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Abstract

Background: Structural insight from transcription factor-DNA (TF-DNA) complexes is of paramount importance to
our understanding of the affinity and specificity of TF-DNA interaction, and to the development of structure-based
prediction of TF binding sites. Yet the majority of the TF-DNA complexes remain unsolved despite the considerable
experimental efforts being made. Computational docking represents a promising alternative to bridge the gap. To
facilitate the study of TF-DNA docking, carefully designed benchmarks are needed for performance evaluation and
identification of the strengths and weaknesses of docking algorithms.

Results: We constructed two benchmarks for flexible and rigid TF-DNA docking respectively using a unified non-
redundant set of 38 test cases. The test cases encompass diverse fold families and are classified into easy and hard
groups with respect to the degrees of difficulty in TF-DNA docking. The major parameters used to classify
expected docking difficulty in flexible docking are the conformational differences between bound and unbound
TFs and the interaction strength between TFs and DNA. For rigid docking in which the starting structure is a
bound TF conformation, only interaction strength is considered.

Conclusions: We believe these benchmarks are important for the development of better interaction potentials and
TF-DNA docking algorithms, which bears important implications to structure-based prediction of transcription
factor binding sites and drug design.

Background
Transcription factors (TFs) play key roles in the regula-
tion of gene expression through binding to specific
DNA sequences known as transcription factor binding
sites (TFBSs) [1-3]. At the genomic level, the interac-
tions between TFs and their binding sites in target
genes (TGs) form multi-layered regulatory networks, in
which TFs and TGs are represented as nodes and direct
links between TFs and TGs correspond to regulatory
interactions [4-7]. Although these transcriptional net-
works can be studied with one or more particular
focuses, such as the structure, function, and/or evolu-
tion, the fundamental step in network construction is
the identification of transcription factor binding sites.
Computational identification of TFBSs on a genomic
scale has been considered as a promising strategy for

delineating these networks and remains one of the pri-
mary challenges in post-genomic bioinformatics [8,9].
Most of the current computational methodologies for
TFBSs prediction are sequence-based; however struc-
ture-based TFBS prediction is gaining popularity
[10-17]. Currently, structure-based approaches rely on
resolved TF-DNA complex structures. Despite rapid
technological advances in experimental structure deter-
mination, the number of experimentally solved TF-DNA
complex structures remains scant in Protein Data Bank
(PDB)[18]. Computational docking represents a useful
tool for studying the mechanisms of molecular recogni-
tion in complex structures. Previous studies have
demonstrated that molecular docking can obtain accu-
rate complex structures for protein-protein, protein-pep-
tide, and protein-ligand interactions [19-22]. However,
protein-DNA docking, especially TF-DNA docking, still
represents a largely unexplored vista when compared to
the progress made in protein-protein and protein-ligand
docking [13,23-25].
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In structural bioinformatics, benchmarks are routinely
used for assessing systematic performance of predictive
approaches such as fold recognition [26,27], protein-
ligand docking [28], and protein-protein docking
[29,30]. Carefully designed benchmarks with a wide vari-
ety of test cases can provide objective evaluation, help
identify the strengths or weaknesses of different meth-
ods, and facilitate the development of better algorithms
and parameter optimization [31]. Recently, a general
protein-DNA docking benchmark consisting of 47 pro-
tein-DNA test cases has been developed [32]. While this
benchmark contains well-defined test cases for evaluat-
ing protein-DNA docking in general, the unique charac-
teristics of transcription factors and the imperative goal
of structure-based TF-binding site prediction call for a
TF-specific docking benchmark. Transcription factors
represent one of the largest groups of proteins in most
genomes and form a distinct group of DNA-binding
proteins in terms of sequence specificity and flexibility
[4,5,33]. It is well known that DNA-binding proteins
encompass diverse functional categories [34-36] includ-
ing enzymes involved in DNA replication, recombina-
tion, cleavage, repair and other nucleic acid
metabolizing processes. Some of these enzymes are
sequence-independent when binding to DNA molecules
as in the cases of polymerases, DNase I, and histone
binding proteins, while others are more stringent
sequence-specific enzymes, such as HhaI methyltrans-
ferases and most of the type II restriction endonucleases
[34,35,37,38]. Transcription factors, on the other hand,
recognize specific binding sites while allowing certain
degrees of variations.
Moreover, different interaction or binding “modes”

have been reported for transcription factors, restriction
endonucleases (REs), and non-specific (NS) DNA bind-
ing proteins [36,39,40]. In a recent study, Contreras-
Moreira et al. showed that restriction endonucleases
have a “substantially larger proportion of indirectly read-
out bases” when compared with other transcription fac-
tor superfamilies [40]. In the general protein-DNA
docking benchmark by van Dijk and Bonvin, most of
the restriction endonucleases are classified into the diffi-
cult category and half of the ‘Difficult’ targets are
restriction endonucleases due to their large conforma-
tional differences between bound and unbound protein
structures, suggesting restriction endonucleases have dif-
ferent binding mechanisms to a certain degree [32]. Our
analysis of residue-base interactions and protein-DNA
interaction interface of three major types of DNA bind-
ing proteins, TF, RE, and NS, also confirms these differ-
ences (see Methods).
To facilitate the study of the TF-DNA docking pro-

blem and structural-based TF binding site prediction,
we construct two benchmarks, one for flexible TF-DNA

docking using unbound TFs as the starting structures,
and the other one for rigid docking using bound TF
conformations as the starting structures, with intended
applications in assessing the capability of docking pro-
grams to deal with conformational changes, and evaluat-
ing docking algorithms and energy potentials [13]. Both
benchmarks are constructed from a unified set of 38
TF-DNA complexes and corresponding unbound TF
structures.
Besides specific interactions between protein residues

and DNA bases, it has been well accepted that DNA
deformations/shapes or ‘indirect readout’ play important
roles in protein-DNA interaction [40-43]. In our bench-
marks, we use the bound DNA structures instead of the
canonical B-form DNA structures for benchmark con-
struction (Figure 1). We have demonstrated previously
in our semi-flexible protein-DNA docking that near-
native DNA structures can be modeled from representa-
tive DNA conformations compiled from known DNA
structures in protein-DNA complexes [13]. Therefore,
the contribution of indirect readout in TF-DNA interac-
tion is not considered as a variable in grouping the test
cases. For both flexible and rigid docking test cases, we
consider the strength of TF-DNA interactions in assign-
ing levels of difficulty. If the interaction interface is
small, the probability of a correct prediction is also low.
For flexible cases, the conformational difference between
the unbound and bound TF structures serves as an
additional factor for accessing the degrees of docking
difficulty as larger structural differences between bound

Figure 1 Schematics for construction of rigid and flexible TF-
DNA docking test cases. The flexible docking test cases are
constructed using unbound TF structures and bound DNA
structures while the rigid docking test cases use both bound TF and
bound DNA conformations.
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and unbound forms require more efficient handling of
conformational changes in docking prediction.
To our knowledge, our benchmarks are the first large

sets with test cases compiled ad hoc for TF-DNA com-
plexes. The cases represent a diverse group of transcrip-
tion factors (15 SCOP superfamilies) [44]. These two
benchmarks are different from the general protein-DNA
docking benchmark by Van Dijk and Bonvin in that
besides transcription factors, their benchmark also con-
sists of restriction endonucleases and other types of
DNA modification enzymes [32]. Though a set of TF-
DNA complexes was used to perform docking studies
by Aloy et al., the set is small (8 cases) and is restricted
to repressors [45]. Another unique feature of our bench-
marks lies in that this carefully selected, unified set of
test cases can be used for both rigid docking and flexible
docking. We believe that our benchmarks will serve as a
test ground for TF-DNA docking studies, which has
important implications in structure-based TF binding
site prediction. The test cases in PDB format are avail-
able for download at http://bioinfozen.uncc.edu/tf-dna-
benchmarks.

Methods
TF-DNA complex structures and TF-DNA binding units
The first step in test case selection is to cull sequence-
specific TF-DNA complex structures from PDB [18].
Since the classification of some DNA-binding proteins
in PDB is sometimes ambiguous, for example, transcrip-
tion factors Escherichia coli SigmaE Region 4 (2H27)
and the ribbon-helix-helix domain of Escherichia coli
PutA (2RBF) are classified as “transferase” and “oxidore-
ductase” respectively in PDB, we combined information
from PDB keywords, UniProt [46] keywords, and Gene
Ontology (GO)[47] terms with manual inspection to
identify all TF-DNA complexes in PDB.
Each test case in our benchmarks is a TF-DNA bind-

ing unit. A TF-DNA binding unit is defined as an
entity of a DNA double helix and one or more TF-
chains that interact with each other with at least three
residue-residue contacts based on a heavy atom dis-
tance cutoff of 4.5 Å. If a PDB entry has two or more
TF-DNA binding units, a representative TF-DNA bind-
ing unit is carefully selected based on the detailed pro-
tein-DNA interaction, visual inspection and literature
search. For example, 3HDD (engrailed homeodomain-
DNA complex) has two TF-DNA binding units. One is
in the middle of the DNA helix while the other one
binds to the edge of the DNA structure (Additional
file 1, Figure S1). The one close to the middle of the
DNA has more protein-DNA interactions and is
selected as a test case. For presentation purpose, the
TF chain or chains in a TF-DNA binding units are
dubbed as a TF unit in our study.

Structure comparison and TF-DNA interaction interface
Structure alignment is carried out with TM-align [48].
TM-align algorithm uses TM-score instead of the com-
monly used RMSD (Root Mean Square Deviation) for
alignment optimization. TM-score is more sensitive to
global structure topology than to local structure changes
[48,49]. The RMSD between two TF chains (RMSDc) or
two TF units (RMSDu) is calculated with the alpha car-
bons of the amino acids that are aligned by the global
sequence alignment program NEEDLE in EMBOSS
package [50].
The TF-DNA interface or the buried surface area

(BSA) of a TF-DNA binding unit is determined by cal-
culating the difference in solvent accessible surface area
(ASA) between separate TF and DNA structures and
TF-DNA complexes, i.e.

BSA = 0.5 ∗ (ASATF + ASADNA − ASATF−DNA).

The solvent accessible surface areas are measured with
POPS using default parameters [51]. The number of
residue-base contacts (NRBCs) is defined as the number
of residues that are in contact with a DNA base through
sidechains with a heavy atom-heavy atom distance cutoff
of 4.5 Å.
To investigate the interaction characteristics among

different types of DNA binding proteins, we compiled
three non-redundant datasets: TF, RE, and NS for tran-
scription factors, type II restriction endonucleases, and
non-specific DNA binding proteins respectively. All the
complex structures are solved by X-ray crystallography
method with resolutions of 3Å or better. The annotation
of each complex to one of the three groups is based on
the classifications in PDB [18] and literature search. The
redundant entries in each set are removed using PISCES
with a sequence identity cutoff of 30% [52]. The protein
chains in each set (RE: 24, TF: 84, NS: 43) are shown in
Additional file 2, Table S1.
We compared the distributions of NRBC and protein-

DNA contact area among RE, TF, and NS groups. Fig-
ure 2 shows that restriction endonucleases have more
residue-base contacts (Figure 2A) and larger protein-
DNA interfaces (Figure 2B) than those in the transcrip-
tion factor group. While the median value of the NS
interface distribution falls between the median values of
TF and RE (Figure 2B), the median of NRBC distribu-
tion in NS is the lowest among the three groups (Figure
2A), suggesting small ratio of base/backbone contacts
with proteins in the NS group. Figure 2C shows the per-
centage of interactions of each residue except for glycine
(no sidechain contact) with base or backbone-only in
three datasets. Not surprisingly, NS has significantly
lower base contacts than RE and TF groups. Large dif-
ferences are also observed in about half of the residues

Kim et al. BMC Structural Biology 2011, 11:45
http://www.biomedcentral.com/1472-6807/11/45

Page 3 of 10

http://bioinfozen.uncc.edu/tf-dna-benchmarks
http://bioinfozen.uncc.edu/tf-dna-benchmarks


types, alanine (A), aspartate (D), cysteine (C), glutamate
(E), leucine (L), methionine (M), serine (S), tryptophan
(W) and valine (V) between RE and TF protein groups
(Figure 2C). These data provide further justification to
the construction of TF-specific docking benchmarks.

Selection of test cases for TF-DNA docking benchmarks
The selection process for the test cases of our bench-
marks is shown in Additional file 1, Figure S2. The pro-
tein-DNA complex structures determined by X-ray
crystallography with resolutions of 3.0 Å or better were
first selected from PDB [18]. The protein-DNA com-
plexes that do not have double-stranded DNA structures
were identified with our previously developed program
PDA (Protein-DNA Complex Structure Analyzer) [37]
and removed from the set. The TF-DNA binding units
were then identified as described previously. The
unbound TF structures that have a sequence identity of
at least 95% and coverage of 95% or better compared to
the bound TFs were identified using BLAST [53]. The
TF-DNA units and their corresponding unbound TF
structures were clustered into different groups with a
protein sequence identity cutoff of 35% using PISCES
[52]. The representative test case in each group was
selected based on structural qualities (high resolution,
fewer missing residues/atoms in TF-DNA interface) and
its nativeness (e.g. wildtype is preferred over mutants).
For unbound structures, an NMR structure is chosen
only if no X-ray structure is available.
Thirty-seven test cases were initially generated, which

include two modeled unbound TF unit structures

(1RXR and 1R69) for TF-DNA units in 1BY4 and 2OR1.
The TF unit structures of 1BY4 and 2OR1 are homodi-
mers. However, the only available unbound structures
for both 1BY4 and 2OR1 are monomers. Since the con-
formational differences between the bound and
unbound chain structure in both cases are small and for
the purpose of increasing the dataset size, we modeled
their unbound TF-unit structures based on their bound
unit structures and unbound TF-chain structures. We
also added 1AYY (ZIF 268 zinc finger), a popular test
case in many studies largely due to the extensive experi-
mental data [10-13,15,54-56], to the test cases. However,
it does not have a reasonable unbound structure in PDB
at this point. Thus we omit it from the flexible TF-DNA
docking benchmark but will include it as soon as its
unbound structure becomes available.
One flexible and one rigid TF-DNA docking benchmark

were constructed using the unified 38 test cases (Figure 1,
Tables 1 and 2). Because of the relatively small size of the
set, we grouped the test cases into two difficulty levels
(easy and hard) in both benchmarks but with different cri-
teria and plan to expand it to three levels (easy, medium,
and hard) when we have more test cases in the future. In
flexible docking, conformational difference between bound
and unbound TF structures is considered as a key para-
meter in determining docking difficulty. For rigid docking
in which starting TF structures are already in bound con-
formations, the strength of TF-DNA interaction is
employed as the sole criterion for the classification.

Results
Overview of benchmark test cases
There are a total of 38 test cases for our TF-DNA dock-
ing benchmarks. About 71% of the test cases have
homodimer/homotetramer TF-unit structures (Tables 1
and 2). These transcription factors have less than 35%
sequence identity and cover a number of different struc-
tural folds. Based on recent SCOP (Structural Classifica-
tion of Proteins) annotation (release 1.75 and pre-
SCOP)[44], the test cases belong to 11 different struc-
tural folds, 15 superfamilies, and 28 families (Tables 1, 2
and Additional file 2, Tables S2 and S3). At the super-
family level, the “winged-helix DNA-binding domain”
and the “homeodomain-like” superfamilies are relatively
overrepresented with 8 and 5 cases respectively. Even
though they are in the same superfamily, different TF-
DNA interaction patterns and/or degrees of structural
changes between bound and unbound TF units (Addi-
tional file 1, Figure S3 and Additional file 2, Table S2)
point them into different groups of docking difficulty.

Classification of TF-DNA complexes
An ideal TF-DNA docking benchmark should have TF-
DNA complexes with various degrees of difficulty.

Figure 2 Distributions of protein-DNA interactions in different
types of DNA-binding proteins. A: distribution of NRBC in RE, TF,
and NS datasets; B: distribution of protein-DNA interaction surface in
RE, TF, and NS datasets; C: percentage of residue interactions with
base or backbone-only of DNA, one-letter codes are used for amino
acids. RE: restriction endonuclease, TF: transcription factor, NS: non-
specific.
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Table 1 Flexible TF-DNA docking benchmark

TF-DNA Complex Unbound-TF

PDB TF-DNA Unit Chains NRBCb PDB Res.
(Å)

Chains RMSDu

(Å)e
RMSDc

(Å)e

Name ID Res.
(Å)

SCOP Protein Oligo_state DNA

CopG repressor 1b01 2.56 a.43.1.3 A, B Homodimer E, F 5 2cpg 1.60 A, B 0.511 0.460

PhoB 1gxpa 2.50 a.4.6.1 A Monomer C, D 7 1gxq 2.00 A 1.622 1.622

AML1 Runt domain 1hjc 2.65 b.2.5.6 D Monomer E, F 6 1ean 1.70 A 1.056 1.056

Papillomavirus E2 1jj4 2.40 d.58.8.1 A, B Heterodimer C, D 10 1f9f 1.90 C, D 0.949 1.484

TATA-binding protein 1qn4 1.86 d.129.1.1 B Monomer E, F 15 1vok 2.10 B 0.934 0.934

Tet repressor 1qpi 2.50 a.4.1.9 A, C Homodimer B, M 14 2tct 2.10 A, B 2.061 1.359

MtaN 1r8d 2.70 a.6.1.3 A, B Homodimer C, D 8 1jbg 2.75 A, B 2.107 1.368

Sigma subunit
domain 4

1rioa 2.30 a.4.13.2 H Monomer U, T 6 1ku3 1.80 A 1.405 1.405

Easy MecI 1sax 2.80 a.4.5.39 A, B Homodimer C, D 12 1okr 2.40 A, B 1.718 1.586

CAP 2cgp 2.20 a.4.5.4 A, F Homodimer B, C, D,
E

10 1i5z 1.90 A, B 1.652 1.919

LRP/ASNC family
protein

2e1c 2.10 a.4.5.32 A, F Homodimer B, D 12 2zny 2.59 A, B 1.339 1.184

IdeR 2it0a 2.60 a.4.5.24 C, D Homodimer E, F 11 2isy 1.96 A, B 0.476 0.489

Phi 434 repressor 2or1 2.50 a.35.1.2 R, L Homodimer A, B 17 1r69c 2.00 A, B 0.570 0.493

PutA 2rbf 2.25 N/A A, B Homodimer C, D 8 2gpe 1.90 A, B 0.798 0.571

SoxR 2zhg 2.80 a.6.1.3 A, D Homodimer B, C 6 2zhh 3.20 A, B 1.749 1.467

Controller protein 3clca 2.80 a.35.1.3 C, D Homodimer E, F 14 3fya 3.00 A, B 0.834 0.809

CprK 3e6c 1.80 a.4.5.4 C, D Homodimer A, B, E,
F

12 3e5u 1.83 A, B 1.060 0.906

NrtR 3gz6 2.90 N/A A, B Homodimer C, D 15 3gz5 2.20 A, B 0.853 0.726

Max 1an2 2.90 a.38.1.1 A, C Homodimer B, D 10 1r05d N/A A, B 8.074 4.767

RXR-alpha 1by4 2.10 g.39.1.2 A, B Homodimer E, F 8 1rxrc,
d

N/A A, B 4.637 2.326

Met repressor 1cma 2.80 a.43.1.5 A, B Homodimer C, D 4 1cmc 1.80 A, B 2.232 2.313

Myb 1h8aa 2.23 a.4.1.3 C Monomer D, E 8 1gv2 1.68 A 9.153 9.153

QacR 1jt0a 2.90 a.4.1.9 B, D Homodimer E, F 12 1jt6 2.54 D, E 2.924 1.650

Lambda repressor 1lmb 1.80 a.35.1.2 3, 4 Homodimer 1, 2 10 1lrp 3.20 A, B 32.342 0.928

Trp repressor 1troa 1.90 a.4.12.1 A, C Homodimer I, J 12 1p6z 1.67 N, R 3.095 1.427

Prospero 1xpx 2.80 a.4.1.1 A Monomer C, D 3 1mij 2.05 A 0.519 0.519

Hard OhrR 1z9c 2.64 a.4.5.28 C, D Homodimer I, J 12 1z91 2.50 A, B 2.521 1.919

Put3 1zme 2.50 g.38.1.1 C, D Homodimer A, B 5 1ajyd N/A A, B 9.326 8.725

Phi lambda phage cII 1zs4 1.70 a.35.1.9 A, B, C,
D

HTf U, T 14 1zpq 2.80 A, B, C,
D

4.947 2.679

p53 2ac0 1.80 b.2.5.2 A, B, C,
D

HTf E, F, G,
H

21 2j1y 1.69 A, B, C,
D

25.325 0.932

Omega repressor 2bnw 2.45 a.43.1.4 A, B Homodimer E, F 4 1irq 3.50 A, B 0.887 1.049

ILF 2c6y 2.40 a.4.5.14 A Monomer C, D 8 1jxsd N/A A 2.830 2.830

Phi 29 protein p4 2fio 2.70 N/A A, B Homodimer C, D 4 2fip 2.00 C, D 0.679 0.496

IRF-2 2irfa 2.20 a.4.5.23 L Monomer C, D 6 1irfd N/A A 3.459 3.459

CgmR 2yvha 2.50 N/A C, D Homodimer E, F, G,
H

10 2yve 1.40 A, B 2.663 1.599

HipB 3dnv 2.68 N/A B, C Homodimer E, T 10 2wiu 2.35 B, D 3.511 2.925

Engrailed
homeodomain

3hdda 2.20 a.4.1.1 A Monomer C, D 4 1enh 2.10 A 0.716 0.716

aHas more than one binding unit
bNRBC: number of protein residues having side-chain contacts with DNA bases
cModeled unit structure
dNMR structure, resolution N/A
eRMSDu: global RMSD between bound and unbound TF-units, RMSDc: global RMSD between bound and unbound TF-chains
fHT: homotetramer
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Similar to other types of docking benchmarks, the
degree of conformational change represents different
levels of challenge for flexible docking [29,32]. The
larger structural change a TF undergoes after binding
to DNA, the more difficult it is to predict the correct
docking conformation due to the added complexity in

conformational search space. For rigid docking test
cases, this is not an issue as bound TF conformations
are used (Figure 1). The conformational differences in
terms of RMSDu between the bound and unbound
TF-units of the test cases range from 0.5 Å to 32 Å
(Table 1).

Table 2 Rigid TF-DNA docking benchmark

TF-DNA Complex

Name PDB TF-DNA Unit Chains

ID Res. (Å) SCOP Protein Oligo_state DNA NRBCb BSA(Å2)c

ZIF268 1aay 1.60 g.37.1.1 A Monomer B, C 13 960.81

Max 1an2 2.90 a.38.1.1 A, C Homodimer B, D 10 933.75

Papillomavirus E2 1jj4 2.40 d.58.8.1 A, B Heterodimer C, D 10 839.96

QacR 1jt0a 2.90 a.4.1.9 B, D Homodimer E, F 12 1085.51

Lambda repressor 1lmb 1.80 a.35.1.2 3, 4 Homodimer 1, 2 10 1105.4

TATA-binding 1qn4 1.86 d.129.1.1 B Monomer E, F 15 1107.51

Tet repressor 1qpi 2.50 a.4.1.9 A, C Homodimer B, M 14 973.49

MecI 1sax 2.80 a.4.5.39 A, B Homodimer C, D 12 1130.16

Trep repressor 1troa 1.90 a.4.12.1 A, C Homodimer I, J 12 1243.06

OhrR 1z9c 2.64 a.4.5.28 C, D Homodimer I, J 12 1669.81

Easy Phi lambda phage cII 1zs4 1.70 a.39.1.9 A, B, C, D HTd U, T 14 1043.06

p53 2ac0 1.80 b.2.5.2 A, B, C, D HTd E, F, G, H 21 1921.76

CAP 2cgp 2.20 a.4.5.4 A, F Homodimer B, C, D, E 10 944.43

LRP/ASNC family protein 2e1c 2.10 a.4.5.32 A, F Homodimer B, D 11 803.23

IdeR 2it0a 2.60 a.4.5.24 C, D Homodimer E, F 11 1123.8

Phi 434 repressor 2or1 2.50 a.35.1.2 R, L Homodimer A, B 17 1021.78

CgmR 2yvha 2.50 N/A C, D Homodimer E, F, G, H 10 1056.55

Controller protein 3clca 2.80 a.35.1.3 C, D Homodimer E, F 14 1002.57

HipB 3dnv 2.68 N/A B, C Homodimer E, T 10 990.24

CprK 3e6c 1.80 a.4.5.4 C, D Homodimer A, B, E, F 12 1059.42

NrtR 3gz6 2.90 N/A A, B Homodimer C, D 15 1845.4

CopG repressor 1b01 2.56 a.43.1.3 A, B Homodimer E, F 5 573.31

RXR-alpha 1by4 2.10 g.39.1.2 A, B Homodimer E, F 8 1031.94

Met repressor 1cma 2.80 a.43.1.5 A, B Homodimer C, D 4 693.13

PhoB 1gxpa 2.50 a.4.6.1 A Monomer C, D 7 739.09

Myb 1h8aa 2.23 a.4.1.3 C Monomer D, E 8 738.59

AML1 Runt domain 1hjc 2.65 b.2.5.6 D Monomer E, F 6 540.76

MtaN 1r8d 2.70 a.6.1.3 A, B Homodimer C, D 8 1338.92

Hard Sigma subunit domain 4 1rioa 2.30 a.4.13.2 H Monomer U, T 6 423.27

Prospero 1xpx 2.80 a.4.1.1 A Monomer C, D 3 325.79

Put3 1zme 2.50 g.38.1.1 C, D Homodimer A, B 5 1211.56

Omega repressor 2bnw 2.45 a.43.1.4 A, B Homodimer E, F 4 519.26

ILF 2c6y 2.40 a.4.5.14 A Monomer C, D 8 814.94

Phi 29 protein p4 2fio 2.70 N/A A, B Homodimer C, D 4 903.33

IRF-2 2irfa 2.20 a.4.5.23 L Monomer C, D 6 668.45

PutA 2rbf 2.25 N/A A, B Homodimer C, D 8 614.12

SoxR 2zhg 2.80 a.6.1.3 A, D Homodimer B, C 6 869.73

Engrailed homeodomain 3hdda 2.20 a.4.1.1 A Monomer C, D 4 524.73
aHas more than one binding unit
bNRBC: number of protein residues having side-chain contacts with DNA bases
cBSA: buried surface area in TF-DNA complexes
dHT: homotetramer
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Another important factor that affects the accuracy of
TF-DNA docking, in both the flexible and the rigid
cases, is the strength of TF-DNA interaction. A weaker
interaction between TF and DNA would make it more
difficult for predictive programs to tell the subtle energy
differences between native and wrong complex struc-
tures, leading to a high number of false positives. In this
study, we examined two different metrics for the
strength of TF-DNA interactions, buried surface area
(BSA) and the number of residue-base contacts
(NRBCs). The values of BSA range from 326 Å2 to 1922
Å2 while the numbers of residue-base contacts (NRBCs)
go from 3 to 21 for the TF-DNA units in our bench-
marks, showing the variety of TF-DNA interactions in
the test cases. Since the two metrics correlate well with
a Pearson’s correlation coefficient of 0.73 (Additional
file 1, Figure S4) and BSA includes more non-specific
interaction (e.g. TF to DNA backbone interaction at TF-
DNA interface) than NRBC, we use NRBC, the number
of residue-base contacts, as a measure of the strength of
TF-DNA interaction.

Flexible docking benchmark
The flexible TF-DNA docking benchmark contains 37
test cases that have bound DNA conformation and
unbound TF structures (Table 1). The test cases are
classified into easy and hard cases based on a combina-
tion of RMSDu and NRBC. The criteria used for docking
difficulty of the flexible docking cases are as follows
(number of cases in parentheses):
Easy (18): RMSDu ≤ 2.5Å AND NRBC ≥ 5
Hard (19): NRBC ≤ 4 OR RMSDu > 2.5 Å
The detailed results are shown in Table 1. The easy

cases have relatively strong TF-DNA interactions and
small conformational changes between bound and
unbound TF structures. Figure 3A shows two such
examples. The TATA box binding protein, 1QN4, has
15 residue-base contacts and an RMSDu of 0.934 Å
compared to the unbound form, 1VOK. In the case of
1R8D-1JBG pair (Figure 3B, NRBC = 8, RMSDu =
2.107Å), the complex has weaker TF-DNA interactions
and slightly more conformational changes in transcrip-
tion factors when compared to the 1QN4-1VOK pair
(Figure 3A). The hard cases have fewer numbers of resi-
due-base contacts between TF and DNA and/or large
structural changes in TFs after their binding to DNA
(Figures 3C and 3D). The large conformational changes
in hard cases can be a result of local structural changes
(RMSDu = 9.326Å and RMSDc = 8.725 Å between
bound 1ZME and unbound 1AJY, Figure 3C) or the dif-
ference in the global orientation of identical TF-chain
structures (RMSDu = 25.325 Å and RMSDc = 0.932 Å
between bound 2AC0 and unbound 2J1Y, Figure 3D).
The TF-DNA binding unit in 2AC0 (tumor-suppressor

protein p53) has four identical protein chains, and the
structural difference between the bound and unbound
TF chains is rather small with an RMSDc of 0.932 Å at
maximum. However, the difference between bound and
unbound TF at unit-level stands over RMSDu of 25 Å
due to the different arrangement of the identical TF
chains, making it a very challenging case for flexible
docking (Figure 3D).

Rigid TF-DNA docking benchmark
There are 38 test cases in the rigid docking benchmark
(Table 2). Since TF structures adopt the bound confor-
mation in rigid docking, we only considered the interac-
tion strength between TFs and DNA in classifying the
test cases into two groups of similar sizes with different
degrees of docking difficulty (number of cases in
parentheses):
Easy (21): NRBC ≥ 10
Hard (17): NRBC < 10
The benchmark has 21 easy and 17 hard cases (Table

2). Examples of easy and hard cases for rigid TF-DNA
docking are shown in Figure 4. Test cases 2OR1 (repres-
sor of phage 434) and 1ZS4 (bacteriophage lambda cII)
are classified as easy cases as they have high interaction
strength with NRBC of 17 and 14, respectively (Figures
4A and 4B). It is notable that 1ZS4 is considered to be a
hard one in the flexible docking benchmark due to its
relatively large conformational change after binding to
DNA (RMSDu ~5 Å) even though it has a large number
of residue-base interactions. Multifunctional PutA
(2RBF) and neural transcription factor Prospero (1XPX)

Figure 3 Examples of easy and hard cases in the flexible TF-
DNA docking benchmark. A: easy case, 1QN4 (bound) -1VOK
(unbound); B: easy case, 1R8D (bound)-1JBG (unbound); C: hard
case, 1ZME (bound)-1AJY (unbound); D: hard case, 2AC0 (bound)-
2J1Y (unbound), inset: superposition of one TF-chain from 2AC0 and
one from 2J1Y. Unbound TF structures (red) were superimposed
onto bound TF structures (green).
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are classified as hard cases, respectively, based on the
small number of residue-base interactions (8 for 2RBF
and 3 for 1XPX, Figures 4C and 4D).
As a proof of principal, we tested the rigid docking

benchmark using our previously developed rigid-docking
program PD-DOCK [13] (Additional file 2, Table S4).
The prediction is considered a success if the structure
with the lowest energy has an RMSD smaller than 1Å
("Conformation with the lowest energy” in Additional
file 2, Table S4) when compared with the native TF-
DNA complex structures. Eight easy cases were success-
fully predicted while only 2 hard cases were docked
with better than 1Å accuracy. Interestingly three cases
(1cma, 1gxp, and 1hjc) in the hard group have at least
one docked conformation with an RMSD better than 1Å
but with higher binding energies ("Conformation with
the lowest RMSD” in Additional file 2, Table S4), high-
lighting the rationale of assigning degrees of difficulty in
rigid docking based on the interaction strength: low
interaction strength between TF and DNA is prone to
high false positive docking prediction since the energy
function cannot correctly discriminate the near-native
conformations from wrongly docked ones. Though
other docking programs implemented with different
docking algorithms and energy functions may have dif-
ferent performance, we believe that this trend will be
shared by other docking programs.

Discussion
Transcription factors are a special group of DNA binding
proteins. They are sequence-specific, yet can tolerate var-
iations in sequence at particular sites. Though transcrip-
tional regulation is a complicated process requiring the
coordination of protein expression, protein modification,

accessibility of DNA sequences, and protein-protein
interaction, identification of transcription factor-binding
sites on a genomic scale has been considered as a key
step in understanding transcription regulatory networks
and remains one of the grand challenges in post-genomic
bioinformatics. Structure-based TF binding site predic-
tion has the advantage to consider the position interde-
pendence of TFs and the contribution of flanking
sequences that are not conserved to the binding specifi-
city [57-59]. In addition, it has been demonstrated that
some transcription factors can recognize multiple distinct
sequence motifs [59-61]. Therefore, a structure-based
model can help us better understand the interactions
between TFs and their distinct sequence motifs. To facili-
tate TF-DNA docking study and structure-based tran-
scription factor binding site prediction, we present here a
set of non-redundant test cases for both rigid and flexible
TF-DNA docking studies. The benchmarks were
designed to provide a set of diverse cases for the evalua-
tion of TF-DNA docking methods, an essential step
toward understanding the capabilities and limitations of
different docking approaches.
Our benchmarks have 38 TF-DNA complexes that

have less than 35% of sequence identity and spread over
at least 11 SCOP structural folds. Conformational search
space and scoring functions represent two key factors in
predictive docking. The structural difference between
bound and unbound TFs reflects the size of conforma-
tional search space for a program to explore while the
interaction strength between TFs and DNA indicates
how accurate and well-refined the program’s scoring
function should be. The common feature that we con-
sider in assigning docking difficulty to the test cases in
both the rigid and flexible TF-DNA docking bench-
marks is the strength of interaction between TF and
DNA. Between the two measures of TF-DNA interface
area and the number of residue-base contacts, we use
the number of residue-base contacts to assess the
strength of more specific TF-DNA interactions, as non-
specific interactions captured by TF-DNA interface area
have less discriminative power for sequence-specific TF-
DNA interaction. For flexible TF-DNA docking, the pre-
diction algorithms should be able to address the confor-
mational changes of TFs upon DNA binding, which is
common to all predictive docking problems [32,62,63].
Though we only applied two key parameters for the

docking difficulty assignments, several other factors have
been shown to contribute to TF-DNA binding affinity
and specificity. For example, besides the formation of
hydrogen bonds between amino-acid sidechains and
DNA bases, it has been demonstrated that DNA shape
deformation or the “indirect readout” mechanism also
plays important roles in protein-DNA recognition
[41-43,64]. The oligomeric state of transcription factors

Figure 4 Examples of easy and hard cases in the rigid TF-DNA
docking benchmark. A: easy case, 2OR1, NRBC = 17; B: easy case,
1ZS4, NRBC = 14; C: hard case, 2RBF, NRBC = 8; C: hard case, 1XPX,
NRBC = 3. The residue side-chains that are in contact with DNA
bases are rendered in blue sticks.
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is another important factor that can modulate the tran-
scriptional activity. It has long been recognized that
many transcription factors form homo- or hetero-oligo-
mers to carry out their regulatory functions [65-67].
Moreover, compared to other types of DNA-binding
proteins, one unique feature of transcription factors is
their ability to bind degenerate DNA binding sequences
[3]. The binding affinities vary between a TF and their
degenerate binding sequences, suggesting different dock-
ing difficulties between a TF and these binding sites. We
plan to update the test cases when more diverse TF-
DNA structures become available. A new classification
scheme by weighing other factors in TF-DNA docking
difficulty assignment may be necessary when new bottle-
necks are identified in the future.

Conclusions
We constructed two benchmarks using a unified non-
redundant set of 38 test cases for flexible and rigid TF-
DNA docking respectively based on different criteria.
The test cases cover diverse fold families and are classi-
fied into two groups in terms of degrees of difficulty in
TF-DNA docking. We believe these benchmarks will be
useful in the development of better protein-DNA inter-
action potentials and novel TF-DNA docking algo-
rithms, which bears important implications to structure-
based prediction of transcription factor binding sites
and drug design.

Additional material

Additional file 1: Supplementary figures for test cases. Figure S1: an
example of a TF-DNA complex structure with two binding units; Figure
S2: overview of test case selection for TF-DNA docking benchmarks;
Figure S3: test cases from the same superfamily but are classified in
different categories; Figure S4: correlation between NRBC and the buried
surface area in 38 test cases.

Additional file 2: supplementary tables for datasets, structural
classifications, and benchmark testing. Table S1: PDB chains for three
non-redundant datasets, RE, TF, and NS; Table S2: SCOP superfamilies for
the 38 test cases; Table S3: SCOP families for the 38 test cases; Table S4:
docking results on the rigid-docking benchmark using PD-DOCK.
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