner spheres is measured after
optimal least-squares superposition. If this RMSD is less
than 2Å, the transformation it implies serves as a seed
for matching the full patches A and B. If no seed was
found, the distance between the patches is taken to be
infinity. Once the transformation of a seed match was
applied to the full patches, we match the atoms of A
and B: each atom of A is matched according to proxi-
mity and chemical attributes to the best fitting atom in

Table 4 Decoy data sets from CASP8

Server name Server
Group

Number of
Models

Number of
Patches

Zhang-Server Zhang 426 5004

Baker-ROBETTA Baker 425 4921

Phyre_de_novo Sternberg 322 5137

RAPTOR Gao 438 5448

pro-sp3-TASSER Skolnick 409 4899

Nativea 4277
aThere are 55 native structures.
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B (Figure 5c). Now we have a mapping between A and B
for each seed. For each such mapping we compute the
RMSD between A and B and pick the matching with
the lowest RMSD.

Outlier weeding
Patches that are distant from the majority of other
patches are outliers; we weed them out in a pre-proces-
sing step to avoid numerous non-informative singleton
clusters. Here, we define an outlier as a patch that has a
distance greater than 2.5Å to more than 90% of the
other patches; this filters out 1.51% of the surface
patches. A closer look at some of the outliers reveals a
diverse population. Some of them are unique (within
our dataset) functional elements like metal binding sites,
for example the small protein 1VFY contributes four
outliers due to its two metal binding sites and a large

fraction of unstructured chain. Others are artifacts of
using domains instead of whole proteins, for example
1JHG, which is a homo-dimmer, contributes five out-
liers. Three of them are actually buried by the other
subunit. Finally, some of the outliers do not show any
peculiarity that we could identify. Their uniqueness may
be simply an artifact of the relatively small size of our
dataset.
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Figure 5 The distance approximation heuristic. (a) Given two patches A (in green) and B (in yellow), we consider their inner spheres (pivots
are marked using a darker shade). (b) Then, we enumerate all possible matches of the inner spheres. (c) If the RMSD between the inner spheres
is less than 2Å, it serves as a seed for mapping the full patches. Finally we pick the superposition that yields the minimal RMSD value (circled
in red).
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