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Abstract

Background: Models that are capable of reliably predicting binding affinities for protein-ligand complexes play an
important role the field of structure-guided drug design.

Methods: Here, we begin by applying the computational geometry technique of Delaunay tessellation to each set
of atomic coordinates for over 1400 diverse macromolecular structures, for the purpose of deriving a four-body
statistical potential that serves as a topological scoring function. Next, we identify a second, independent set of
three hundred protein-ligand complexes, having both high-resolution structures and known dissociation constants.
Two-thirds of these complexes are randomly selected to train a predictive model of binding affinity as follows: two
tessellations are generated in each case, one for the entire complex and another strictly for the isolated protein
without its bound ligand, and a topological score is computed for each tessellation with the four-body potential.
Predicted protein-ligand binding affinity is then based on an empirically derived linear function of the difference
between both topological scores, one that appropriately scales the value of this difference.

Results: A comparison between experimental and calculated binding affinity values over the two hundred
complexes reveals a Pearson’s correlation coefficient of r = 0.79 with a standard error of SE = 1.98 kcal/mol. To
validate the method, we similarly generated two tessellations for each of the remaining protein-ligand complexes,
computed their topological scores and the difference between the two scores for each complex, and applied the
previously derived linear transformation of this topological score difference to predict binding affinities. For these
one hundred complexes, we again observe a correlation of r = 0.79 (SE = 1.93 kcal/mol) between known and
calculated binding affinities. Applying our model to an independent test set of high-resolution structures for three
hundred diverse enzyme-inhibitor complexes, each with an experimentally known inhibition constant, also yields a
correlation of r = 0.79 (SE = 2.39 kcal/mol) between experimental and calculated binding energies.

Conclusions: Lastly, we generate predictions with our model on a diverse test set of one hundred protein-ligand
complexes previously used to benchmark 15 related methods, and our correlation of r = 0.66 between the
calculated and experimental binding energies for this dataset exceeds those of the other approaches. Compared
with these related prediction methods, our approach stands out based on salient features that include the
reliability of our model, combined with the rapidity of the generated predictions, which are less than one second
for an average sized complex.
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Background
Experimental high-throughput screening processes that
drive structure-guided drug design efforts are effective
tools for the identification of candidate molecular ligands
that may tightly bind a target protein; however, such an
approach often proves to be a costly endeavor, in terms
of both time and financial expense, one that can poten-
tially be alleviated with reliable in silico protein-ligand
binding affinity models to assist in winnowing the search
space [1]. A diverse array of computational approaches to
model binding affinity have been described in the litera-
ture, each of which focuses on a unique combination of
physicochemical properties and interactions: X-Score [2],

Lig-Score [3], DrugScore [4], SFCscore [5], AutoDock4
[6], ITScore [7,8], and PHOENIX [9] are just a few exam-
ples of such predictive tools. Here we describe our devel-
opment of a model for predicting protein-ligand binding
energy that relies on Delaunay tessellation, a computa-
tional geometry technique [10], for the purpose of objec-
tively capturing nearest neighbor atomic four-body
interactions in the structures of macromolecular com-
plexes (Figure 1).
First, we compute the propensities for occurrence of all

atomic quadruplet interactions by applying the tessella-
tion procedure to atomic coordinates for a diverse cross-
section of over 1400 high-resolution macromolecular

Figure 1 Atomic Delaunay tessellation of the hen egg-white lysozyme (a) in complex with bound ligand NAG (N-Acetyl-D-
Glucosamine) and (b) without the bound ligand (PDB accession code: 1HEW).
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crystal structures, and the data collected are used in gen-
erating an atomic four-body potential. Tasked with dis-
tinguishing native structures as having global energy
minima relative to decoys, our knowledge-based potential
performs well compared to several related atomic energy
functions [11,12]; however this work constitutes substan-
tial research outside the immediate focus of this study,
and accordingly it will be reported elsewhere. Next, we
apply our atomic potential to a separate dataset of three
hundred diverse protein-ligand complexes, each selected
for having both a solved high-resolution crystal structure
and a known dissociation constant (kd), the latter quan-
tity being useful for determining the Gibbs free energy of
binding (ΔG). Two thirds of the complexes are randomly
selected to train our predictive model of binding affinity:
in each case, the entire complex is tessellated and then
scored using the four-body potential, as is the structure
of the isolated protein without its bound ligand, and we
derive an empirical linear function of the difference
between these scores to predict ΔG values. The remain-
ing one hundred complexes are then used to validate the
capability of the trained linear model to predict binding
energies for new protein-ligand complexes.
The steps taken to develop our model formed the basis

of a recently published companion study [13], and here
we begin by carefully outlining those details below, since
they lay the foundation for the next stage of the work to
be presented. In particular, the model is subsequently
applied to the prediction of binding affinities for an
independent, diverse test set of three hundred enzyme-
inhibitor complexes for which high-resolution crystal
structures, as well as experimentally determined inhibition
constants (ki), are available. Also, model performance
is comprehensively benchmarked against a number of
related methods from the literature.

Methods
Datasets
High-resolution (≤ 2.2Å) crystallographic structures for
1417 macromolecular complexes (Additional file 1), culled
using the PISCES server [14] and having protein chains
that share low (< 30%) sequence identity, were selected to
develop the four-body statistical potential. Dataset diver-
sity is also reflected in the fact that the complexes consist
of both single chain and multimeric proteins, many of
which have bound ligands in the form of either small
molecules or peptides. Each complex has a coordinate file
deposited in the Protein Data Bank (PDB) [15], and fol-
lowing the removal of all hydrogen atoms and water mole-
cules, Delaunay tessellation is applied to each structure file
by using all the remaining atomic coordinates.
In order to train and validate our model for predicting

binding affinity, we selected another diverse set of three
hundred protein-ligand complexes (Additional file 2)

from the Binding MOAD [16,17] database. The Binding
MOAD is a repository for all protein-ligand complexes
that have high-resolution (≤ 2.5Å) structures deposited
in the PDB, and if available, published experimental
binding energy data. Focusing specifically on a non-
redundant subset of the Binding MOAD, both to ensure
diversity of complexes as well as to minimize bias due to
over-represented structures, we identified three hundred
complexes having both PDB coordinate files as well as
experimental dissociation constants (kd). The PDB acces-
sion codes and kd values for the protein-ligand complexes
are tabulated in Additional file 2, as is the identity of the
subset (200 for training, and 100 for validation) into
which each is randomly placed.

Software and performance measurements
We use the Qhull software package [18] to carry out the
atomic Delaunay tessellations, Matlab (Version 7.0.1.24704
(R14) Service Pack 1) to produce graphical depictions of
the tessellations, and the UCSF Chimera software package
[19] to generate all other molecular visualizations in this
study. Codes to perform all data formatting and analyses
tasks are written in the Perl programming language.
Given the dissociation constant (kd) for a protein-ligand

complex, the standard Gibbs free energy of binding (ΔG,
in units of kcal/mol) can be determined using

�G = RT ln(kd) = 0.592× ln(kd), (1)

where R = 1.986 ×10-3 kcal K-1 mol-1 is the gas constant
and T = 298° K is the absolute temperature. We evaluate
the agreement between known (xi) and predicted (yi)
binding energies by reporting the Pearson’s correlation
coefficient

r =

∑
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] [∑

(yi − ȳ)2
] , (2)
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and the equation of the fitted regression line.

Results
Four-body statistical potential
To generate our knowledge-based potential, a six-letter
alphabet (C, N, O, S, M = all metals, X = all other non-
metals) is used for labelling all atoms (excluding hydro-
gens and water molecules). The Qhull software uses the
3-dimensional (3D) coordinates of atoms in a PDB file
to generate a Delaunay tessellation of the structure, a
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space-filling convex hull formed by hundreds of solid,
non-overlapping, irregular tetrahedra whose vertices are
the 3D atomic points. Each atom serves as a vertex, with
most being shared by numerous adjacent tetrahedra, and
every tetrahedral simplex objectively identifies a quadru-
plet of nearest neighbor atoms at its four vertices. To
ensure this is indeed the case, we eliminate all edges
longer than 8Å immediately upon tessellation, which is in
agreement with related research in this arena at the atomic
[20] and residue [21,22] levels of coarse-graining. The
combined total number of tetrahedra remaining for analy-
sis after tessellating the 1417 PDB coordinate files is pro-
vided in Table 1, as are the total number of atoms of each
type as well as their relative frequencies.
Without regards to the ordering of a quadruplet of

atoms (i.e, all permutations of the four letters are non-
unique and represent the same quadruplet), and allowing
for the repeated occurrence of atom types in any given
quadruplet (i.e., letters may appear more than once in a
quadruplet), there are 126 possible types of atomic quad-
ruplets that can be enumerated based on the use of a
6-letter atomic alphabet (Table 2). For each quadruplet
(i,j,k,l), we define fijkl as the observed proportion of all tet-
rahedral simplices obtained by tessellating all 1417 struc-
tures to have those four types of atoms at the vertices;
similarly, we let pijkl represent the rate expected by chance,
which is based on relative frequencies of the six atom
types in the structures (Table 1) and calculated using a
multinomial background distribution given by

pijkl =
4!

6∏
n=1

(tn!)

6∏
n=1

atnn ,where
6∑

n=1

an = 1 and
6∑

n=1

tn = 4. (4)

In Eq. (4), an is the relative frequency of atom type n,
while tn counts how many times atom type n appears in
the quadruplet (i,j,k,l). As a consequence of the inverted
Boltzmann principle [23], the score sijkl = log (fijkl / pijkl) is
proportional to the energy of quadruplet atomic interac-
tion, and the set of 126 scored atomic quadruplets defines
our four-body statistical potential (Table 2).

Topological scores
In order to develop our predictive model, the four-body
potential is applied to the dataset of three hundred pro-
tein-ligand complexes compiled from the Binding MOAD
in the following manner. For each complex, the atomic
coordinates (excluding hydrogens and water molecules) in
the PDB file are tessellated (edges longer than 8Å
removed), each tetrahedron in the tessellation is scored
using Table 2 according to the four atoms at its vertices,
and a normalized topological score (Q) is calculated to be
the sum of all the tetrahedral scores divided by the num-
ber of tetrahedra in the tessellation, a quantity that can be
summarized compactly by the equation

Q =
1
N

∑
(i,j,k,l)

sijkl (5)

Next, atomic coordinates of the ligand are removed
from the PDB file of the complex, and the procedure is
repeated to compute Q for the isolated protein (Figure 1).
Lastly, we define the topological score difference

�Q = Qcomplex −Qprotein (6)

for the complex. In the next section, we compare com-
puted ΔQ quantities with known ΔG values for these
complexes in order to develop a model for predicting
binding energy. An important underlying assumption in
this formulation is that ligand size is small enough so
that tetrahedra formed at the interface with the protein
dominate purely internal atomic interactions within the
ligand. The calculated Q values, for structures of the
three hundred protein-ligand complexes, as well as the
isolated proteins without their bound ligands, are tabu-
lated in Additional file 2.

Predictive model of binding energy
A comparison of the calculated ΔQ quantities for our
training set of two hundred randomly selected complexes
with their experimental ΔG values (ΔGexp) reveals a corre-
lation coefficient of r = 0.79. However, the ΔQ values are
not uniform in sign, and they are on a significantly smaller
scale relative to the standard Gibbs free energy of binding
(ΔGexp) data; hence, they cannot be used directly as a
representation of predicted ΔG values (ΔGcalc). Both issues
related to ΔQ values for the training data are addressed
with an empirically derived linear function

�Gcalc =
(
1/0.0003

) × �Q− 10.49, (7)

resulting in negative ΔGcalc values in each case that also
scale similarly to ΔGexp. Owing to ΔGcalc arising from a
simple linear transformation of the ΔQ values, ΔGcalc and
ΔGexp also display a correlation of r = 0.79 (SE = 1.98 kcal/
mol) with a fitted regression line of y = 1.18x (Figure 2).

Table 1 Summary data for the 1417 PDB structure files.

Atom Types Count Proportion

C 3,612,988 0.633193

N 969,253 0.169866

O 1,088,410 0.190749

S 28,502 0.004995

(all metals) M 2,529 0.000443

(all other non-metals) X 4,299 0.000754

Total atom count: 5,705,981

Total tetrahedron count: 34,504,737
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Table 2 Atomic four-body statistical potential.

Quad Count fijkl pijkl sijkl Quad Count fijkl pijkl sijkl

CCCC 4015872 0.116386 0.160748 -0.140244 MMNS 363 1.05E-05 2.00E-09 3.720958

CCCM 1592 4.61E-05 0.000450 -0.989223 MMNX 0 0 3.02E-10 –

CCCN 4025206 0.116657 0.172495 -0.169866 MMOO 306 8.87E-06 4.29E-08 2.315530

CCCO 6202159 0.179748 0.193701 -0.032467 MMOS 104 3.01E-06 2.25E-09 3.127729

CCCS 293157 0.008496 0.005072 0.224008 MMOX 3 8.69E-08 3.39E-10 2.409325

CCCX 2796 8.10E-05 0.000765 -0.975047 MMSS 254 7.36E-06 2.94E-11 5.398477

CCMM 132 3.83E-06 4.73E-07 0.908235 MMSX 2 5.80E-08 8.87E-12 3.815151

CCMN 3318 9.62E-05 0.000362 -0.575981 MMXX 0 0 6.69E-13 –

CCMO 5325 0.000154 0.000407 -0.420893 MNNN 1030 2.99E-05 8.69E-06 0.535960

CCMS 2293 6.65E-05 1.07E-05 0.795108 MNNO 1128 3.27E-05 2.93E-05 0.047955

CCMX 15 4.35E-07 1.61E-06 -0.567697 MNNS 561 1.63E-05 7.67E-07 1.326526

CCNN 1797552 0.052096 0.069412 -0.124635 MNNX 5 1.45E-07 1.16E-07 0.098041

CCNO 8233136 0.238609 0.155892 0.184864 MNOO 3744 0.000109 3.29E-05 0.518626

CCNS 124653 0.003613 0.004082 -0.053081 MNOS 314 9.10E-06 1.72E-06 0.723107

CCNX 2007 5.82E-05 0.000616 -1.024729 MNOX 29 8.40E-07 2.60E-07 0.510083

CCOO 3366568 0.097568 0.087528 0.047161 MNSS 793 2.30E-05 2.25E-08 3.008398

CCOS 198630 0.005757 0.004584 0.098905 MNSX 5 1.45E-07 6.80E-09 1.328573

CCOX 4626 0.000134 0.000691 -0.712426 MNXX 9 2.61E-07 5.13E-10 2.706383

CCSS 15288 0.000443 6.00E-05 0.868158 MOOO 5430 0.000157 1.23E-05 1.106856

CCSX 144 4.17E-06 1.81E-05 -0.637352 MOOS 156 4.52E-06 9.67E-07 0.669977

CCXX 143 4.14E-06 1.37E-06 0.482159 MOOX 168 4.87E-06 1.46E-07 1.523669

CMMM 23 6.67E-07 2.21E-10 3.480397 MOSS 210 6.09E-06 2.53E-08 2.380989

CMMN 144 4.17E-06 2.54E-07 1.216422 MOSX 4 1.16E-07 7.64E-09 1.181307

CMMO 256 7.42E-06 2.85E-07 1.415945 MOXX 55 1.59E-06 5.76E-10 3.442148

CMMS 662 1.92E-05 7.46E-09 3.410480 MSSS 62 1.80E-06 2.21E-10 3.910199

CMMX 1 2.90E-08 1.12E-09 1.411130 MSSX 2 5.80E-08 1.00E-10 2.763224

CMNN 2474 7.17E-05 9.72E-05 -0.132029 MSXX 0 0 1.51E-11 –

CMNO 6267 0.000182 0.000218 -0.079754 MXXX 16 4.64E-07 7.58E-13 5.786451

CMNS 2588 7.50E-05 5.72E-06 1.118068 NNNN 3878 0.000112 0.000833 -0.869698

CMNX 26 7.54E-07 8.62E-07 -0.058415 NNNO 46665 0.001352 0.003740 -0.441730

CMOO 8481 0.000246 0.000123 0.302308 NNNS 460 1.33E-05 9.79E-05 -0.866046

CMOS 1010 2.93E-05 6.42E-06 0.659069 NNNX 34 9.85E-07 1.48E-05 -1.175817

CMOX 68 1.97E-06 9.68E-07 0.308765 NNOO 340620 0.009872 0.006299 0.195102

CMSS 2047 5.93E-05 8.40E-08 2.848813 NNOS 5637 0.000163 0.000330 -0.305233

CMSX 13 3.77E-07 2.53E-08 1.172117 NNOX 302 8.75E-06 4.98E-05 -0.754766

CMXX 6 1.74E-07 1.91E-09 1.958862 NNSS 311 9.01E-06 4.32E-06 0.319427

CNNN 102035 0.002957 0.012414 -0.623046 NNSX 6 1.74E-07 1.30E-06 -0.874705

CNNO 1995038 0.057819 0.041821 0.140679 NNXX 5 1.45E-07 9.83E-08 0.168652

CNNS 15892 0.000461 0.001095 -0.376176 NOOO 171147 0.004960 0.004716 0.021937

CNNX 578 1.68E-05 0.000165 -0.993919 NOOS 10697 0.000310 0.000370 -0.077374

CNOO 2734639 0.079254 0.046962 0.227273 NOOX 3102 8.99E-05 5.59E-05 0.206513

CNOS 95438 0.002766 0.002460 0.050981 NOSS 922 2.67E-05 9.70E-06 0.440012

CNOX 2168 6.28E-05 0.000371 -0.771173 NOSX 12 3.48E-07 2.93E-06 -0.925060

CNSS 4264 0.000124 3.22E-05 0.584024 NOXX 61 1.77E-06 2.21E-07 0.903627

CNSX 37 1.07E-06 9.71E-06 -0.957113 NSSS 33 9.56E-07 8.47E-08 1.052833

CNXX 61 1.77E-06 7.33E-07 0.382553 NSSX 0 0 3.83E-08 –

COOO 524994 0.015215 0.017579 -0.062707 NSXX 0 0 5.78E-09 –

COOS 34429 0.000998 0.001381 -0.141141 NXXX 3 8.69E-08 2.91E-10 2.475964

COOX 23801 0.000690 0.000208 0.520038 OOOO 34212 0.000992 0.001324 -0.125549

COSS 4380 0.000127 3.62E-05 0.545326 OOOS 4240 0.000123 0.000139 -0.052504

COSX 58 1.68E-06 1.09E-05 -0.812243 OOOX 9553 0.000277 2.09E-05 1.121777

COXX 65 1.88E-06 8.23E-07 0.359781 OOSS 300 8.69E-06 5.45E-06 0.203077

CSSS 285 8.26E-06 3.16E-07 1.417735 OOSX 36 1.04E-06 1.64E-06 -0.197264
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Turning next to the validation set of one hundred com-
plexes, we obtain ΔGcalc values from their computed ΔQ
quantities by utilizing the linear model given in Eq. (7)
that we empirically derived from the training data. The
predicted ΔGcalc and known ΔGexp values for these com-
plexes again display a correlation of r = 0.79 (SE = 1.93
kcal/mol) with a fitted regression line of y = 1.11x - 0.63,
and a scatter plot of the validation data is superimposed
over that of the training data in Figure 2. Tabulated in
Additional file 2 are ΔGexp and ΔGcalc values for all three
hundred protein-ligand complexes.

Discussion
Enzyme-inhibitor binding affinity prediction
In order to test the utility of our model through a practi-
cal application, we predict binding affinities for a diverse

dataset of three hundred enzyme-inhibitor complexes
(Additional file 3), independent of those protein-ligand
complexes used for training and validation, which are
annotated with their respective experimental inhibition
constants (ki) in the non-redundant Binding MOAD.
Analogous to Eq. (1), we obtain the standard Gibbs free
energy of binding for each complex with the equation

�Gexp = RT ln(ki) = 0.592× ln(ki), (8)

where R = 1.986 ×10-3 kcal K-1 mol-1 is the gas constant
and T = 298° K is the absolute temperature. Tabulated in
Additional file 3 are the PDB accession codes of the high-
resolution (≤ 2.5Å) crystallographic structures, as well as
the ki and ΔGexp values, corresponding to these enzyme-
inhibitor complexes.
Next, we use the atomic coordinates (hydrogen atoms

and water molecules excluded) provided by the PDB struc-
ture file for each complex to generate a Delaunay tesse-
llation (subject to an 8Å edge-length cutoff), from which
we obtain a normalized topological score (Qcomplex)
by employing Eq. (5) in conjunction with our atomic four-
body statistical potential (Table 2). In a similar fashion, we
generate a normalized topological score for the isolated
protein without the bound inhibitor (Qprotein), by tessellat-
ing a modified version of the PDB file that excludes the
atomic coordinates for the inhibitor. Lastly, we calculate
the difference (ΔQ) between these normalized topological
scores according to Eq. (6), which is subsequently used
by our model in Eq. (7) to yield a prediction for the
enzyme-inhibitor binding affinity (ΔGcalc). All normalized
topological score and calculated binding affinity data are
also tabulated in Additional file 3.
For this dataset of three hundred enzyme-inhibitor com-

plexes, the calculated ΔQ values and the experimental
binding affinity ΔGexp data display a correlation of r =
0.79; likewise, as discussed previously, the correlation
between ΔGcalc and ΔGexp is similarly given by r = 0.79, in
this case with a calculated standard error for the predic-
tions of SE = 2.39 kcal/mol (Figure 3).

Table 2 Atomic four-body statistical potential. (Continued)

CSSX 5 1.45E-07 1.43E-07 0.006247 OOXX 128 3.71E-06 1.24E-07 1.476181

CSXX 4 1.16E-07 2.15E-08 0.730845 OSSS 38 1.10E-06 9.51E-08 1.063748

CXXX 9 2.61E-07 1.08E-09 2.381656 OSSX 3 8.69E-08 4.30E-08 0.305472

MMMM 83 2.41E-06 3.86E-14 7.794725 OSXX 0 0 6.49E-09 –

MMMN 37 1.07E-06 5.92E-11 4.258301 OXXX 2 5.80E-08 3.26E-10 2.249518

MMMO 29 8.40E-07 6.64E-11 4.102142 SSSS 6 1.74E-07 6.23E-10 2.446092

MMMS 379 1.10E-05 1.74E-12 6.800300 SSSX 0 0 3.76E-10 –

MMMX 0 0 2.62E-13 – SSXX 0 0 8.50E-11 –

MMNN 83 2.41E-06 3.40E-08 1.849597 SXXX 0 0 8.55E-12 –

MMNO 102 2.96E-06 7.64E-08 1.587734 XXXX 0 0 3.22E-13 –

Figure 2 Scatter plot of calculated versus experimental binding
energies for the dataset of three hundred protein-ligand
complexes.
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Comparisons to related methods
In the same way that our predictive model of protein-
ligand binding affinity is evaluated on a test set of three
hundred enzyme-inhibitor complexes as described in the
previous section, other related methods similarly use test
sets of complexes to validate their models. Hence, to
directly compare our performance to that of other meth-
ods, binding affinity predictions are generated using our
approach for complexes that form their test sets. Starting
with X-Score, Wang et al. [2] report predictions with their
model on a test set of ten complexes that reflect a correla-
tion of r = 0.67 between experimental and predicted bind-
ing affinity (right hand columns of Table 3 in [2], predicted
data are in parentheses), with a fitted regression line of y =
0.31x + 3.78. On the identical dataset, predictions obtained
with our model yield a correlation of r = 0.72 and fitted
regression line of y = 1.26x - 1.20, results that signify a
clear improvement over those of X-Score (Table 3 of this
manuscript, which also reproduces the X-Score data).
Turning next to ITScore, we discover that Huang et al.

[8] utilize a benchmarking test set consisting of one hun-
dred protein-ligand complexes, originally constructed by
Wang et al. [24], to compare their scoring function and 14
other methods by ranking the respective Pearson’s correla-
tion coefficients (r) between experimental and predicted
binding affinities. The test set is diverse, consisting of 43
different proteins as well as binding affinities that span
nearly nine orders of magnitude. By generating binding

affinity predictions for these one hundred complexes with
our model and calculating their correlation with the experi-
mental data, we can subsequently determine our ranking
among these 15 related approaches: ITScore [8], X-Score
[2], DFIRE [25], DrugScoreCSD [26], DrugScorePDB [4],
Cerius2/PLP [27,28], SYBYL/G-Score [29], SYBYL/D-Score
[30], SYBYL/ChemScore [31], Cerius2/PMF [32], DOCK/
FF [30], Cerius2/LUDI [33,34], Cerius2/Lig-Score [35],
SYBYL/F-Score [36], and AutoDock [37]. The results of
our predictions are summarized in Figure 4, which provides
a scatter plot of calculated versus experimental binding
energies for this dataset of one hundred complexes. The
plot reflects a correlation of r = 0.66 (r = 0.67 with one out-
lier complex excluded), surpassing all of the other methods
(Table 4, data for the other methods are obtained from
Table 3 in [8]) and validating the reliability of our approach.

Conclusions
Delaunay tessellation of atomic coordinates in a diverse
dataset of macromolecular structures objectively identi-
fies four-body atomic interactions, providing the raw
data for developing a knowledge-based atomic four-body
statistical contact potential. This potential is used to
score a separate diverse set of three hundred protein-
ligand complexes with known binding affinities, as well
as to score the isolated proteins without their bound
ligands, based on their respective structure tessellations.
Initially, the difference (ΔQ) between scores calculated
for an entire complex and for its isolated protein is con-
sidered as a predictor of binding affinity; however, since
these ΔQ do not scale as binding free energy values, two
hundred randomly selected protein-ligand complexes
from this set are used to empirically derive a linear

Figure 3 Scatter plot of calculated versus experimental binding
energies for the dataset of three hundred enzyme-inhibitor
complexes.

Table 3 Comparing experimental binding affinity values
for 10 protein-ligand complexes with predicted values
obtained using both X-Score and the model developed in
this study.

pkd ΔG

PDB code Exp. X-Score Exp. Our model

1ABE 6.52 5.25 -8.887610045 -10.3129

1ADB 8.40 8.01 -11.45029515 -23.3388

1ADD 6.74 5.36 -9.187498728 -13.1243

1AF2 3.10 4.90 -4.225704163 -10.0826

1ANF 5.46 6.03 -7.442691848 -9.59131

1CBX 6.35 5.74 -8.655877882 -11.6284

1DBM 9.44 6.65 -12.86795074 -14.9936

1DHF 7.40 5.27 -10.08716478 -13.1753

1GST 4.68 5.21 -6.379450155 -5.48917

1HPV 9.22 6.28 -12.56806206 -16.0903

X-Score: r = 0.67 Our model: r = 0.72

Experimental ΔG data for the complexes are derived from the experimental
pkd values.
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function of ΔQ as a model for calculating the binding
energy. For this training set, we observe a correlation of r
= 0.79 between calculated and experimental binding
energies, with a standard error of SE = 1.98 kcal/mol and
a regression line of y = 1.18x. Validation of this model
with the remaining one hundred complexes that were
held out yields performance measures of r = 0.79 and SE
= 1.93 kcal/mol. In an application of the method, our

model is then used to predict binding energies for an
independent and diverse test set of three hundred
enzyme-inhibitor complexes, producing results that are
consistent with those based on the training and valida-
tion data. Finally, we utilize a diverse test set of one hun-
dred protein-ligand complexes to benchmark the binding
energy predictions made with our model, and our corre-
lation between calculated and experimental binding ener-
gies for this dataset surpasses those of all 15 related
methods to which it is compared. A key advantage with
our approach is the ability to generate rapid predictions,
typically under one second per complex.
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