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Abstract

Background: Obtaining atomic-scale information about large-amplitude conformational transitions in proteins is a
challenging problem for both experimental and computational methods. Such information is, however, important
for understanding the mechanisms of interaction of many proteins.

Methods: This paper presents a computationally efficient approach, combining methods originating from robotics
and computational biophysics, to model protein conformational transitions. The ability of normal mode analysis to
predict directions of collective, large-amplitude motions is applied to bias the conformational exploration
performed by a motion planning algorithm. To reduce the dimension of the problem, normal modes are
computed for a coarse-grained elastic network model built on short fragments of three residues. Nevertheless, the
validity of intermediate conformations is checked using the all-atom model, which is accurately reconstructed from
the coarse-grained one using closed-form inverse kinematics.

Results: Tests on a set of ten proteins demonstrate the ability of the method to model conformational transitions
of proteins within a few hours of computing time on a single processor. These results also show that the
computing time scales linearly with the protein size, independently of the protein topology. Further experiments
on adenylate kinase show that main features of the transition between the open and closed conformations of this
protein are well captured in the computed path.

Conclusions: The proposed method enables the simulation of large-amplitude conformational transitions in
proteins using very few computational resources. The resulting paths are a first approximation that can directly
provide important information on the molecular mechanisms involved in the conformational transition. This
approximation can be subsequently refined and analyzed using state-of-the-art energy models and molecular
modeling methods.

Background
Conformational transitions in proteins are generally related
to their capacity to interact with other molecules. Their
study is therefore essential for the understanding of protein
functions. Unfortunately, it is very difficult to obtain this
type of dynamic information at the atomic scale using
experimental techniques. Modeling protein conformational
transitions with conventional computational methods is

also challenging because, in many cases, these transitions
are rare, slow events. Standard molecular dynamics (MD)
simulations with current computational resources cannot
be applied in practice to model large-amplitude (slow
time-scale) conformational transitions. Such simulations
require variants of MD methods that enhance sampling of
rare events or that bias the exploration in a given direction
(e.g. [1-5]), or, alternatively, to have access to outstanding
computational power [6].
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Modeling conformational transitions in proteins
has motivated the development of specific methods,
computationally more efficient than MD simulations.
Many of these methods (e.g. [7-9]) are based on the defor-
mation of a trivial initial path between the two given con-
formations toward the minimum energy path connecting
them. Consequently, the performance of these methods is
strongly conditioned by the suitability of the initial path.
In recent years, methods to model conformational tran-
sitions have also been developed on the basis of robot
motion planning algorithms [10-13]. Most of these
robotics-inspired methods are aimed at providing quali-
tative information about the conformational transition
using few computational resources. For this, they exploit
the efficiency of sampling-based exploration algorithms
applied to simplified molecular models.
The high dimensionality of the space to be explored is

the main difficulty that all computational methods to
model protein conformational transitions have to face.
Therefore, several approaches have been developed to
reduce the dimensionality of the problem (e.g. [14-16]).
Normal mode analysis (NMA) [17] is a particularly inter-
esting tool in this regard, since a small number of low-
frequency normal modes provide a good hint of the
direction of large-amplitude conformational changes
[18-21]. Several recent works apply this property of
NMA to improve the performance of conformational
exploration methods.
The approach presented in this paper was originally

introduced in [22]. The basic principle is to use NMA to
bias the conformational exploration performed by a
Rapidly-exploring Random Tree (RRT) algorithm [23],
aiming to efficiently compute conformational transition
paths. The main novelty presented in the present work is
the introduction of a multi-scale model for the protein.
In this model, an elastic network is defined considering
only a single node (called a particle) per tripeptide.
Motion directions provided by NMA of such a coarse-
grained elastic network are then applied to the all-atom
model for a more accurate conformational exploration.
The introduction of this multi-scale model has important
outcomes. First, the number of normal modes is largely
reduced thanks to the use of the coarse-grained model,
which significantly reduces the time required to compute
them. In addition, generating the all-atom model from
the coarse-grained model can be accurately and effi-
ciently achieved using methods from robot kinematics
[24], avoiding the need of artifacts such as the RTB
approach (rotations-translations of blocks) [25].
Next section presents the overall method, and explains

each of its elementary components: elastic network normal
mode analysis, tripeptide-based multi-scale protein model-
ing, and motion-planning-based conformational explora-
tion. Then, several types of results aimed to validate the

approach and to show its good computational performance
are presented for a set of proteins with different sizes and
topologies. A more detailed analysis of results is presented
for adenylate kinase (ADK). Finally, together with the con-
clusions, we discuss possible directions for future work.
Note that a preliminary version of this work was presented
in [26]. Compared to this previous version, this paper
includes more detailed explanations of the method, a more
exhaustive presentation of results, with additional figures
and tables, as well as additional results for the ADK pro-
tein. In addition, some movies that illustrate results
obtained with the proposed method are included as supple-
mentary material.

Methods
This section presents a new method to model protein con-
formation transitions. It builds on the combination of
several components inside an iterative algorithm. One of
these components is NMA performed on a coarse-grained
elastic network model of the protein, which enables very
fast computation of normal modes. Indeed, a single parti-
cle of the elastic network is considered for each group of
three consecutive amino-acid residues (i.e. one particle per
tripeptide). The all-atom model, which is used to accept
or reject sampled states during the conformational
exploration, is accurately reconstructed from the coarse-
grained one using closed-form inverse kinematics. The
RRT algorithm is applied to explore linear combinations
of normal modes computed from intermediate conforma-
tions along the path. All these elementary components of
the method are further explained below.

Elastic networks and normal mode analysis
Based on a harmonic approximation of the potential
energy, normal mode analysis provides information about
the directions and frequencies of vibration of a molecule
from a minimum-energy conformation. Each mode repre-
sents a motion pattern, in which all the atoms move with
the same frequency and phase. Low-frequency normal
modes correspond to collective motions (e.g. domain
motions), whereas high-frequency normal modes corre-
spond to local fluctuations [19,27].
Normal modes are calculated by diagonalizing the

Hessian matrix of the potential energy of the molecule.
For reducing the computational cost of this operation,
several works propose to use simplified potentials and
coarse-grained models. An extensively used simplified
potential is based on the elastic network model (ENM)
[28], which represents the molecule as a set of particles
connected by virtual springs. All the protein atoms can
be considered as particles in the elastic network. However,
a coarse-grained representation that only considers Ca

atoms (i.e. a single particle per amino-acid residue) is often
applied [19,20]. Moreover, particles are connected by
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virtual springs only if they are closer than a user-defined
cut-off distance dcut.
The potential energy function of such an elastic net-

work takes the following form:

E =
∑

d0ij<dcut

C
2
(dij − d0ij)

2

where dij is the distance between particle i and particle j,
d0ij is the distance between the two particles at the equili-
brium state and C is the elastic constant. This type of sim-
plified potential has been used in many works and for very
different applications [29-32].
In this work, we investigate a further simplification of

the ENM. Indeed, the ENM is built using a coarser model
based on tripeptides, instead of using Ca atoms. Figure 1
illustrates the approach. Note that coarse-grained NMA
approaches considering more than one residue per particle
have already been proposed [25,33,34]. However, these
approaches, which are mainly devised to analyze motions
of very large systems made of protein assemblies, consider
rigid-body motions of groups of residues. In contrast, the
approach presented here preserves full flexibility of the
protein, which leads to a more accurate simulation of con-
formational transitions.
Several works show that using a simplified ENM does

not necessarily imply a loss of accuracy in the prediction
of large-amplitude motion directions [20,25]. However, it
certainly leads to a computational performance gain. This
issue is further discussed in the results section, where the
performance of NMA using tripeptide-based models and
Ca-based models is compared.
The anisotropic network model (ANM) approach, as

described in [27,35], is adopted in this work to construct
the Hessian matrix from the positions of the particles of
the tripeptide-based model. Each 3 × 3 sub-matrix

corresponding to the interaction between two particles is
computed as follows:

Hij = − C

d2ij

⎡
⎣ (xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)
(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)
(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

⎤
⎦

Hij = −
∑
j|j�=i

Hij

If the distance between particles i and j is more than the
cut-off distance dcut, then the whole 3 × 3 matrix is
replaced by zeros. The Hessian matrix is then diagonalized
to compute the eigenvalues and eigenvectors. Each eigen-
value and eigenvector pair corresponds to one normal
mode, where the eigenvalue defines the mode frequency
and the eigenvector defines the motion direction for each
particle in the elastic network.

Multi-scale model
Tripeptide-based model
The multi-scale modeling approach applied in this work
is based on a decomposition of the protein chain into
fragments of three amino acid residues, which we refer
to as tripeptides. The reason for choosing such a subdi-
vision is that, assuming fixed bond lengths, bond angles
and peptide bond torsions, the backbone of a tripeptide
involves 6 degrees of freedom (three pairs of angles �, ψ),
and thus, an analogy can be made with a 6R mechanism
like a robotic manipulator [24]. Two Cartesian reference
frames attached to the N atom in the backbone of the first
residue and to the C atom in the last residue define
respectively the base-frame and the end-frame of the 6R
mechanism. Since tripeptides are linked through rigid pep-
tide bonds, the location of the end-frame of tripeptide i
can be determined from the base-frame of tripeptide i + 1
by a constant 3D transformation. Given the location of the

Figure 1 Illustration of the different models on the ADK protein. (a) Representation of the all-atom model, (b) the particles of the coarse-
grained tripeptide-based model, (c) representation of the elastic network model.
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base-frame and the end-frame, the conformation of a tri-
peptide backbone can be obtained by inverse kinematics.
Consequently, the conformation of the whole protein
backbone can be determined from the pose of a single
reference frame attached to each tripeptide (this is true for
all the protein backbone except two short fragments at the
N-terminal and C-terminal ends of the chain, which
require a particular treatment). In the following, we will
refer to these reference frames as (oriented) particles.
They are the particles in the coarse-grained ENM.
Reconstructing the all-atom model
The interest of the decomposition of the protein into
tripeptides explained above is that closed-form inverse
kinematics (IK) can be applied to reconstruct the all-
atom protein model from the coordinates of the parti-
cles. The IK solver applied in this work has been
adapted from the method developed by Renaud [36].
This solver is based on algebraic elimination theory,
and develops an ad-hoc resultant formulation inspired
by the work of Lie and Liang [37]. Starting from a sys-
tem of equations representing the IK problem, the
elimination procedure leads to an 8-by-8 quadratic
polynomial matrix in one variable. The problem can
then be treated as a generalized eigenvalue problem, as
proposed in [38], for which efficient and robust meth-
ods such as the Schur factorization can be applied.
Note however that our approach is not dependent on
this solver, so that other IK methods (e.g. [38,39])
could be applied.
In general, the IK problem for a 6R serial kinematic

chain has a finite number of solutions (up to 16 in the
most general case). All the solutions correspond to geo-
metrically valid conformations of the tripeptide backbone
with fixed ends defined by the pose of the particles. How-
ever, when the goal is to simulate continuous motions,
the closest conformation to the previous one (i.e. the one
before a perturbation applied to the particles) has to be
selected in order to avoid jumps in the conformational
space. All IK solutions are rejected if none of them
remains within a distance threshold that depends on the
perturbation step-size.
The explanations above concern only the reconstruc-

tion of the all-atom model of the protein backbone from
the coarse-grained tripeptide-based model. Side-chains
are treated separately, using a simple method based on
energy minimization as explained below.

Path finding algorithm
The path finding method works by iteratively generating
short portions of the transition between two given con-
formations of a protein, which we will refer to as qinit
and qgoal. Algorithm 1 presents the pseudo-code with
the main steps of the method. At each iteration, normal

modes are computed for a root conformation qroot.
Note that qroot = qinit for the first iteration. Then, the
RRT algorithm is applied to explore motions corre-
sponding to linear combinations of normal modes. RRT
is run until the protein moves a predefined distance
toward the target conformation qgoal. The conforma-
tional exploration performed by the RRT algorithm is
further explained below. Once the RRT exploration is
stopped, the closest node qclose in the tree to qgoal is
searched. The path between qroot and qclose is then
extracted and saved. All the conformations in this path
are guaranteed to have a collision-free backbone
(including Cb atoms) which generally implies getting
acceptable energy values after a short minimization to
rearrange side-chain conformations. Such an energy
minimization procedure is performed on qclose, which
will be the root conformation in the next iteration. The
algorithm keeps iterating until a predefined distance
dtargetto qgoal is reached. The resulting path is defined
by the sequence of minimized conformations qclose at
each iteration. If a finer-grained path is required, other
intermediate conformation can be extracted from the
sub-paths computed at each iteration. These conforma-
tions may require energy minimization to rearrange
side-chains, as it is done for qclose.
Algorithm 1: COMPUTE_PATHWAY
input : Initial conformation qinit, final conformation

qgoal, minimum distance to target dtarget
output : The transition path p
begin

qroot ¬ qinit;
while RMSD(qroot, qgoal) >dtarget do

a ¬ COMPUTE_NORMAL_MODES(qroot);
t ¬ BUILD_RRT(qroot, qgoal, a);
qclose ¬ CLOSEST_TO_TARGET(t, qgoal);
qroot ¬ MINIMIZE(qclose);
p ¬ CONCATENATE(p, qroot);

end

Algorithm 2: BUILD_RRT
input : Initial conformation qroot, final conformation

qgoal, normal modes a
output : The tree t
begin

t ¬ INIT_TREE(qroot);
while not STOP_CONDITION(t, qgoal) do

qrand ¬ SAMPLE(t, a);
qnear ¬ BEST_NEIGHBOR(t, qrand);
qnew ¬ EXPAND_TREE(qnear, qrand);
if ISVALID(qnew) then

ADD_NEW_NODE(t, qnew);
ADD_NEW_EDGE(t, qnear, qnew);

end

Al-Bluwi et al. BMC Structural Biology 2013, 13(Suppl 1):S2
http://www.biomedcentral.com/1472-6807/13/S1/S2

Page 4 of 14



Implementation details
The RRT algorithm, iteratively applied in Algorithm 1,
performs the same steps as the basic RRT [23]. The steps
are sketched in Algorithm 2. At each iteration, a confor-
mation qrand is randomly sampled. Note that qrand is not
required to be a feasible conformation. Then, the tree is
searched for the closest conformation to qrand, called qnear
. A new conformation, qnew , is generated by moving from
qnear towards qrand with a predefined short step size. The
new conformation is added to the tree if it does not violate
feasibility constraints, which in the present work are
limited to geometric constrains related to no atom over-
lapping and no bond breaking. The difference with respect
to the basic RRT algorithm concerns the implementation
of the methods for sampling conformations, searching the
nearest neighbor, and expanding the tree. These methods,
which are further explained below, are specific to the pre-
sent framework because of the multi-scale protein model
and the application of NMA to bias the exploration.
Sampling random conformations
The idea is to randomly sample conformations qrand using
information given by the normal modes. The coarse-
grained tripeptide-based model is used at this level.
Hence, qrand is not an all-atom conformation, but an array
of particle positions. Random particle positions are gener-
ated by moving them from their initial positions, defined
by qroot, using a linear combination of normal modes with
randomly sampled weights. More precisely:

- A sequence of 3n random weights wj are sampled in
the range [-1, 1], where n is the number of particles,
being 3n the number of normal modes (actually, the
number of normal modes is 3n − 6, since 6 degrees of
freedom correspond to rigid-body motions of the
whole set of particles).
- The new positions of the n particles are computed by
a linear combination of all the randomly weighted
modes as follows:

qrand = qroot +
3n∑

f ∗ wj ∗ aj

where aj refers to each normal mode, and f is an
amplification factor used to push the sampled confor-
mation away from qroot (this factor is the same for all
the normal modes). Note that, since the normal
modes are not normalized, low frequency modes have
larger norm. Thus, they contribute more significantly
in the sum.

Finding nearest neighbors
Nearest neighbor search is also performed using the
coarse-grained model. Indeed, the computed distance is
based on the root mean squared deviation (RMSD) of the
particle positions. In the current implementation, the

distance is biased to pull the exploration towards the tar-
get conformation as follows:

d(q, qrand) = RMSD(q, qrand)
RMSD(q, qgoal)

RMSD(qinit, qgoal)
.

In this work, we have implemented a simple brute-
force algorithm to find qnear. More sophisticated nearest
neighbor search algorithms could be used to reduce the
number of performed distance computations. Note,
however, that currently used algorithms based on space
partitioning techniques (e.g. kd-trees) do not perform
well in high-dimensional spaces [40]. A computationally
efficient solution would require the implementation of
an approximate nearest neighbor search algorithm.
Generating new conformations
For generating qnew, all particle positions in qnear are line-
arly interpolated towards qrand with a predefined step
size k. Given these new particle positions, the all-atom
model corresponding to qnew is obtained by solving an IK
problem for every tripeptide. The implemented method
proceeds iteratively. If no IK solution is found for a tri-
peptide ti(the tripeptide between particles pi and pi+1) or
if the solution involves atom collisions, the pose (position
and orientation) of particle pi+1 is slightly perturbed and
the IK problem is solved again. This process is repeated
until a collision-free IK solution is found or a maximum
number of trials is reached. If this process fails to find a
collision-free IK solution for any tripeptide, failure is
reported and the RRT algorithm goes back to the random
sampling step.
Once the treatment of all tripeptides has been com-

pleted, the conformation of the two terminal fragments is
generated. For this, the pose of these fragments is updated
with respect to the new poses of the first and last tripep-
tides. Random perturbations can be applied to these end
fragments in order to remove possible collisions with the
rest of the protein.
Protein conformations qnew generated using the afore-

mentioned process are guaranteed to satisfy geometric
constraints: correct bond geometry and no overlap
betweew backbone atoms. However, in order to speed-up
computations, side-chains are not treated at this stage
(only Cb atoms are considered for collision avoidance).
This is because side-chains are known to be very flexible,
and resolving possible collisions along the conforma-
tional transition path can be done in a post-processing
stage. Indeed, side-chain collisions are resolved during
the minimization step at the end of each short RRT
execution.

Results and discussion
This section discusses several experiments aimed to vali-
date the proposed method and to evaluate its performance.
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First, the question concerning the accuracy of the tripep-
tide-based elastic network model is addressed. Then,
results are presented on conformational transitions com-
puted for a set of ten proteins with different sizes and
topologies. Finally, further results on adenylate kinase are
presented and compared to available data on the transition
between the open and closed forms of this protein.

Validating the coarse-grained ENM
Previous works (e.g. [19,20]) have shown that simple
ENMs built using Ca atoms perform as well as ENMs
built using the all-atom model when studying the dynamic
properties of proteins with NMA. Here, we compare the
performance of the proposed tripeptide-based model
with the Ca-based model for predicting directions of con-
formational transitions. A set of seven proteins listed
in Table 1 was used for this comparison. These proteins
were also used in related work [20] for the validation of
the Ca-based ENM.
For evaluating the capability of normal modes to predict

directions of conformational transitions, we use the notion
of overlap as proposed in related work [20]. The overlap Ij
between a normal mode j and an experimentally observed
conformational change between two conformations (open
and closed) qoand qcis defined as a measure of similarity
between the conformational change and the direction
given by the normal mode j. It can be computed as
follows:

Ij =

∣∣∣∣
3n∑

aij�qi

∣∣∣∣
[
3n∑

a2ij
3n∑

�q2i

]1/2

where �qi = qoi − qci measures the difference between
the particle coordinates in conformations qoand qc, aij
corresponds to the ith coordinate of the normal mode
j, and n is the number of particles. A value of 1 for
the overlap means that the direction given by the nor-
mal mode matches exactly the conformational change,
whereas a value around 0.2 or less means that the
normal mode is unable to provide any meaningful
prediction.

Before conducting the comparative analysis, we need to
determine an optimal cutoff distance for the tripeptide-
based ENM. A good cutoff distance should create an elas-
tic network that correctly captures the topology of the
protein. For Ca-based models, 8 Å is generally used, since
this cutoff distance has been empirically shown to provide
the best results in most cases. It can be intuitively inferred
that the same cutoff distance may not be the optimal
choice in our case, because distances between particles of
the tripeptide-based model are larger than distances
between Ca atoms. Moreover, defining the optimal cutoff
value theoretically is not straightforward. Therefore, we
have measured and compared the overlap values for the
seven proteins with cutoff distances between 8 and 34 Å
in order to empirically determine the most suitable range
of cutoff values. Figure 2 shows the overlap value for each
cutoff distance averaged over the seven proteins. Note
that, for each protein, overlap values were computed for
all the normal modes, and the best value was considered
for the average. As clearly shown in the figure, the best
overlap values are for cutoff distances of 15, 16 and 17 Å.
The tripeptide-based ENMs for four of the proteins in

Table 1, using a cutoff distance of 16 Å, are represented
in Figure 3. The figure shows that the main topological
features of the proteins appear in the coarse-grained
model.
Table 2 compares overlap values of tripeptide-based

ENMs using a cutoff distance of 16 Å with those pre-
sented in [20] for Ca-based ENM using a cutoff distance
of 8 Å. In the table, columns labeled “Open” correspond
to the open-to-closed conformation and columns labeled
“Closed” are for the opposite case. The similar overlap
values show that the coarse-garined, tripeptide-based
ENM is also able to capture the topological information
required to compute normal modes that correctly predict
directions of large-amplitude motions. Importantly, such
a similar performance in terms of overlap is obtained

Table 1 Proteins used in the overlap experiments

Protein Residues PDBopen PDBclosed

Che Y Protein 128 3chy 1chn

LAO binding Protein 238 2lao 1laf

Triglyceride Lipase 256 3tgl 4tgl

Thymidulate Synthase 264 3tms 2tsc

Maltodextrine Binding Protein 370 1omp 1anf

Enolase 436 3enl 7enl

Diphtheria Toxin 523 1ddt 1mdt

Figure 2 Average overlap over the seven proteins of Table 1.
Lines are drawn between the 25th and the 75th percentiles of the
overlap values. Average overlap values are indicated with dots.
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with much less computational cost. Since the computa-
tional complexity of the Hessian matrix diagonalization is
O(n3), the reduction of n by a factor 3 (a tripeptide
involves 3 Ca atoms) provides a theoretical gain of more

than one order of magnitude. This theoretical gain has
been confirmed with some experiments. In summary, the
time required to compute the normal modes with the
tripetide-based model ranges from 0.05 seconds to 0.9
seconds, whereas several minutes may be necessary using
the Ca model.

Finding conformational transitions
Experimental setup
The proposed method was applied to compute conforma-
tional transition paths for the ten proteins listed in Table 3,
and represented in Figure 4. For each protein, at least two
experimental structures corresponding to different confor-
mations are available in the Protein Data Bank (PDB) [41].
The difference between these conformations involves
large-amplitude domain motions. The ten proteins are var-
ied in size and topology, as well as in the type of domain
motions they undergo. This heterogeneity is important to
analyze the reliability and scalability of the method.
Each iteration of the algorithm that computes the

transition path performs a short RRT exploration, as
mentioned in the previous section. In the current imple-
mentation, such a local exploration runs until the pro-
tein moves 0.3 Å Ca-RMSD towards the goal. This
distance is gradually reduced to 0.15 Å as the distance
to the target conformation decreases. The reason is that
the speed of convergence tends to decrease when
approaching the target conformation, and recomputing
normal modes more frequently provides better results in
this situation. If the distance stopping condition is not
reached first, the exploration stops after a pre-defined
number of iterations (4000 in our case). This additional
stopping condition prevents too long runs of RRT in
case of blocking situations.
At the end of the RRT exploration, the closest confor-

mation to the goal is identified and submitted to an energy
minimization procedure aimed at generating better side-
chain conformations. In this work, we have used the
AMBER software package [42] for energy minimization.

Figure 3 Tripeptide-based elastic network models. Representation
of the all-atom models and the tripeptide-based ENMs for four
different proteins.

Table 2 Comparison between overlap values for Ca-based
ENMs and tripeptide-based ENMs

Protein Ca Overlap Tripep. Overlap

Open Close Open Close

Che Y Protein 0.32 0.34 0.52 0.34

LAO binding Protein 0.84 0.40 0.53 0.52

Triglyceride Lipase 0.30 0.17 0.26 0.35

Thymidulate Synthase 0.56 0.40 0.49 0.29

Maltodextrine Binding Protein 0.86 0.77 0.90 0.84

Enolase 0.33 0.30 0.40 0.30

Diphtheria Toxin 0.58 0.37 0.48 0.30

Table 3 Proteins used in the experiments

Protein Residues PDB IDinit PDB IDgoal Ca RMSD

ADK 214 4ake 1ake 6.51

LAO 238 2lao 1laf 3.73

DAP 320 1dap 3dap 3.78

NS3 436 3kqk 3kql 2.75

DDT 535 1ddt 1mdt 10.96

GroEL 547 1aon 1oel 10.49

ATP 573 1m8p 1i2d 3.78

LTF 691 1cb6 1bka 4.75

IBS 876 1ukl 1qgk 6.17

HKC 917 1hkc 1hkb 3.00
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Results
Table 4 summarizes the results achieved by the proposed
method for the set of ten proteins. In this table, Ca-
RMSDend is the distance between the goal conformation
and the conformation obtained at the end of the iterative
path finding process. Timetotal is overall computing time,
which includes the RRT running time (TimeRRT ) and
the time for computing the normal modes and running
minimizations at the end of each iteration. The number
of iterations of the main algorithm (i.e. the number of
NMA calculations) is also indicated in the table. Note
that, in all the experiments, the RRT exploration takes
more than 90% of the total computing time, which

Figure 4 The ten proteins used in the experiment. Representation of open and closed forms of these proteins available in the PDB (IDs are
provided in Table 3).

Table 4 Performance of the method on ten proteins
(cf. Table 3)

Protein Ca-RMSDend Iterations TimeRRT Timetotal

ADK 1.56 31 1.82 2.00

LAO 1.32 20 1.52 1.65

DAP 1.31 16 1.78 1.92

NS3 1.29 14 2.82 3.00

DDT 2.88 272 81.54 86.4

GroEL 2.79 142 40.21 42.17

ATP 1.45 30 13.46 14.16

LTF 1.96 74 29.56 31.09

IBS 1.99 80 80.61 82.62

HKC 1.64 38 37.91 39.63
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corresponds to runs on a single core of an AMD Opteron
148 processor at 2.6 GHz.
In all cases, the method was able to compute the con-

formational transition, reaching conformations very close
to the given goal conformations. Figure 5 shows superim-
posed structures (structure superimpositions and images
have been done using PyMOL [43]) of open and closed
forms of the proteins (qinit and qgoal), and of the closed
form and the last conformation of the computed

transition path (qgoal and qfinal). The distances between
the final and goal conformations are below 2 Å (mea-
sured using Ca-RMSD) for all the tested proteins with
the exception of DDT and GroEL. Note that 2 Å RMSD
corresponds to the current accuracy of experimental
methods for high-resolution protein structure determina-
tion. As can be seen in Figure 5 the superimpositions of
the final and goal conformations is very good, even for
DDT and GroEL. Note that the method could have

Figure 5 Superimposed structures and final conformations of the computed transition path. For each protein, the left image shows the
open form (in red) and the closed form (in black), and the right image shows the closed form (in black) and the final conformations of the
computed path (in red).
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reached closer conformations to the goal with a higher
number of iterations. Nevertheless, the strategy applied
in these experiments was to stop iterating when the dis-
tance to the goal reached a very slow rate of convergence.
We also conducted experiments to analyze the rela-

tionship between the computing time and the size of
the protein. Since the lengths of the transition paths for
the different test systems is variable, we measured the
computing time to move 1Å along these paths. The results
of these experiments, presented in Table 5 and Figure 6,
show a linear relationship between the computing time and
the protein size. This scalability is an interesting property of
the method. Note that the performance of the method
seems not be (or only slightly) affected by the topology of
the protein. This is an important advantage over the
method presented in [22], which experienced some difficul-
ties in dealing with relative motions of domains connected
by several linkers, mainly because of the internal-coordinate
representation of proteins used in this previous work.
Finally, we did a profiling of the algorithm to identify

possible bottlenecks and points to be improved to
enhance computational efficiency. Table 6 gives values of
the percentage of the time spent in the most time-con-
suming operations within the RRT exploration: nearest
neighbor search (NN), collision checking (CC), inverse
kinematics (IK) and random sampling (RS). Surprisingly,
nearest neighbor search takes around 60% of the overall
computing time. This is due to the brute-force algorithm
applied in the current implementation. As mentioned
before, a more sophisticated nearest neighbor algorithm
should be implemented. The performance of the method
could also be enhanced by applying simplified distance
metrics (e.g. [16,44]). The use of an appropriate simpli-
fied distance metric could reduce computing time while
preserving good exploration properties of the algorithm.
A closer look at adenylate kinase
Adenylate kinase (ADK) [45] is a widely studied protein
involved in signal transduction. The structure of ADK is
composed of three domains known as: LID, CORE and

NMPbind. Several works tend to show that the LID and
NMPbind domains undergo large-amplitude conforma-
tional changes with respect to the CORE domain, which
remains stable [46,47]. Some of these works (e.g. [47])
also suggest that the conformational transition between
open and closed states of ADK proceeds in two steps:
(1) the LID domain moves more clearly than the NMPbind
domain at the beginning of the open-to-close transition;
(2) then NMPbind domain moves at a faster pace towards
the end of the transition path.
The open conformation of ADK (PDB ID 4AKE),

the closed conformations (PDB ID 1AKE) of ADK, and
several intermediate conformations obtained with our
method are represented in Figure 7 The figure shows sig-
nificant conformational changes of the LID and NMPbind
domains, as expected. The motion of these two regions is
also illustrated in Figure 8, which represents the displace-
ment of the residues along the conformational transition.
Two darker regions, involving residues 20-60 and 130-160,
indicate the parts of the protein that undergo larger displa-
cements. These regions correspond to the NMPbind
domain and LID domain, approximately. Figure 8 also
shows that residues 20-60, corresponding to the NMPbind

Table 5 Relationship between the size of the protein and
the computing time

Protein Residues Time (hours)

ADK 214 0.4

LAO 238 0.68

DAP 320 0.79

NS3 436 2.11

DDT 535 10.72

GroEL 547 5.84

ATP 573 6.74

LTF 691 11.17

IBS 876 19.96

HKC 917 28.93

Figure 6 Plot of the results in Table 5. The plot shows a linear
relationship between the size of the protein and the time required
to compute the conformational transition path.

Table 6 Percentage of the time spent performing the
main operations in RRT

Protein NN CC IK RS

ADK 57.2% 14.1% 15.0% 6.3%

LAO 51.3% 20.9% 17.0% 5.4%

DAP 50.5% 20.6% 11.0% 12.3%

NS3 67.9% 13.4% 6.6% 8.9%

DDT 64.3% 17.1% 6.9% 9.0%

GroEL 60.4% 17.6% 8.9% 9.8%

ATP 57.3% 20.9% 6.8% 11.9%

LTF 55.1% 16.8% 6.1% 19.3%

IBS 62.9% 15.5% 4.1% 15.5%

HKC 68.9% 5.8% 3.3% 18.2%

Average 59.58% 16.27% 8.57% 11.66%
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domain, start moving more significantly near the end of the
transition path, whereas residues 130-160, corresponding to
the LID domain, start moving at an earlier stage. This
reflects the two-step nature of the conformational transi-
tion discussed earlier, and shows that our method provides

results that are qualitatively comparable with those pre-
sented in previous work on ADK.
The open conformation of ADK (PDB ID 4AKE), the

closed conformations (PDB ID 1AKE) of ADK, and sev-
eral intermediate conformations obtained with our
method are represented in Figure 7 The figure shows
significant conformational changes of the LID and
NMPbind domains, as expected. The motion of these
two regions is also illustrated in Figure 8, which repre-
sents the displacement of the residues along the confor-
mational transition. Two darker regions, involving
residues 20-60 and 130-160, indicate the parts of the
protein that undergo larger displacements. These
regions correspond to the NMPbind domain and LID
domain, approximately. Figure 8 also shows that resi-
dues 20-60, corresponding to the NMPbind domain,
start moving more significantly near the end of the tran-
sition path, whereas residues 130-160, corresponding to
the LID domain, start moving at an earlier stage. This
reflects the two-step nature of the conformational tran-
sition discussed earlier, and shows that our method pro-
vides results that are qualitatively comparable with those
presented in previous work on ADK.

Figure 7 Different conformations of ADK along the studied conformational transition. The LID domain is shown in blue and the NMPbind
domain is shown in red. Images (a) and (f) represent the start and goal conformations respectively. Images (b) to (e) show intermediate
conformations generated by our method.

Figure 8 Displacement of the residues along the conformational
transition of ADK. The plot shows, using a gray-scale, the
displacement of each residue at each iteration relative to the previous
iterations. Darker regions represent larger displacements.
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We have also compared intermediate conformations in
the computed transition path of the ADK to a small
number of other experimentally solved structures of this
protein. These structures correspond to homolog pro-
teins or mutants with very high sequence identity, and
some of them are known to be intermediate structures
between open and closed forms of the protein. Interest-
ingly, four of these structures are very close to confor-
mations along the transition path. Table 7 shows the
distance between each of these structures and the closest
conformation in the transition path. The table also shows
the position of this conformation in the path. More pre-
cisely, the table shows the corresponding iteration num-
ber and the percentage of the path length. 2RH5 (A) is
very close to the conformation generated by the first
iteration, whereas 1E4Y (A) is close to the conformation
generated by iteration 27 (near the closed structure).
1DVR (A) is also very close to a conformation toward the
beginning of the path (near the open structure), whereas
2RH5 (B) is a slightly less open structure. These results
are comparable to those provided by previous studies
[12,48], which further validates the proposed method.

Conclusions
This paper has presented an efficient approach for com-
puting large-amplitude conformational transitions in pro-
teins. It exploits the ability of normal modes to predict
directions of collective, large-amplitude motions and the
efficiency of the RRT algorithm to explore large spaces.
The proposed approach also relies on a multi-scale repre-
sentation of the protein, based on a decomposition into
tripeptides, which significantly contributes to the good
performance of the method.
Interestingly, first results presented in the paper show

that using an ENM based on the coarse-grained tripep-
tide-based model instead of a Ca-based model preserves
the ability of NMA to predict directions of large-amplitude
motions, while significantly reducing computing time.
The proposed method was applied to simulate large-

amplitude conformational transitions in proteins of dif-
ferent sizes and topologies. Results show a good perfor-
mance of the method in all the cases. Computing time
scales linearly with the number of residues. It ranges

from a few hours for medium-size proteins to a few days
for very large ones. This computational performance
could be significantly improved by the implementation of
more sophisticated methods to perform the most time-
consuming operations within the RRT algorithm, in par-
ticular, nearest neighbor search.
A deeper analysis of the conformational transition

between open and closed forms of ADK shows that
results provided by the proposed method are qualitatively
consistent with results obtained with other computa-
tional methods and with experimental data. Nevertheless,
it is important to note that the resulting paths are a first
approximation, which cannot be used directly for an
accurate evaluation of energy variations along conforma-
tional transitions. This would require a subsequent
refinement and analysis using state-of-the-art energy
models and molecular modeling methods. It could also
be possible to integrate energy evaluations within the
RRT exploration with the aim of obtaining better-quality
solutions, at the expense of additional computational
cost. An interesting extension that could be investigated
is to use T-RRT [49,50], instead of RRT, to compute
paths that follow more accurately the valleys of the con-
formational energy landscape.
In this work, we have shown the ability of the proposed

method to compute transition paths between two given
conformations of a protein. Nevertheless, the approach
could also be applied to more challenging problems, such
as the prediction of other (meta-)stable states reachable
from a given protein conformation, or the discrimination
between probable and improbable transitions. This
would require some extensions, mainly in the definition
of energy/scoring functions to identify interesting inter-
mediate and meta-stable states, as well as high-energy
barriers, during the conformational exploration.
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