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Abstract

Background: Conformational flexibility creates errors in the comparison of protein structures. Even small changes
in backbone or sidechain conformation can radically alter the shape of ligand binding cavities. These changes can
cause structure comparison programs to overlook functionally related proteins with remote evolutionary similarities,
and cause others to incorrectly conclude that closely related proteins have different binding preferences, when
their specificities are actually similar. Towards the latter effort, this paper applies protein structure prediction
algorithms to enhance the classification of homologous proteins according to their binding preferences, despite
radical conformational differences.

Methods: Specifically, structure prediction algorithms can be used to “remodel” existing structures against the
same template. This process can return proteins in very different conformations to similar, objectively comparable
states. Operating on close homologs exploits the accuracy of structure predictions on closely related proteins, but
structure prediction is often a nondeterministic process. Identical inputs can generate subtly different models with
very different binding cavities that make structure comparison difficult. We present a first method to mitigate such
errors, called “medial remodeling”, that examines a large number of predicted structures to eliminate extreme
models of the same binding cavity.

Results: Our results, on the enolase and tyrosine kinase superfamilies, demonstrate that remodeling can enable
proteins in very different conformations to be returned to states that can be objectively compared. Structures that
would have been erroneously classified as having different binding preferences were often correctly classified after
remodeling, while structures that would have been correctly classified as having different binding preferences
almost always remained distinct. The enolase superfamily, which exhibited less sequential diversity than the
tyrosine kinase superfamily, was classified more accurately after remodeling than the tyrosine kinases. Medial
remodeling reduced errors from models with unusual perturbations that distort the shape of the binding site,
enhancing classification accuracy.

Conclusions: This paper demonstrates that protein structure prediction can compensate for conformational variety
in the comparison of protein-ligand binding sites. While protein structure prediction introduces new uncertainties
into the structure comparison problem, our results indicate that unusual models can be ignored through an
analysis of many models, using techniques like medial remodeling. These results point to applications of protein
structure comparison that extend beyond existing crystal structures.
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Introduction

Algorithms that compare protein structures generally
represent proteins as rigid objects. This simplifying
assumption can overlook related proteins in different
conformations, but it enables the geometric similarity
between two atomic structures to be rapidly measured
[1,2]. Efficiency is crucial for most tools, which search
large databases of protein structures for proteins with
remote evolutionary relationships [3-8] or similar func-
tional sites [1,9-12]. In both cases, conformational
changes can disrupt the significant structural similarity
that is required to distinguish similar proteins from
those that are similar by random chance [13-15].

Conformational flexibility also affects algorithms that
detect structural influences on binding specificity [16].
Beginning with a family of proteins with aligned binding
cavities, these algorithms find cavity subregions that are
conserved, potentially to accommodate the same mole-
cular fragment. They also identify varying subregions,
which might encourage differing ligands to bind. Finding
regions like these can point to steric influences on spe-
cificity [17,18]. But conformational changes, from
sweeping backbone movements to subtle rotamer
tweaks, can introduce variations that do not relate to
binding preferences. For example, the kinking of an
alpha helix can cause the lipid binding cavity of yellow
lupine PR-10 to appear radically different from other
PR-10 proteins, despite similar binding preferences
[16,19]. Without compensating for the effects of flexibil-
ity, algorithms for detecting influences on specificity are
exposed to a considerable source of potential error.

Fortunately, these errors can be diminished, as we
observed earlier [20], by using structure prediction algo-
rithms to remodel proteins into conformations that are
more comparable. Remodeling designates one structure
as a template against which to model the structures of
other proteins, thereby reducing differences in backbone
and sidechain conformation. This process can enable
binding sites in closed or inactive conformations, which
were previously not comparable, to be more accurately
compared against other sites. When the proteins to be
compared are closely related, as they frequently are
when searching for influences on binding specificity,
remodeling exploits the superior accuracy of structure
prediction algorithms on close homologs [21,22].

But predicted structures are not generated determinis-
tically. Variations in backbone and sidechain structure
occur frequently between models generated from the
same inputs. These variations are their own source of
classification errors, and they limit the potential applic-
ability of remodeling. Extending our earlier work, this
paper examines the impact of variations from structure
prediction on the comparison of protein binding
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cavities. We then evaluate how they affect the accurate
detection of conserved and varying regions that influ-
ence binding specificity. Despite tremendous individual
variations, an aggregate analysis of many predicted
structures enabled us to make accurate comparisons
that would have been less accurate.

Related work

Conformational rigidity is an fundamental assumption in
the design of almost every protein structure comparison
algorithm. This assumption originates in the digital
representations that algorithms use to represent whole
protein structures for comparison. Geometric invariants
(e.g. [3]), matrices of inter-point distances [5], and
points in space [3,4,6,7,23], the most common represen-
tation, can faithfully represent atomic positions and
types, but they do not describe atomic motion.

To permit larger differences in protein structure, a
second category of point-based representations limit the
comparison of protein structures to binding sites alone,
enabling the rest of the structure to change. These bind-
ing site “motifs” represent catalytic sites [1,9,10,24], evo-
lutionarily significant amino acids [2], “pseudo-centers”
of protein-ligand interactions [25], and “pseudoatoms”
on amino acid sidechains [26]. These representations
tolerate infinite variation outside the binding site, in
order to rapidly scan databases of protein structure (e.g.
the PDB [27]) and identify proteins with very different
evolutionary origins but similar functional sites.

All comparison algorithms tolerate a limited degree of
structural variation. This tolerance is typically achieved
by requiring corresponding atoms in aligned structures
to fall within a maximum distance. Distance criteria can
tolerate small conformational changes, but larger varia-
tions, especially bond rotations that can lever one part
of the protein away from another, can cause similar pro-
teins to seem dissimilar.

Further relaxation of rigidity assumptions requires
algorithms that have specialized representations of pro-
tein structures that can detect related proteins in very
different conformations. Flexprot [28] and FlexSnap
[29], for example, use virtual hinges connecting rigid
components to represent protein structures, permitting
similar proteins in altered conformations to still be
aligned. Another approach, Posa [30], detects similar
molecular components in different conformations using
partial order graphs. These kinds of representations,
which have inbuilt accommodations for structural varia-
tion, can enable the detection of proteins with very
remote evolutionary similarities.

But many phenomena depend on the ability of closely
related proteins to selectively bind different ligands.
This paper examines protein binding sites with Boolean
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set operations [16] to find similarities [17] and variations
[18] that cause differences in binding preferences. Com-
parisons with Boolean set operations are just as sensitive
to conformational change as existing methods, as we
observed on the START domains [16], but the analysis
of similar proteins has specific advantages: It may be
possible to predict the structures of closely related pro-
teins in order to return them to a comparable confor-
mation, as we observed earlier [20], because homology
modeling algorithms are extremely accurate on similar
proteins [21,22]. Also, remodeling does not require
representations of protein structures that have specific
features that compensate for for conformational change.
This paper extends our earlier work by examining the
novel challenges and potentials intrinsic to the remodel-
ing strategy.

Methods

In earlier work [20], we described a hybrid method for
remodeling protein structures that enables binding sites
to be compared even when major conformational
changes obscure the binding site. We paraphrase this
work, an integration of several existing methods, below.
We then extend our remodeling approach by describing
how multiple predicted structures can be used to com-
pensate for variations in structure predictions. We refer
to this new process as Medial Remodeling, to contrast
from our earlier approach, which we will call Simple
Remodeling.

Simple remodeling

Remodeling is a preprocessing step for the comparison
of two closely related protein structures A and B. These
structures have the same fold and biological function,
but exhibit different binding preferences. Both structures
are assumed to exhibit a range of backbone or side
chain conformations. While some conformations of B
may be inactive or otherwise unusual, the purpose of
remodeling is to return the backbone and sidechain
conformation of B to a state that is as similar to that of
A as possible, so that their binding sites can be objec-
tively compared.

When we remodel B onto A, we designate A as a struc-
tural template and the amino acid sequence of B as a
query sequence, to build a new model of B. Since A is
the template, the amino acids of B will be positioned to
resemble the backbone topology and sidechain orienta-
tions of A. With the understanding that this application
is focused on closely related proteins, we presume that
the resulting model of B will be in a conformation that is
more similar to that of A, and that their binding sites will
be comparable, while they may not have been before.

Model building. We use NEST for model building
[31]. Input for NEST is the template structure A and an
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alignment of the amino acid sequences of B and A, gen-
erated with Clustalw [32]. With these inputs, and other-
wise default parameters, NEST builds models via
“artificial evolution": NEST iteratively modifies the tem-
plate structure with insertions, deletions, and mutations
from the sequence alignment. After every modification,
relaxation steps minimize van der Waals, hydrophobic,
electrostatic, torsional, and hydrogen bonding potentials,
and only the most energetically favorable modification is
accepted in each iteration. Once the template has been
completely changed into the query protein, the model is
returned as output. This process is nondeterministic,
creating variations in predicted structures.

Structural alignment. Once the model structure is
generated, we superpose the model onto the template
using Ska [23], an algorithm for whole-structure super-
position. The superposed model of B is now said to be
remodeled onto A.

Representation and comparison

Binding cavity representation. We use VASP [16] to
generate and compare solid representations of binding
cavities, using Boolean set operations (Figure 1a). As
input, we begin with the structure of a protein C and
the putative position of a bound ligand. Typically this
position is determined by superposing C onto the struc-
ture of a similar protein in complex with a ligand. In
our data set, we used the atrolactic acid bound to pseu-
domonas putida mandelate racemase in pdb structure
1mdr to generate cavities in the enolase structures.
Among tyrosine kinase structures, we used the stauros-
porine bound to human Abelson kinase (pdb structure
2hz4).

After superposition, the ligand in the complex over-
laps the approximate location of the binding site in the
aligned structure. We use it’s position and shape to
define a solid representation of the binding cavity in the
aligned structure: First, we create a series of spheres
with a 5 A radius, centered at each ligand atom. We
then calculate the Boolean union of the spheres. Second,
using the Trollbase library from GRASP2 [7], we calcu-
late a molecular surface of the model. Trollbase gener-
ates a closed surface using the classic rolling-probe
technique [33,34] with a water-sized probe of radius 1.4
A, which we interpret as a volumetric solid. Using
VASP, we compute the Boolean difference between the
molecular surface from the union of spheres. Third,
using a probe of radius 5.0 A, we again use the Troll-
base library to create an “envelope surface”, based on
external cavity boundaries used in SCREEN [35]. Finally,
with VASP, we calculate the Boolean intersection
between what remains of the ligand spheres and the
envelope surface. The resulting region is a solid repre-
sentation of the binding cavity on the model structure.
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This technique was described earlier, in [16]. After this
procedure is complete, a solid representation of the
binding cavity is ready for comparison.

Binding site comparison. Two binding cavities are
structurally different if there exists a region within one
binding cavity that is not within the other. Regions like
these could potentially accommodate molecular frag-
ments in one cavity that would not fit in the other cav-
ity. We can identify and measure differences like these
between two cavities A and B by computing the volume
of the largest contiguous region where the two cavities
do not overlap (e.g. Figure 1h,i). We call this region the
largest fragment between A and B. Similar cavities tend
to exhibit fragments with very small volumes, while cav-
ities with different binding preferences exhibit larger
fragments [18].

Between A and B, we find the largest fragment by first
generating the symmetric Boolean difference (A - B) U
(B - A). This process creates several fragments, because
A and B are never identical. We then isolate every frag-
ment by using a graph-based technique that we devel-
oped earlier [18,36]. Next, we compute the volume of
every fragment using the Surveyor’s Formula [16,37].
Finally, we return the fragment with the largest volume
(in A®). We use its volume as a proxy for the degree of
similarity between A and B: Large fragment volumes
indicate substantial differences in cavity shape, while
small fragment volumes indicate similarities in cavity
shape.

Statistical modeling. Fragments observed between
cavities with identical binding specificity are generally
very small, because the binding cavities are very similar.
For example, among enolases that have similar binding
preferences (Table 1), 248 out of 340 fragments occu-
pied less than one cubic angstrom. 295 fragments occu-
pied less than 10 A® (Figure 2). Tyrosine kinases
exhibited similar distributions.

This pattern of fragment volumes, a characteristic
abundance of small values, can be approximated closely
by the log-normal distribution [18,36], which allows us
to estimate the value of the distribution at any point on
the positive x axis. In particular, we can estimate the

probability p of observing a hypothetical fragment with
volume equal to or larger than that of a given fragment.
When p, often referred to as the p-value, is less than
.05, it is called statistically significant.

Since we model distributions of fragment volumes from
cavities with identical binding preferences, the p-value is
an estimate of the probability of observing a fragment of
a given size between cavities with identical binding pre-
ferences. If the p-value is too low, e.g. less than 0.05,
then we reject our assumption as improbable, and predict
the logical opposite: that the cavities must have different
binding preferences. This prediction is based on our eva-
luation of the data, and not a statement of fact.

This work uses statistical modeling to evaluate the
pattern of fragment volumes observed between unmo-
deled and modeled cavities. To determine the effect of
remodeling on fragment volume, we use unmodeled
cavities to train our statistical model, as we have in ear-
lier work [17,18,36,38]. This approach enables use to
measure the improvement in prediction accuracy that
can be achieved in remodeled structures, in comparison
unmodeled structures.

Table 1 PDB codes of structures used.

Enolase Superfamily (homogeneous):

Enolases: 1e9i, 1iyx, 1pdy, 2pa6, 2xsx, 2xsx
Enolase Superfamily (homogeneous, redundant):

Enolases: 1ebh, 1els, 1nel, 2al2, 3enl, 7enl, 1te6, 1ebg, 1one
Tyrosine Kinases (homogeneous):

Small Gatekeeper residue: 1qcf, 1fgi, 1fpu, 1fvr, 1gjo, 1irk, 1k2p,
1m14, 1m7n, 1qpc, 1r0p, 1t45, 1udd, 1yvj, 1ywn, 2src

Tyrosine Kinases (homogeneous, redundant):

Small Gatekeeper residue: 2hz4, 2e2b, 2hyy, 2hz0, 2hzn, 2hzi,
2xyn, 2hmi, 3kf4, 3kfa, 3ms9, 3mss

Enolase Superfamily (heterogeneous):

Enolases: 1e9i, 1ebh, 1iyx, 1pdy, 1te6, 2pa6, 2xsx, 3otr, Mandelate
Racemase: 20x4, Muconate Lactonizing Enzyme: 2pgw, 2zad

Tyrosine Kinases (heterogeneous):

Small Gatekeeper residue: 2hz4
Large Gatekeeper residue: 1fvr, 1luf, 1rjb, 1sm2, 1snu, 1snx

Bolded structures were selected as templates. Italicized structures have closed
or inactive conformations.
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Compensating for variations in predicted structures
Protein structures are predicted by generating a range of
plausible models and selecting the highest scoring
model. As a result, separate prediction efforts generate
different models. In our experimentation, we have
observed that variations in the models generated, using
the same template and query sequence, can lead to dif-
ferences in the shape of predicted binding cavities that
are hundreds of cubic angstroms in volume, while other
template-sequence pairs differed insubstantially. Rather
than evaluating the accuracy of the model, a topic that
is well studied in other fields, we seek to avoid extreme
conformations through sampling.

To make our simple remodeling process of a protein
B onto A more dependable, medial remodeling gener-
ates a model of B 100 times. For each of the 100 mod-
els, we compute the largest fragment between each
remodeled binding site and the binding site of A, and
measure its volume. Finally, we use the median of these
volumes to approximate the structural difference
between the binding sites of B and A.

The median of fragment volumes eliminates the
effect of extreme values that can occur from erroneous
models. Which such models are generated rarely, their
effect can create erroneously defined binding cavities
that differ from the actual binding site by thousands of
cubic angstroms. In our experimentation, we observed
that template-query pairs that created model binding
cavities with relatively small variations still exhibited
extremal cases.

Data set construction

Protein families. We used the enolase superfamily and
the tyrosine kinases to test the effectiveness of our
methods. We chose these superfamilies because both
superfamilies are the subject of considerable study,
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which enables us to use established experimental evi-
dence to evaluate the accuracy of our computational
predictions. In addition, publicly available structures of
both superfamilies demonstrate changes in binding site
conformation that have well known functional impacts.
Finally, uncontroversial classifications separate both
superfamilies into subfamilies with different binding pre-
ferences based on well documented features in the bind-
ing site. These macroscopic criteria ensure that we can
realistically test our methods and verify the accuracy of
our results.

Conformational flexibility at the binding site is essen-
tial for function in both superfamilies. A flexible “cap-
ping domain” affects specificity in the enolase
superfamily [39], enabling the active site to close. In the
tyrosine kinases, multiple configurations of the phos-
phorylation loop (the “P-loop”) [40] and the “DFQG flip”
on the activation loop [41] have direct effects on cataly-
tic activity. These conformational changes interfere with
the detection of specificity determinants in enolases and
tyrosine kinases by radically altering the shape of the
binding site.

The enolase superfamily catalyzes reactions that
abstract a proton from a carbon adjacent to a carboxylic
acid. These reactions occur near the C-terminal ends of
beta sheets in a conserved TIM-barrel, where amino
acids act as acid/base catalysts to facilitate several differ-
ent reactions [42]. Our experimentation examines the
differences in specificity between three enolase subfami-
lies. The first subfamily (EC 4.2.1.11), also known as
enolases, catalyze the dehydration of 2-phospho-D-gly-
cerate to phosphoenolpyruvate [43]. Mandelate race-
mases, the second subfamily (EC 5.1.2.2), convert (R)-
mandelate to and from (S)-mandelate [44]. The third
subfamily, muconate-lactonizing enzymes (EC 5.5.1.1),
catalyze the reciprocal cycloisomerization of cis,cis-
muconate and muconolactone in muconate-lactonizing
enzyme [42].

Tyrosine kinases (EC classes 2.7.10.1 and 2.7.10.2)
transfer phosphate groups from adenosine triphosphate
to a tyrosine sidechain on an acceptor protein. This
superfamily performs essential functions in cell signal-
ling (e.g. [45]), and because of their central role in cell
death and cell growth, tyrosine kinases are frequent tar-
gets in anticancer inhibitor design (e.g. [46,47]). Since
tyrosine kinases are involved in a diverse spectrum of
activities, their binding specificity can be examined in
many contexts, with different acceptor proteins, with
different drugs, and more. For the purposes of testing
our method, our experimentation targets only the
impact of the gatekeeper residue [48] on inhibitor speci-
ficity: Kinases with small gatekeeper residues can be tar-
geted by many drugs, while those with large gatekeeper
residues exhibit resistance to a broad spectrum of
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inhibitors [49]. Focusing on the ATP/inhibitor binding
site creates larger categories that are more suitable for
prediction testing and statistical modeling than finer
classifications that consider both the inhibitor binding
site and the acceptor binding interface.

Selection. From the enolase and tyrosine kinase
superfamilies, we generated two datasets. The first data-
set, called the homogenous dataset, is composed of an
enolase subdivision and a tyrosine kinase subdivision
where every member of the same subdivision has similar
binding preferences. The second dataset, the heteroge-
neous dataset, contained different subdivisions with dif-
ferent binding preferences. Both datasets were initially
created using sequentially nonredundant structures.
Using Clustalw [32], we evaluated pairwise sequence
identity and eliminated one member of any pair with
greater than 90 percent identity. Afterwards, several
conformationally different but sequentially redundant
structures were added to the homogeneous dataset, to
guarantee conformational diversity. These additional
structures were deliberately selected to exhibit confor-
mational differences described as “closed”, “partially
closed” or “inactive”.

After structure selection, one or more members of
each data set were chosen to serve as modeling tem-
plates. The sequences of the remaining structures were
remodeled to the template with NEST [31], and then
structurally aligned to the template using Ska [23]. The
same structures, without remodeling, were aligned to
the template but not modeled, for use as a control set.
Binding cavities in all structures were generated using
the method described above.

Our criteria for selecting modeling templates was
based on the presence of a ligand in the template. This
ligand was used to define a cavity in the template and
all aligned models. The presence of a bound ligand
further confirms the conformation of the binding site as
being able to bind other molecules.

Experimental results

In earlier work [20], we demonstrated that simple remo-
deling on protein structures that exhibit the same
function and binding preferences but different confor-
mations can enable them to be more accurately com-
pared. We also showed that proteins with binding
preferences that are different from the template do not
become indistinguishable from proteins with binding
preferences that are the same as the template after sim-
ple remodeling. Here, we reconfirm these earlier results
using Clustalw to align the query sequence to the tem-
plate, rather than structure alignments, used earlier.
We then extend our earlier work by demonstrating
the range of cavity variations that can be observed by
medial remodeling, and finally illustrating how medial
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remodeling can isolate variations in cavity shape that
relate to differences in specificity despite the nondeter-
ministic nature of structure prediction.

Simple remodeling on proteins with homogeneous
binding preferences

We remodeled all sequentially nonredundant members
of the homogeneous enolase dataset onto the structure
of saccharomyces cerevisiae enolase (lebh). The sequen-
tially nonredundant members of the homogeneous tyro-
sine kinase dataset were remodeled onto the structure
of homo sapiens haematopoetic cell kinase (1qcf).
A comparison of the volumetric differences between
modeled and unmodeled cavities (Figure 3) revealed dis-
tinct differences: 4 out of 5 enolase cavities and 13 out
of 14 tyrosine kinase cavities were more similar after
remodeling then before remodeling. Figure 3a and 3c
illustrate the degree of increased similarity among eno-
lases and kinases, respectively. In almost all cases, remo-
deling proteins with similar binding preferences in
different conformations yielded binding cavities that
were more similar than before.

To evaluate the impact of conformational change
independent of sequence differences, we also remodeled
structures of enolases and tyrosine kinases that had sub-
stantial conformational differences but greater than 90%
sequence identity with their respective template (Figure
3b,d). Among redundant enolases, the largest fragment
had reduced volume in 4 out of 5 cases. The largest
fragment between redundant kinases had reduced
volume in 10 out of 10 cases. Because the sequences
modeled were very similar, the cavities modeled were
also very similar and they exhibited fragments with the
template cavity of a similar size. When sequence identity
is very high, remodeling frequently enhanced cavity
similarity.

To evaluate how remodeling can assist in the detec-
tion of cavities with similar binding preferences, we
built statistical models of fragment volume between
enolases and tyrosine kinases with similar binding pre-
ferences. Before remodeling, the volume of the largest
fragment between enolase cavities and their template
was statistically significant in 40% of the data set. These
cavities would have been incorrectly classified as having
different binding preferences. After remodeling, the
volume of the largest fragment was statistically signifi-
cant in 20% of the dataset. Among tyrosine kinases, the
volume of the largest fragment, between the tyrosine
kinase cavities and their template, was statistically signif-
icant in 86% of the dataset. After remodeling, the
volume of the largest fragment was statistically signifi-
cant in just 7$ of the dataset. These results demonstrate
that remodeling can reduce geometric dissimilarities
related to conformational change that can that can
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cause similar binding sites to appear different and be
incorrectly classified.

Simple remodeling on proteins with heterogeneous
binding preferences

Simple remodeling of proteins with similar binding pre-
ferences may enhance the similarity of their binding
sites and mitigate variations caused by conformational
change, but in the context of comparing proteins with
similar folds, simple remodeling could make proteins
with different binding preferences appear too similar.
To evaluate this possibility, we remodeled the members
of the heterogeneous enolase superfamily against muco-
nate cycloisomerase from Sinorhizobium meliloti (2pgw)
and Thermotoga maritima (2zad). When modeling 2pgw
as the template, the volume of largest fragment was
greater after remodeling in 7 out of the 9 models and
nearly identical in the remaining two. When using 2zad

as a template, the volume of the largest fragment was
greater in 7 out of the 9 models. These volumes are
plotted in Figure 4. All of the largest fragments were
statistically significant, and thus pointing to differences
in binding preferences, relative to fragments between
enolase proteins with similar binding preferences.

We also remodeled the tyrosine kinases with large
gatekeeper residues using homo sapiens abelson kinase
(2hz4) as a template. The largest fragment was larger
after remodeling in 4 out of 6 models (Figure 5). All of
the largest fragments were again statistically significant.
Remodeling proteins onto templates with different bind-
ing preferences generally did not enhance similarity
between the binding cavities of modeled proteins and
the cavity in the template. In fact remodeling appears to
frequently accentuate structural differences. These
results suggest that, in the context of a general applica-
tion, remodeling a set of proteins with both similar and
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different binding preferences may contribute to a more
sensitive classification of proteins with different binding
preferences.

Binding site variations in structure predictions
We performed medial remodeling on all dataset struc-
tures onto all template structures. For each of the 100

models generated between each template-sequence pair,
we measured the volume of the largest fragment
between the binding site of the model and that of the
template. These volumes varied considerably between
maximum and minimum, even when range between the
25" percentile volume and the 75” volume was very
narrow. For example, among the enolases in our dataset,
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Figure 5 Fragment volumes from tyrosine kinase cavities with different binding preferences, before and after remodeling. Red bars
indicate the volume of the largest fragment between the template cavity (2hz4) and cavities with different binding preferences, before
remodeling. Blue bars indicate the volume of the largest fragment between the template cavity and cavities with different binding preferences
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the volume of the fragment at the 257 percentile of this spectrum, and the top of the rectangles represent the volume of the fragment at the
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with the 1e9i template, the largest fragments were larger
than 750 A%, even though more than half of the largest
fragments were approximately 75 A® (Figure 6). With
the lebh template, the largest fragments were larger
than 850 A%, though most of the largest fragments were
approximately 75 A®. Among the kinases, with the 1qcf
template, the largest fragment was 1387 A, though
most of the largest fragments were approximately 92 A2,
With the 2hz4 template, the largest fragment was 1438
A®, and most of the largest fragments were approxi-
mately 342 A®.

In isolation, the generation of a modeled structure
with an unusual binding cavity is not very high. How-
ever, in the context of a structural classification effort,
where many structures must be modeled, the probability
of generating at least one unusual model increases
with the size of the dataset, through multiple testing.
By eliminating extrema, we hypothesize that medial

remodeling can maintain accurate classification despite
the nondeterministic nature of structure prediction.

Evaluating medial remodeling

We performed medial remodeling on all dataset struc-
tures onto all six template structures, computing the
median of the volumes of the largest fragments in all 100
models. For dataset structures remodeled onto the eno-
lase templates, 1e9i and lebh (Figure 7a,b) with similar
binding preferences, the median volume of the largest
fragment was never statistically significant, except in the
case of 2pa6. The largest fragment computed with an
unmodeled structure was larger, sometimes considerably
larger, than the median volume, and larger still in cases
of conformation change. In the case of 2XSX and most
of the sequentially redundant enolase structures, the lar-
gest fragment from an unmodeled structure is statistically
significant, and thus indistinguishable from proteins with
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different binding preferences. Among dataset structures
with different binding preferences modeled onto 1e9i and
lebh, the median of the largest fragment volume was
always statistically significant and a conspicuous indicator
of differing binding preferences. It is clearly possible that
medial remodeling can permit enolases of different bind-
ing preferences to be distinguished, despite significant
conformational differences, like a closed active site.

For tyrosine kinase structures with small gatekeeper
residues remodeled onto the templates 1qcf and 2hz4,
the median volume of the largest fragment between the
template and the model was frequently smaller than the
fragment volume computed with queries from large
gatekeeper amino acids (Figure 8a,b). The median
volume of the largest fragments between the ATP

binding cavity of 1qcf and all of the modeled ATP bind-
ing cavities of the large-gatekeeper tyrosine kinases were
statistically significant, but the median volume of 11 of
the modeled binding cavities from 26 tyrosine kinases
were also statistically significant. Variations in tyrosine
kinase binding cavities were much larger than among
enolases, and the difficulty of this classification problem
is apparent from the 11 incorrect predictions here. For
example, the modeled kinase 2SRC exhibits cavities ran-
ging from near zero to 1400 A®, primarily because of
the great diversity in models for 1T45 and 2SRC. Medial
remodeling on tyrosine kinases based on the 2hz4 tem-
plate produced similar results: Medial remodeling elimi-
nated models where the binding cavity was extremely
dissimilar, and, approximately half the time, models of
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cavities with similar binding preferences were more
similar to the template than those with different binding
preferences. Patterns of statistical significance revealed a
similar trend.

These results, taken at a medium scale, suggest that
medial remodeling can produce effective predictions, as in
the enolase superfamily, but remodeling may not be as
successful for very diverse superfamilies, like the tyrosine
kinases. These results also demonstrate that median remo-
deling can eliminate structural outliers caused by the non-
deterministic nature of structure prediction algorithms
while reducing errors from conformational change.

Conclusions

We have demonstrated simple and medial remodeling
approaches for comparing binding sites in flexible pro-
teins. While most algorithms for comparing protein
structures are focused on the identification of remote
homologs, we seek to predict structural determinants of
specificity among closely related proteins. Our approach
exploits the relatedness of our datasets by using structure
prediction algorithms to compensate for conformational
flexibility. Since homology modeling is most accurate
when predicting structures that are similar, our approach
strongly complements the intended application.

We demonstrated our results on sequentially nonre-
dundant datasets representing the enolase and the tyro-
sine kinase superfamilies. Starting with similar structures
in different conformations, we observed that simple
remodeling onto templates with similar binding prefer-
ences could normalize differences in cavity shape. This
approach enabled accurate comparisons even when the
conformational differences were extreme, as in the case
of inactive conformations.

In such cases, the improvement in prediction accuracy
from remodeling can be significant. Remodeled enolases
and tyrosine kinases that began with large conforma-
tional differences resulted in models that showed only
statistically insignificant differences in shape. These dif-
ferences were insufficient to cause proteins with similar
binding preferences to be erroneously classified as hav-
ing different binding preferences. In contrast, enolases
and tyrosine kinases with different binding preferences
exhibited binding cavities that remained dissimilar or
became more dissimilar after remodeling. Remodeling
enables structural similarities to be revealed among
binding sites with similar binding preferences but does
not make binding sites with different binding prefer-
ences indistinguishably similar.

Our results also demonstrate that simple remodeling
is not uniformly successful in generating comparable
models. When modeling structures from our diverse
dataset of tyrosine kinases, some binding sites did not
become as similar to the template as other sites, and in
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some cases they became very different. Due to the non-
deterministic nature of structure prediction, unusual
models are occasionally generated that exhibit very dif-
ferent cavities. We demonstrated that medial remodeling
avoids the errors that might be generated by unusual
models. Medial remodeling can be very successful, as it
was on the enolase superfamily, in separating structures
with very different binding preferences. In other applica-
tions, the differences identified through medial remodel-
ing may not reach statistical significance.

These results illustrate a new approach to the compar-
ison of protein structures that tolerates radical changes
in molecular conformation. This approach highlights a
new application for structure prediction, for the com-
parison of protein structures, that will support the
detailed characterization of protein binding specificity:
Protein structures in different conformations, due to dif-
ferences in crystallographic method, different states of
ligation or those in active or inactive conformations, can
still be accurately compared. Protein sequences pro-
duced by high throughput sequencing technologies or
gene resequencing efforts can be analyzed from a struc-
tural perspective. Together with other sources of biolo-
gical data, volumetric analyses connected to homology
modeling algorithms can offer important advancements
to efforts in protein engineering, the study of drug resis-
tance, and protein function annotation.
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