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experiment of HIV-1 protease.

resistance.

Background: Protease inhibitors designed to bind to protease have become major anti-AIDS drugs. Unfortunately,
the emergence of viral mutations severely limits the long-term efficiency of the inhibitors. The resistance
mechanism of these diversely located mutations remains unclear.

Results: Here | use an elastic network model to probe the connection between the global dynamics of HIV-1
protease and the structural distribution of drug-resistance mutations. The models for study are the crystal structures
of unbounded and bound (with the substrate and nine FDA approved inhibitors) forms of HIV-1 protease. Coarse-
grained modeling uncovers two groups that couple either with the active site or the flap. These two groups
constitute a majority of the drug-resistance residues. In addition, the significance of residues is found to be
correlated with their dynamical changes in binding and the results agree well with the complete mutagenesis

Conclusions: The dynamic study of HIV-1 protease elucidates the functional importance of common drug-
resistance mutations and suggests a unifying mechanism for drug-resistance residues based on their dynamical
properties. The results support the robustness of the elastic network model as a potential predictive tool for drug

Background

HIV-1 protease (human immunodeficiency virus type 1
protease) is an enzyme that plays a critical role in the
virus replication cycle. It cleaves the gag and pol viral
polyproteins at the active site to process viral matura-
tion [1-3], and without HIV-1 protease the virus was
found to be noninfectious [4]. Thus HIV-1 protease is
widely considered the major target for AIDS treatment
[5,6]. One of the most severe obstacles to protease-inhi-
biting drugs is the rapid emergence of protease variants.
Variants are able to evolve resistance by developing a
chain of mutations, and as a result limit the long-term
efficiency of these drugs [7,8].

HIV-1 protease is a dimer of C2 symmetry with each
monomer consisting of 99 amino acid residues. Each
monomer has one o helix and two antiparallel B sheets
in the secondary structure. The enzyme active site is a
catalytic triad composed of Asp25-Thr26-Gly27 from
each monomer. It is gated by two extended B hairpin
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loops (residues 46-56) known as flaps [9]. At the mole-
cular level, resistance to protease inhibition predomi-
nantly takes the form of mutations within the protein
that preferentially lower the affinity of protease inhibi-
tors with respect to protease substrates, while still main-
taining a viable catalytic activity [10]. Mutations
associated with drug resistance occur within the active
site as well as non-active distal sites [11].

During the past two decades, researchers and clini-
cians from different disciplines have made enormous
efforts to investigate resistance against HIV-1 protease
targeted drugs. To elucidate the molecular mechanisms
of drug resistance, biochemists and molecular biologists
have characterized the structure, energetics and catalytic
efficiency of a large number of HIV-1 protease mutants
to unravel the resistance mechanism in combination
with extensive computational studies [12-15]. Moreover,
drug resistance data collected from AIDS patients trea-
ted with HIV-1 protease inhibitor drugs [16-19] provide
opportunities for researchers to identify resistance-
related mutation patterns [20-22]. Recently there have
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been efforts to link protein physical and functional sta-
bility with its evolutionary dynamics [23,24].

At the heart of understanding the molecular basis of
drug-resistant behaviors of HIV-1 protease is the struc-
tural distribution of resistance mutations. Presumably
these mutations are not randomly located throughout the
protein structure. Although different HIV-1 protease
inhibitors elicit different combinations of mutation types
to generate distinctive resistance levels, there are 21 most
common mutations associated with resistance against all
inhibitors [19]. Prediction of resistance mutations of pro-
teins is based on either sequence or structure informa-
tion [25]. Sequence-based methods predict resistance
mutations by analyzing large datasets of sequences with
known resistance properties. Thus the availability of
those datasets is a prerequisite for such methods
[22,26-28]. On the other hand, predicting mutations
using protein structure has largely relied on the charac-
terization of binding thermodynamics [29-32], as the
mutations with resistance against inhibitors lower the
binding affinity of inhibitors far more than that of natural
substrates. The accuracy of the prediction is directly
related to the accuracy of the potential function used in
the calculations and the adequacy of the sampling of the
protein conformational space. It is also sensitive to the
error/noise in the free energy calculations [32].

Conformational dynamics play an essential role in reg-
ulating protein function [33,34]. In the past few years a
deepening understanding of the relationship of protein
dynamics and function has emerged [35]. Relevant to
the study here is the utilization of protein dynamics to
identify the sequence regions of functional importance
even though their locations may be remote from the
active site. Computationally there have been rapid meth-
odological developments in relating protein dynamics to
function by probing the long range communications
between residues: perturbation method [36,37], cluster-
ing analysis of correlation matrix [38], network analysis
[39], and energy diffusivity estimation by propagation
through vibrational modes [40]. The success of these
methods in reproducing experimental results as well as
findings from sequence-based methods has established
the validity of dynamics-based approaches [38,41].

The dynamics of HIV-1 protease, especially binding
dynamics of its ligands are fundamental to the protease
inhibitor design and have been a subject of intense com-
putational study [42-49]. Because of limitations of time
scale in all-atom simulations, various coarse-grained
models have been used to investigate HIV-1 protease
binding dynamics and kinetics, shedding light on impor-
tant dynamics issues [45-49]. The main features of sub-
strate interactions and dynamics at the active site were
analyzed within the framework of the coarse-grained
model [45,49]. Gaussian models were shown to describe
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accurately the correlated motion of HIV-1 protease resi-
dues in thermodynamic equilibrium through a series of
successful comparisons with an extensive MD simula-
tion [49,50]. There is increasing evidence relating pro-
tease’s drug-resistance mutations to its dynamics. The
impact of some distal mutations on catalytic function of
HIV-1 protease was linked to protein flexibility [51,52].
Multi-drug resistance residues of HIV-1 protease were
found to overlap the global hinge region identified from
coarse-grained normal-mode analysis of the protease
[53]. Nevertheless, despite extensive research efforts, a
general explanation for drug-resistance mutations of
HIV-1 protease is still lacking [54].

In this study, a coarse-grained elastic network model
is used to investigate the dynamics of HIV-1 protease,
to probe the connection between its global dynamics
and the distribution of drug-resistance mutations, and
to examine the potential of the dynamics-based
approach as a predictive tool for drug resistance predic-
tion, with an attempt to provide a unifying mechanistic
explanation for all residues of resistance based on their
dynamical properties. The crystal structures of an
unbound form and bound forms with a substrate and
nine FDA approved inhibitors of HIV-1 protease are
used as model systems. Correlation analysis of the pro-
tease at equilibrium focuses on two functional sites of
HIV-1 protease: the active site (the Asp25-Thr26-Gly27
triad [45]) and the flap (residues 45-55 [47]). The pro-
tease dynamic changes upon ligand binding are exam-
ined as well. The implications for resistance
mechanisms and protein evolution are discussed.

Results

Here HIV-1 protease is represented by a coarse-grained
network model, and its dynamics is examined in several
X-ray crystallographic structures. The linkage between
global dynamics and the distribution of drug-resistance
mutations is examined first in individual unbound and
bound forms, then in the dynamical differences between
the unbound and bound forms. The former is a measure
of the residual fluctuations in different structures, and
the latter is an estimate of dynamical change caused by
ligand binding.

Dynamically coupled regions identified by equilibrium
correlations Unbound form

The correlation matrix, consisting of correlations of all
residue pairs, captures the essence of protein dynamics.
A 198 x 198 correlation matrix (Figure 1) is generated
from the elastic network modeling (see Methods sec-
tion) based on the unbound HIV-1 protease (PDB id
1HHP). The most conspicuous features in the figure are
the beta-sheets, represented by the line across the diago-
nal (residues 19-24, 43-66, 69-78, 118-123, 142-165 and
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Figure 1 Correlation matrix. The correlation matrix for an
unbound form of HIV-1 protease (PDB id THHP).

168-177). Extraction of further information from the
matrix requires the application of data analysis tools
such as clustering algorithms. The Markov cluster
(MCL) algorithm (see Methods section) is the chosen
method, and the results from the MCL program for the
unbound form consist of five clusters (Table 1). Cluster
1 is the largest cluster with 48 residues. It covers the
core domain, which excludes both termini and the flap,
and forms the scaffold surrounding the active site of the
enzyme. Clusters 2 and 3 are exclusively composed of
the residues located at the beginning of the N-terminus
and the end of the C-terminus, respectively. The
remaining two clusters concentrate on two functional
sites (Figure 2). Cluster 4 contains the active site of
HIV-1 protease (Asp25-Thr26-Gly27 catalytic triad), one
residue at the dimerization region (Leul0), and a large
segment of the C-terminal (Ile84-Cys95). Cluster 5 is
mainly made up of the residues at the flap region
(Pro44-Arg57) with two additional residues from the C-
terminal domain (Leu76 and Gly78). These two func-
tional sites are involved in distinct aspects of the pro-
tease function: the active site is where the enzymatic
catalysis takes place, and the flap controls access to the
active site. The clustering results indicate that these two

Table 1 Clustering result of the unbound form

Page 3 of 9

functional sites belong to separate interaction networks
of the protease.

Bound forms

The ten structures of HIV-1 protease in complex with
the natural substrate and nine FDA approved inhibitors
are chosen to represent HIV-1 protease in bound forms.
Despite their varying degrees of similarity with the
unbound form, these ten structures generate very similar
clustering results (Table 2). The general clustering pat-
tern of HIV-1 protease unbound form is preserved in all
the bound forms: the scaffold, the N- and C- termini,
the active site and the flap. Nevertheless, inside the clus-
ters there are reorganizations and splits of the clusters
due to ligand binding. Upon binding, the tips of the
flaps (residues 48-55) close and cover the active site,
and the physical proximity facilitates stronger interac-
tions between the flap region and part of the C-term-
inal. As a result, the cluster containing the flap grows in
the bound form. The cluster containing the flap is
enlarged by including residues 79-83, while part of the
C-terminal (residues 87-95) is disengaged from the clus-
ter with the active site and forms a new cluster of its
own. The diversity of the ligand types of the ten struc-
tures does not induce a dramatic impact on the clusters.
The number of residues in the cluster of the active site
and of the flap ranges from 12 to 18 and from 19 to 24
respectively, but the number of separate sequence seg-
ments in these two clusters remains constant.

In summary, there exist two independent clusters con-
taining two important functional sites of HIV-1 pro-
tease. These two networks are relatively robust to
perturbations caused by the different types of ligand.

Dynamical behavior differences between the unbound
and bound forms

Without directly engaging the active site, another way to
influence a protein’s function is to perturb the motions
essential to its function. For enzymes, these essential
motions are the conformational changes accompanied
by the association and dissociation of ligands [55]. In
HIV-1 protease the large scale open/close conforma-
tional change of the flap along the reaction pathway is
the major structural reorganization induced by ligand

Scaffold

717273747577 7980 818283
N-terminal 123456789
C-terminal 96 97 98 99

Coupled with the active site
Coupled with the flap region

111213 141516 17 18 19 20 21 22 32 33 34 35 36 37 38 39 40 41 42 43 58 59 60 61 62 63 64 65 66 67 68 69 70

10 23 24 25 26 27 28 29 30 31 84 85 86 87 88 89 90 91 92 93 94 95
44 45 46 47 48 49 50 51 52 53 54 55 56 57 76 78

Residues of the active site and of the flap are underlined and double-underlined, respectively.
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Figure 2 Two clusters containing functional sites. Residues in
Clusters 4 (red) and 5 (yellow) are displayed in an unbound form of
HIV-1 protease (PDB id 1HHP). The active site is highlighted by a
ball representation.

binding [43-47]. Extensive investigations of 73 X-ray
mutant and complex structures of HIV-1 protease
revealed that a common and predominant dynamic
behavior was found among the protease in complex
with different ligands [56]. The focus of study here is
the dynamical changes from the unbound to bound
forms of HIV-1 protease at the residue level. The dyna-
mical property of each residue is characterized by the
sum of its couplings with other residues (see Methods).
The binding-induced changes in the dynamical beha-
viors of individual residues were very similar among the
ten bound structures (Figure 3). Overall, the perturba-
tions to the residues are not isotropic, and the regions
exhibiting the largest deviations are signaled by peaks.
The ten bound proteases all share very similar locations
and magnitudes of these peaks (residues 32-42, 44-57
and 77-82). The most pronounced difference between
the unbound and bound protease is the loss of flexibility
in the flap tip upon binding, as indicated by the highest
peak (around residues 44-57) in Figure 3.

Discussion

Using a coarse-grained network model, functionally
important residues of HIV-1 protease were identified
based on correlation analysis of either equilibrium fluc-
tuations or dynamical changes. Experimentally the resi-
dues of functional importance can be directly probed by
mutagenesis experiments. The complete mutagenesis
experiments carried out on HIV-1 protease revealed
three mutationally sensitive sequence domains [57]: the
active site region (Ala22-Leu33), the flap region (Ile47-
Gly52) and the part of C-terminal (Thr74-Arg87). The
active site and flap region have obvious functional sig-
nificance. The influence the C-terminal residues exert
on the catalytic cycle is most likely through long-range
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couplings with the functional sites. Correlation analysis
suggests that some residues of the C-terminal (Ile84-
Cys95) are functionally important due to their strong
interactions with the active site, while the others (Leu76
and Gly78) may influence the dynamics of the protein
through their couplings with the flap. The dynamical
changes analysis also indicates that residues 77-82 are
involved in the binding process. Structurally, residues
79-84 form a wall of the active site, and their motions
were shown by previous simulations to correlate well
with the open/closed dynamics of the flap [52].
Currently there are nine FDA approved protease inhi-
bitors, and the most up-to-date clinical data indicate 21
most common drug-resistant mutation positions ("most
common” defined as mutation position shared by at
least two inhibitors among the nine currently approved
protease inhibitors):10, 20, 24, 32, 33, 36, 46, 47, 48, 50,
53, 54, 62, 71, 73, 76, 77, 82, 84, 88 and 90 [19]. These
mutations are located at the dimer interface (residues 88
and 90), the core domain (residues 10, 20, 24, 32, 33,
36, 62, 71, 73, 76, 77, 82, and 84), and the flap domain
(residues 46, 47, 48, 50, 53, and 54), respectively. The
clustering analysis of HIV-1 protease in various forms
identified 10, 24, 32, 46, 47, 48, 50, 53, 54, 76, 77, 82,
84, 88 and 90 (15 out of the total 21 resistance sites) as
those coupled either with the active site or the flap. The
dynamical change analysis identifies two additional resi-
dues 33 and 36 as residues of importance. The unde-
tected residues (20, 62, 71 and 73) are located in the
hydrophobic core of the protease, and their mutations
likely affect the protease activity through influencing the
protease structure and stability [30]. Another note-
worthy fact is that there are far more residues discov-
ered by clustering analysis than by clinical studies (15
out of the total 34 residues in the two clusters contain-
ing functional sites are the residues of resistance). Drug
resistance residues not only influence protease binding,
but also generate differential binding affinity between
the substrate and inhibitors. The cluster analysis can
only detect residues that may influence the binding.
Therefore the pool of residues identified by the cluster-
ing analysis is larger than those found with drug resis-
tance affinity in clinical studies. The similar clustering
results from different protease inhibitor complexes
further suggest that global dynamics are preserved
among different complexes of HIV-1 protease inhibitors.
The convergence of results regardless of the conforma-
tion of the protein was also found by the Gaussian net-
work modeling of HIV-1 protease [50]. Computational
studies using atomistic MD simulations reached the
same conclusion that correlation matrix based analysis
does not differentiate the essential modes of motion of
the protein native forms from those of the mutants [58].
Nevertheless, the dynamic approach proposed here



Table 2 Clustering results of the ten bound forms

PDB id Mutation RMSD (A) Coupled with the active site Coupled with the flap region

2FENS 7 Q7K, D25N, 052 1023 24 25 26 27 28 29 30 31 8485 86 87 44 45 464748 49 50 51 52 5354 55 56 78 79 80 81 8283
(substrate) L63P, 164V

THPV 6 None 054 1023 24 25 26 27 28 29 30 31 3285 86 44 45 464748 49 50 51 52 5354 55 56 78 79 80 81 8283 84
(Amprenavir)

THXB 6 None 031 1023 24 25 26 27 28 29 30 31 3285 86 44 45 464748 49 50 51 52 5354 55 56 78 79 80 81 8283 84
(Saquinavir)

TMUI 5 N37S 0.53 1023 24 25 26 27 28 29 30 31 328485 86 44 45 464748 49 50 51 52 5354 55 56 78 79 80 81 8283
(Lopinavir)

204K 8 Q7K 035 2324 25 26 27 28 29 30 31 32 83 8485 86 87 88 89 90 43 44 45 464748 49 50 51 52 5354 55 56 57 58 7677 78 79 80 81 82
(Atazanavir)

3VY 6 Q7K, L33I*, L63I, C67A, G86A, 0.38 2324 25 26 27 28 29 30 31 3285 86 44 45 464748 49 50 51 52 5354 55 56 79 80 81 8283 84
(Darunavir) C95A

204P 8 Q7K 039 2324 25 26 27 28 29 30 31 32 83 8485 86 87 88 89 90 44 45 464748 49 50 51 52 5354 55 56 79 80 81 8283 84
(Tipranavir)

THXW 6 None 0.40 1023 2425 26 27 28 29 30 31 85 86 87 44 45 464748 49 50 51 52 5354 55 56 79 80 81 8283 84
(Ritonavir)

2PYN 6 D30N, A71Vv* 0.26 EB 2_4 2526 27 28 29 30 31 328485 86 44 45 464748 49 2 51 52 5354 55 56 78 79 80 81 283
(Nelfinavir)

2B77 7 K20R*, V32I*, L33F*, M36lI%, 032 E 22 23 2_4 2526 27 28 29 8_485 86 34 43 44 45 464748 49 i) 51 52 5354 55 56 57 7677 78 79 80 81 283
(Indinavir) M461*, L63P, A71V* V82A*,

184V*, LOOM*

The type of the ligand is listed in brackets. The global average RMSD of backbone atoms between the unbound (PDB id THHP) and bound forms is given. The mutations of each protease are listed. Only the clusters
containing the active site and the flap are shown here.

(1) *drug-resistance mutations
(2) Residues belonging to the 21 common resistant mutations are underlined.
(3) Residues shared by all the bound forms are in italics.
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Figure 3 Fluctuation differences between the unbound and
bound forms. Fluctuation difference between the unbound (PDB id
THHP) and ten bound forms of HIV-1 protease plotted as a function
of residues. Only residues with larger than average difference are
plotted.

locates a majority of drug-resistance mutations, and pro-
vides insight on the drug-resistance mechanism of HIV-
1 protease. Drug resistance mutations of HIV-1 protease
can be classified as active site or non-active site muta-
tions, depending on their location within the protein.
Active site mutations are located in the vicinity of the
active site and directly affect the protease-inhibitor
interactions. Thus their action on inhibitor binding affi-
nity can be readily understood in structural terms. On
the other hand, non-active site mutations influence
binding from various distal locations and their mechan-
ism of action is not immediately apparent. Although
some residue-specific explanations and suggestions have
been proposed, the overall mechanism by which these
diversely located non-active site residues influence inhi-
bitor-binding remains unclear [19]. Dynamic studies
presented here suggest a simple yet general explanation
for the distribution of the drug resistance residues in
HIV-1 protease. Except for these residues of resistance
influencing protease binding affinity by acting on the
structural stability of HIV-1 protease, the drug-resis-
tance residues belong to clusters that are either the
“coupled with the active site” or “coupled with the flap”.
It is noteworthy that residues coupled with the func-
tional sites (Clusters 4 and 5) do not all locate in the
physical vicinity of each other. Long distance communi-
cations play an important role in mediating the interac-
tions between the functional sites and distal residues.
The residues clustered with the functional sites can
exert an impact on protein function, even though they
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may not locate near the active site. Leul0 and Leu90,
among the residues clustered with the active site (Clus-
ter 3), are well-known residues whose mutations lead to
drug resistant variants [17]. The finding that Leu76 and
Gly78 are coupled with the flap region is also corrobo-
rated by a detailed protein flexibility study of HIV-1
protease which concluded that mutations at residues
Thr74-Val77, although far from the active site, reduce
protease activity because of their correlated motions
with the flap region [55]. Traditionally, computer meth-
ods of predicting resistance mutations based on protein
structure have been largely focused on energetic analysis
[25], in which atomistic molecular mechanics and/or
molecular dynamics are used to investigate ligand-pro-
tein binding affinity. The mechanism of non-active site
mutations has largely remained a challenge for energetic
analysis because of the minimal structural and energetic
perturbations caused by those mutations [51]. These dif-
ficulties, however, open the door for dynamics-based
study, especially via coarse-grained methods such as
elastic network modeling, which provide an efficient
way of sampling the global dynamics of proteins. The
interaction network identified by the correlation analysis
contains both active site and non-active site residues.
These residues influence the inhibitor binding by cou-
pling with the active site and the flap, regardless of their
physical proximity. Thus the dynamic approach in this
study is able to detect both active and non-active drug-
resistance sites based on coarse-grained protein models.
It is believed that only a few amino acid sites are
responsible for adaptive evolution in almost all proteins
[59], although the nature of these positively selected
residues is yet to be elucidated. The findings from this
study indicate that the interaction networks of globally
distributed residues involving the functional sites play a
dominant role in the evolutionary pathways of HIV-1
protease, and they become the major sites that develop
resistance under selective antiviral pressure. Pathogenic
proteins such as HIV-1 protease escape the challenges
to their survival imposed by drug inhibition through
mutations at these amino acid residues. Structure-based
modeling of proteins confirms the decisive role of physi-
cal interactions in the evolution of virus proteins and
raises the possibility of constructing a protein fitness
landscape by means of physical modeling of proteins.

Conclusions

This study examines the functional significance of com-
mon drug-resistance mutations of HIV-1 protease by
characterizing its global dynamics using coarse-grained
modeling. The calculations show that most residues of
drug-resistance are coupled either with the active site or
with the flap. These couplings are rather robust to the
perturbation of ligand binding. These findings result in
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a unifying mechanism for all drug-resistance residues
based on their dynamical properties. They also indicate
that global dynamics of HIV-1 protease are intrinsically
connected to the structural distribution of drug-resis-
tance mutations, thus dynamic study provides a simple
yet general and useful tool to examine the tendency of
drug resistance of residues in addition to traditional
energetic analysis.

Methods

Elastic network modelling

The elastic network model was applied according to the
standard protocol [60]. The details of the correlation
matrix can be found elsewhere [41]. In this study the
cutoff distance R, is set to be 10A, but the choice of R,
was shown not to noticeably affect the results based on
the correlation matrix generated from the model [61].
The structures of the unbound and ligand-bound forms
of HIV-1 protease with various ligands were used. For
the ligand-bound protein, only the C, atoms of the pro-
tein are represented by the network model and the
ligand is not incorporated in the model. The online ser-
ver http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi
[60] was used to generate the correlation matrix, and
the element in the correlation matrix is defined as

< ARiAR]‘ >

Cij =

5 , ] (1)
[< AR; >< ARj >]2

where AR; and AR; are the fluctuations of nodes i and
J, respectively.

Clustering analysis

The correlation matrix is submitted for clustering analy-
sis by the Markov cluster (MCL) algorithm [62]. The
MCL algorithm is one of the most successful clustering
procedures in identifying protein-protein interactions
from genomic data [63] and has been shown to be
robust and outperform other clustering algorithms [64].
Relevant to the study here is the application of MCL to
clustering protein residues based on the interaction cor-
relation matrix [38]. MCL finds cluster structure in
graphs by performing a random walk through the
graphs. The process computes the probabilities of ran-
dom walks through the graph, and uses expansion and
inflation to change the probabilities associated with the
random walks departing from one particular node. It
results in the separation of the graph into different seg-
ments. Cluster granularity is controlled by the inflation
parameter which is the only variable in the MCL pro-
gram used in this study. In order to reduce the noise,
the correlation matrix has to be adjusted before being
submitted to the MCL program. First the absolute
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values of the correlation coefficients are taken. Then a
cutoff value is applied to produce a condensed version.
Correlations less than the cutoff value are set to zero
and the cutoff value is subtracted from the remaining
correlations. The cutoff and the inflation parameter
(0.08 and 1.5, 0.075 and 1.4 for the unbound and bound
protease, respectively) were chosen to produce a total
number of five clusters for the unbound protease, and
six to seven clusters for the bound protease. The num-
ber of clusters is chosen to be five or six because the
resulting clusters make the most physical sense. All the
bound forms are subject to the same parameters.

Fluctuation difference between unbound and bound
forms

The structural differences between the unbound (ligand-
free) and bound (ligand-bound) proteins are usually sig-
nificant. The structural changes are not to be identified
with the dynamical behavior changes. The change in
dynamical behavior caused by binding for residue i, AC,,
is calculated as the sum of the absolute values of the dif-
ference between the correlation coefficients of residue i
in the unbound and bound forms,

AC; =) |Cj— Cl )

]

In Equation 2, the sum is over all the residues in the
protein. C;; and C’; denote the correlation coefficient of
residues i and j in the unbound and bound forms,
respectively.
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