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Abstract

Background: Ribonucleic acid (RNA) molecules play important roles in many biological processes including gene
expression and regulation. Their secondary structures are crucial for the RNA functionality, and the prediction of
the secondary structures is widely studied. Our previous research shows that cutting long sequences into shorter
chunks, predicting secondary structures of the chunks independently using thermodynamic methods, and
reconstructing the entire secondary structure from the predicted chunk structures can yield better accuracy than
predicting the secondary structure using the RNA sequence as a whole. The chunking, prediction, and
reconstruction processes can use different methods and parameters, some of which produce more accurate
predictions than others. In this paper, we study the prediction accuracy and efficiency of three different chunking
methods using seven popular secondary structure prediction programs that apply to two datasets of RNA with
known secondary structures, which include both pseudoknotted and non-pseudoknotted sequences, as well as a
family of viral genome RNAs whose structures have not been predicted before. Our modularized MapReduce
framework based on Hadoop allows us to study the problem in a parallel and robust environment.

Results: On average, the maximum accuracy retention values are larger than one for our chunking methods and
the seven prediction programs over 50 non-pseudoknotted sequences, meaning that the secondary structure
predicted using chunking is more similar to the real structure than the secondary structure predicted by using the
whole sequence. We observe similar results for the 23 pseudoknotted sequences, except for the NUPACK program
using the centered chunking method. The performance analysis for 14 long RNA sequences from the Nodaviridae
virus family outlines how the coarse-grained mapping of chunking and predictions in the MapReduce framework
exhibits shorter turnaround times for short RNA sequences. However, as the lengths of the RNA sequences
increase, the fine-grained mapping can surpass the coarse-grained mapping in performance.

Conclusions: By using our MapReduce framework together with statistical analysis on the accuracy retention
results, we observe how the inversion-based chunking methods can outperform predictions using the whole
sequence. Our chunk-based approach also enables us to predict secondary structures for very long RNA sequences,
which is not feasible with traditional methods alone.
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Background

RNA molecules

Ribonucleic acid (RNA) is made up of four types of
nucleotide bases: adenine (A), cytosine (C), guanine (G),
and uracil (U). A sequence of these bases is strung
together to form a single-stranded RNA molecule. RNA
plays important roles in many biological processes includ-
ing gene expression and regulation. RNA molecules vary
greatly in size, ranging from nineteen nucleotide bases in
microRNAs [1] to long polymers of over 30,000 bases in
complete viral genomes [2]. Although an RNA molecule is
a linear polymer, it tends to fold back on itself to form a
3-dimensional (3D) functional structure, mostly by pairing
complementary bases. Among the four nucleotide bases, C
and G form complementary base pairs by hydrogen bond-
ing, as do A and U; in RNA (but not DNA), G can also
base pair with U residues. The overall stability of an RNA
structure element is determined by the “minimal free
energy” defined as the amount of energy it would take to
completely unpair all of the base pairs that hold it together
(e.g., by denaturing it with heat).

The 3D structure of an RNA molecule is often the key
to its function. Because of the instability of RNA mole-
cules, experimental determination of their precise 3D
structures is a time-consuming and rather costly process.
However, useful information about the molecule can be
gained from knowing its secondary structure, i.e., the col-
lection of hydrogen-bonded base pairs in the molecule [3].
RNA secondary elements can be classified into two basic
categories: stem-loops and pseudoknots (see Figure 1).
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Both kinds of secondary structure elements, which have
been implicated in important biological processes like
gene expression and gene regulation [4], must contain at
least one inversion, i.e., a string of nucleotides followed
closely by its inverse complementary sequence. Figure 2
shows an example of an inversion, with the 6-nucleotide
string “ACCGCA” followed by its inverse complementary
sequence “UGCGGU” after a gap of three nucleotides.

RNA secondary structure predictions

Secondary structures are crucial for the RNA functional-
ity and therefore the prediction of the secondary struc-
tures is widely studied. Development of mathematical
models and computational prediction algorithms for
stem-loop structures began in the early 1980’s [5-7].
Pseudoknots, because of the extra base-pairings involved,
must be represented by more complex models and data
structures that require large amounts of memory and
computing time to obtain the optimal and suboptimal
structures with minimal free energies. As a result, devel-
opment of pseudoknot prediction algorithms began in
the 1990’s [8,9].

Most existing secondary structure prediction algorithms
are based on the minimization of a free energy (MFE)
function and the search for the most thermodynamically
stable structure for the whole RNA sequence. Searching
for a structure with global minimal free energy may be
memory and time intensive, especially for long sequences
with pseudoknots. To overcome the tremendous demand
on computing resources, various alternative algorithms
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Figure 1 Basic elements in RNA secondary structures. The stem loop (a) and pseudoknot (b).
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Figure 2 Example of an inversion. An inversion with stem length 6 and gap size 3.
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have been proposed that restrict the types of pseudoknots
for possible prediction in order to keep computation time
and storage size under control. Yet, most programs avail-
able to date for pseudoknot structure prediction can only
process sequences of limited lengths on the order of sev-
eral hundred nucleotides. These programs, therefore, can-
not be applied directly to larger RNA molecules such as
the genomic RNA in viruses, which may be thousands of
bases in length. At the same time, minimal energy config-
urations may not be the most favorable structures for car-
rying out the biological functions of RNA, which often
require the RNA to react and bind with other molecules
(e.g., RNA binding proteins). Our current work suggests
that local structures formed by pairings among nucleotides
in close proximity and based on local minimal free ener-
gies rather than the global minimal free energy, may better
correlate with the real molecular structure of long RNA
sequences. This hypothesis has yet to be supported by
more detailed experimental evidence. If proven correct,
our approach will open the door to a new generation of
programs based on segmenting long RNA sequences into
shorter chunks, predicting the secondary structures of
each chunk individually, and then assembling the predic-
tion results to give the structure of the original sequence.
In our previous work, we had proposed to predict sec-
ondary structures for long RNA sequences using three
steps: (1) cut the long sequence into shorter, fixed-size
chunks; (2) predict the secondary structures of the
chunks individually by distributing them to different pro-
cessors on a Condor grid; and (3) assemble the prediction
results to give the structure of the original sequence [10].
We used this approach on the genome sequences of the
virus family Nodaviridae, leading to the discovery of sec-
ondary structures essential for RNA replication of the
Nodamura virus [11]. However, the study also identified
the necessity of having a more effective segmentation
strategy for cutting the sequence so that the predicted
results of the chunks can be assembled to generate a rea-
sonably accurate structure for the original molecule.
Indeed, the selection of cutting points in the original
RNA sequence is a crucial component of the segmenting

step. In this paper, we propose to approach the problem
by identifying inversion excursions in the RNA sequence
and cutting around them. We consider two alternative
inversion-based segmentation strategies: the centered
and optimized chunking methods. Both methods identify
regions in the sequence with high concentrations of
inversions and avoid cutting into these regions. In the
centered method, the longest spanning inversion clusters
are centered in the chunks, while in the optimized
method, the number of bases covered by inversions is
maximized. Preliminary results have been presented in
the authors’ work [12,13].

MapReduce and Hadoop

The prediction of RNA secondary structures for long RNA
sequences based on sequence segmentation can be per-
formed in parallel, thus benefiting from parallel computing
systems and paradigms. We use the well-known MapRe-
duce framework Hadoop for our parallel predictions. The
MapReduce paradigm is a parallel programming model
that facilitates the processing of large distributed datasets,
and it was originally proposed by Google to index and
annotate data on the Internet [14]. In this paradigm, the
programmer specifies two functions: map and reduce. The
map function takes as input a key k; and value v, pair, per-
forms the map function, and outputs a list of intermediate
key and value pairs which may be different from the input
list {ky, vo( - i.e., Map (ky, v1) = list (ko, v5). The runtime
system automatically groups all the values associated with
the same key and forms the input to the reduce function.
The reduce function takes as input a key and values pair
(ky, list(v,)), performs the reduce function, and outputs a
list of values - i.e., Reduce {k,, list(v,)) — list {v3). Note
that the input values to reduce is the list of all the values
associated with the same key.

MapReduce is appealing to scientific problems, includ-
ing the one addressed in this paper, because of the sim-
plicity of programming, the automatic load balancing and
failure recovery, as well as the scalability. It has been
widely adapted for many bioinformatics applications. For
example, Hong et al. designed an RNA-Seq analysis tool
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for the estimation of gene expression levels and genomic
variant calling [15], and Langmead et al. designed a next-
generation sequencing tool based on MapReduce Hadoop
[16]. To the best of our knowledge, our work is the first
one to adapt MapReduce into secondary structure predic-
tions of long

RNA sequences. Preliminary work on the reasoning
behind adapting RNA secondary structure predictions to
the MapReduce paradigm can be found at [17].

Method

Workflow for parallel chunk-based predictions

Rather than predicting the RNA sequence as a whole, we
cut each sequence into chunks and predict each chunk
independently before merging the predictions into the
whole secondary structure. As the cutting process can be
performed in different ways, the search for effective ways
to cut sequences can require a large search space and
generate a large number of independent prediction jobs
that can potentially be performed in parallel. The work-
flow for a parallel chunk-based RNA secondary structure
prediction and accuracy assessment consists of the fol-
lowing four steps: (1) chunking: each RNA sequence is
cut into multiple chunks (or segments) according to
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various chunking algorithms and parameters; (2) predic-
tion: the secondary structure for each chunk is predicted
independently by using one or more prediction pro-
grams; (3) reconstruction: the whole secondary structure
of a sequence is reconstructed from predicted structures,
one for each chunk; and (4) analysis: reconstructed struc-
tures are compared against known structures to assess
prediction accuracies.

Figure 3.a shows the prediction workflow. Note that the
chunks do not necessarily have the same length: the
lengths depend on the chunking method and parameters
used. Also note that the chunk’s prediction time and
memory usage can vary based on the number of nucleo-
tides in the chunk and the prediction program used. In
most prediction programs the time and memory used do
not grow linearly but exponentially with the number of
nucleotides, with the exponential factor depending on
the program complexity and its capability to capture
complex RNA secondary structures such as pseudoknots.

Chunking process based on inversions

Given a long RNA sequence, we identify regions with
high concentrations of inversions by using an adapted
version of the “Palindrome” program in the EMBOSS
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Figure 3 Workflow of chunk-based RNA predictions. Workflow of the chunk-based RNA secondary structure prediction framework (a) and
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package [18], which is a free open source software analy-
sis package. Two main reasons for adapting the EMBOSS
Palindrome program are as follows: the original program
works correctly on DNA but not RNA sequences and
does not support G-U pairing that we plan to include in
our adaptation. Our adapted program, InversFinder, is
written in Java and is available for download at http://
rnavlab.utep.edu. InversFinder requires a text file con-
taining the RNA sequence in FASTA format as input.
The minimum stem length L and maximum gap size G
of the inversion are parameters specified by the user.

The chunking step relies on a general excursion
approach first formulated in [19], which has already been
applied to a variety of sequence analysis problems but
not to RNA secondary structure predictions. In many
bioinformatics applications, the problem calls for identi-
fying high concentration regions of a certain property in
the nucleotide bases of biomolecular sequences. For
example, replication origins in viral genomes have been
predicted by looking for regions that are unusually rich
in the nucleotides A and T in DNA sequences [20]. In
this paper, we follow the same approach for RNA
sequences, but our focus is whether or not the nucleotide
base is found inside an inversion. We refer to the excur-
sions generated by this property as “inversion excur-
sions.” The excursion method requires assigning a
positive score to each nucleotide if it is a part of an inver-
sion (including the two stems and the gap between
them), and a negative score if it does not. We go through
the entire nucleotide sequence accumulating the scores
to form inversion excursions.

To facilitate the analysis, we use a parsing program to
convert an RNA sequence into a binary sequence with
the same length. If a nucleotide base is included in an
inversion identified by the InversFinder program, it is
given a value of “1"; if not, it is assigned a value of “0,” as
illustrated in Figure 4. Each “1” in the binary sequence is
given a score of 1, and each “0” a negative score of s
which is determined as follows: we consider the binary
sequence as a realization of a sequence of independent
and identically distributed (i.i.d.) random variables, X,
X5,..., X,,, where n is the length of the RNA sequence (i.e.,
number of bases). These random variables take values of
either lors. Letp =Pr(X;=1)and g =1 - p = Pr(X; = s).
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The parameter p is naturally estimated by the percentage
of bases contained in one or more inversions in the RNA
sequence, i.e., the percentage of “1"s in the binary
sequence. We require that the expected score per base
u=p + q *s to be negative. This requirement prevents
the tendency of favoring long segments to be high scor-
ing segments. As done in [20] and other applications, the
value of s can be conveniently selected by giving ya value
of -0.5 and then determining the value of s according to
Equation 1.

oy

The excursion score E; at Position i of the sequence is
defined recursively as in Equations 2 and 3.

Ey=0 (2)

Ei = max(Ei—1 +X;,0) for1 <i<n (3)

An excursion starts at a point i where E; is zero, con-
tinues with a number of rising and falling stretches of
positive values, and ends at j > i where j is the next posi-
tion with E; = 0. The score then stays at zero until it
becomes positive again when the next excursion begins.
Plotting the excursion scores along the nucleotide posi-
tions of the RNA sequence offers an effective visualization
of how inversion concentrations vary along the sequence.
This plot can serve as a guide for choosing the cutting
points for the segmentation process. Figure 5 shows an
example of an excursion plot. Note that rising stretches in
the plot indicate the presence of inversions.

After generating the excursion plot, we identify the posi-
tions, called peaks, where the excursion scores are local
maxima. Then, the bottom of each peak, which is the last
position with a zero excursion score right before the peak,
is located. After that, the length of the peak (the location
difference between a peak and its peak bottom) is calcu-
lated. Note that since we require chunk lengths to be smal-
ler than a prescribed maximum ¢, peak lengths greater
than ¢ have to be flagged and analyzed separately. Figure 5
also shows examples of peaks, peak bottoms, and peak
lengths. Peaks are sorted in decreasing order based on
their excursion scores. The sorted peaks are then used to

GCGAUUGCCGUCAGGCAAUACU. .
cpoo1111111111111111000 . .

Figure 4 Binary sequence around an inversion. The binary sequence around an inversion. If a nucleotide base is included in an inversion
identified by the InversFinder program, it is given a value of “1"; if not, it is assigned a value of “0".
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Figure 5 Peaks, peak bottoms, and peak lengths. An excursion plot with peaks, peak bottoms, and peak lengths. Rising stretches in the plot

indicate the presence of inversions.

cut sequences in chunks by the centered and optimized
chunking methods.

Centered chunking method

The centered method cuts the sequence by identifying
inversions and building the chunks around them. The
objective is to segment the RNA sequence in such a way
as to avoid losing structural information as much as pos-
sible by centering the longest spanning inversion clusters
in the chunks. After peaks are identified, they are sorted
in decreasing order of their excursion values. The peak
with the highest excursion value is considered first, then
the second highest peak is considered, and so on. The
algorithm stops either when all the peaks are exhausted
or when all the inversion regions of the sequence (i.e., all
“1"s in the binary sequence) have been included in the
chunks, whichever occurs first. Overlapping chunks are
adjusted so that any nucleotide base is captured by only
one chunk, with priority given to the peak with a higher
excursion score.

For each of the selected peaks, the positions of the inver-
sions or peak length positions are centered within the
maximum chunk-length of ¢ bases where ¢ is defined by
the user. We start at the bottom of this peak and follow
the excursion until it returns to 0 the very next time and
locate the position of the very last peak before the excur-
sion returns to 0. We take the sequence segment between
the peak bottom and the position of the very last peak and
place the sequence segment in the center of the chunk as
illustrated in Figure 6. Suppose this centered segment

contains x nucleotide bases. If (¢ - x) is even, then the
resulting chunk will have (¢ - x)/2 bases on each side of
the centered segment. If (c - x) is odd, then we will adjust
the lengths on each side to the integers below and above
(¢ - x)/2, allowing one side (chosen at random) to have
one more nucleotide base than the other.

As an example, we applied the aforementioned method
to an RNA sequence, that is, the 379-base RNA sequence
RF00209_A in the RFAM database [21]. As shown in
Figure 7, the sequence is segmented into six chunks using
the centered chunking method. These six segments
cover the entire sequence. Labels 1 through 6 in Figure 7
represent the six segments with decreasing order of peak
excursion scores. After the peak scores are sorted, the
peak with the highest excursion score is considered first.
In this example, we use the maximum chunk-length ¢ =
100. The highest peak is found at Position 297 with peak
bottom at 257. As there are other inversions after the
highest scoring peak, we follow the entire excursion to the
end at Position 356. After locating the last peak in this
excursion at 343, we center the sequence segment from
257 to 343 to produce the chunk covering the 100 posi-
tions from 250 to 349, then the second highest scoring
peak at Position 54 is considered and the above procedure
is repeated. This time, the peak bottom is at Position 19
and the last peak before the end of this excursion is at
Position 70. Centering the segment consisting of Positions
19 - 70 in a chunk of 100 would require 24 positions on
each side, extending the chunk beyond the beginning of

Peak Bottom
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Figure 6 Centered chunking method. Centered chunking method where x = peak length. We take the sequence segment between the peak
bottom and the position of the very last peak in the excursion, and place the sequence segment in the center of the chunk.
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Figure 7 Example of chunking with centered method. Six chunks are obtained using the centered method for the 379-base RNA sequence
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the sequence; we therefore adjust the chunk to start at
Position 1 instead. Note that during the segmentation pro-
cess, we might get a chunk that overlaps with previously
established chunks. In those cases, we have to reconcile
the situation by reducing one of the chunk lengths. For
example, after establishing the first two chunks (labels 1
and 2 in Figure 7), the next highest peak to be processed
is at Position 114, with peak bottom at Position 89. Cen-
tering this peak produces a chunk from Positions 52 to
151, overlapping with Chunk 2. We resolve such conflicts
by giving priority to the chunk with the higher number of
bases within completely contained inversions. With this
rule, we give priority to Chunk 2, and reduce Chunk 3 to
Positions 101 - 151. The process continues for the remain-
ing Chunks 4 - 6.

Optimized chunking method

In the optimized method, cutting points are decided by
choosing a segment containing the peak in an optimal
position that yields the highest inversion scores for the seg-
ment. The score is defined as the total number of nucleo-
tide bases contained in the inversions that are entirely
within the chunk. For example, consider a peak with peak
length spanning the nucleotide bases between i and j and
then all the chunks of size ¢ covering this peak, that is, all
segments with length ¢ between Positions j - (¢ - 1) and i +
(c - 1) are considered (see Figure 8). The chunk with the
maximum inversion score is then selected. Beginning with
the highest peak, the above process is repeated until either
all the peaks are utilized or all the inversions of the
sequence are contained in established chunks, whichever
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Figure 8 Optimized chunking method. Chunks by optimized method with peak spanning Positions i-j. All segments with length ¢ between
Positions j - (c - 1) and i + (c - 1) are considered. The chunk with the highest inversion score is selected.

\

occurs first. When chunks overlap, the cutting points are
adjusted in a similar way as described for the centered
method. The optimized method ensures that peak length
positions are included within a chunk but not necessarily
in the center of the chunk.

As an example, we applied the optimized method to the
same RF00209_A RNA sequence file from the RFAM
database, as shown in Figure 9. The optimized method
produced only 5 chunks covering all except the first 18
positions of the sequence. It can be seen from Figure 9
that this method avoids cutting into those sequence seg-
ments with rising excursion scores preceding the peaks.
Also, the chunks produced by the optimized method
cover only 96.3% of the sequence, leaving out those parts
of the sequence where no inversions are found; therefore,
the wasting of computing resources is minimal in the opti-
mized method.

Regular chunking method

The regular chunking method is the simplest method of
segmentation and is used as a reference method in this
paper. This method cuts the nucleotide sequence regularly
into chunks of a specified maximum chunk-length ¢ until
the sequence is exhausted.

For example, with ¢ = 100, the sequence RF00209_A
from the RFAM database with 379 bases will be cut into
four chunks made up of nucleotide Positions 1 - 100, 101
- 200, 201 - 300, and 301 - 379 (Figure 10). Obviously, ris-
ing stretches in an excursion plot, which indicate the pre-
sence of inversions and are likely to be part of secondary
structures, can often be cut by this method. As a result, it
is relatively easy to lose important structural information.
Intuitively, one expects that both the centered and

optimized methods, which take the inversion locations
into account when placing the chunks, perform better in
retaining the secondary structure information in the
sequences.

Prediction based on well-known algorithms

After the RNA sequence is cut into chunks, the structure of
each chunk is predicted independently using well-known
algorithms and their programs. We use the same prediction
algorithms to predict the entire sequence without chunk-
ing. We employ seven commonly used prediction programs
to test the chunking methods. The programs that predict
structures only for non-pseudoknotted sequences are
UNAFOLD (2008) and RNAfold (1994). The programs
that predict both pseudoknotted and non-pseudoknotted
sequences are [Pknot (2011), pknotsRG (2007), HotKnots
(2005), NUPACK (2004), and PKNOTS(1998). These pre-
diction programs, which typically involve some form of
minimization of free energy, maximization of expected
accuracy, or dynamic programming models in their algo-
rithms, are all publicly available.

Reconstruction based on concatenation

The results of the chunk predictions are assembled to
build a whole secondary structure. Currently, our frame-
work simply concatenates all these predicted secondary
structures to give the secondary structure for the whole
sequence. This is possible because the cutting does not
allow any overlap between two consecutive chunks.
More sophisticated reconstruction methods that include
partial chunk overlaps can be used with minor changes
to our framework.
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Figure 9 Example of chunking from optimized method. Five chunks are obtained using the optimized method for the 379-base RNA
sequence RF00209_A in the RFAM database. The chunks covering all except the first 18 positions of the sequence.

T T
00 30

Accuracy analysis based on comparisons with known
structures

Both the whole and the assembled predicted structures
are compared to the known structure to obtain their
respective prediction accuracies so that we can assess to
what degree the chunking method can preserve the pre-
diction accuracy of the program when applied without
any segmentation. Figure 11 shows the RF00209_A
nucleotide sequence along with the bracket view of
its experimentally known secondary structure. In the
bracket view representation, bases that are hydrogen
bonded with other bases are represented by a “(” or a “)”,
and a matching pair of “(” and “)” indicates that the bases
at those positions are paired to be part of a secondary

structure. Unpaired nucleotide bases are represented by
a “” (colon).

Various statistical tests are applied to the accuracy ana-
lysis for the different chunking methods including t-tests,
Pearson correlation analysis, and the non-parametric
Friedman tests. We use the statistical functions provided
by MATLAB [22]. Metrics of interests include: (1) accu-
racy chunking (AC), which is the accuracy of the predicted
structure assembled from the chunks when compared with
the known secondary structure; (2) accuracy whole (AW),
which is the accuracy of the predicted structure obtained
from the whole sequence when compared with the known
secondary structure; and (3) accuracy retention (AR),
which is the ratio between AC and AW. While AC and
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Figure 10 Example of chunking from regular method. With ¢ = 100, the sequence RF00209_A is cut into four chunks positioned at 1 - 100,
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AW reflect accuracies of the particular prediction in use
with and without chunking, AR tells us how well a parti-
cular chunking method retains the accuracy of the original
prediction program.

AC and AW are given by the percentage agreement of
the predicted structure with the known real structure
calculated as:

[a+2x%D]
100 *

(4)

where a and b represent respectively the number of
unpaired bases and the number of base pairs in common
between the two structures, and # is the length of the
RNA sequence. Large AC and AW values (close to 100%)
for a predicted structure mean that it is highly similar to
the real structure.

The accuracy retention (AR) is defined as:

AR = AC (5)
AW

AR provides a comparison of the prediction accuracies
with chunking versus without chunking. Intuitively, we
expect that a good chunking method would cause only a
minimal loss of prediction accuracy after cutting the
sequence and would have AR values somewhat less than
but close to 1. However, we will see in the result section
that in many cases the AR values turn out to be greater
than 1, meaning that secondary structure predicted using
chunking is more similar to the real structure than it is the
secondary structure predicted by using the whole sequence.
Several standard statistical tests, including t-tests, Pearson
correlation analysis, and the non-parametric Friedman
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» RF00209 A.bpseq

UACGAGGUUAGUUCAUUCUCGUAUACACGAUUGGACAAAUCAAAAUUAUAAU
UUGGUUCAGGGCCUCCCUCCAGCGACGGCCGAACUGGGCUAGCCAUGCCCAUA
GUAGGACUAGCAAAACGGAGGGACUAGCCAUAGUGGCGAGCUCCCUGGGUGG
UCUAAGUCCUGAGUACAGGACAGUCGUCAGUAGUUCGACGUGAGCAGAAGCCC
ACCUCGAGAUGCUACGUGGACGAGGGCAUGCCCAAGACACACCUUAACCCUAG
CGGGGGUCGCUAGGGUGAAAUCACGCCACGUGAUGGGAGUACGACCUGAUAG
GGCGCCGCAGAGGCCCACUAUUAGGCUAGUAUAAAAAUCUCUGCUGUACAUGG
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CACAUGGAGUU

"

represented by a " (colon).

Figure 11 RF00209_A sequence and secondary structure. RF00209_A sequence and its experimental secondary structure from RFAM
database. In the bracket view representation, bases that are hydrogen bonded with other bases are represented by a “(" or a “)” and a matching
pair of “(" and “)" indicates that the bases at those positions are paired to be part of a secondary structure. Unpaired nucleotide bases are

tests [23], are applied to analyze the AR values for the dif-
ferent chunking methods.

Adapting multiple searching paths to MapReduce

Given an RNA sequence, the search for the best set of
chunking parameters (i.e., maximum chunk length c,
chunking method, minimum stem length L, and maximum
gap length G) requires us to traverse or search a multi-
level tree (i.e. the chunking tree in Figure 3.b). In the
chunking tree, each path from the root (RNA sequence) to
the leaves (RNA chunks) represents a set of parameter
values of the chunking method (i.e., ¢, L, and G). The over-
all workflow (including the chunking, prediction, recon-
struction, and analysis steps) naturally adapts to fit into
the MapReduce (MR) paradigm and can be easily imple-
mented with Hadoop for which the chunking and predic-
tions can be solved by multiple mappers while the
reconstruction and the analysis are done by a single redu-
cer. In our framework, each MR job is designed to partially
traverse the multi-level tree. Multiple MR jobs can be exe-
cuted in parallel to explore the whole tree. The multiple
searching paths combine attributes of both breadth-first
search (performed by multiple MR jobs in parallel) and
depth-first search (performed by a single MR job). While
traversing the tree with multiple MR jobs, we can explore
the impact of different chunking methods as well as differ-
ent ¢, L and G values for a given sequence. An example of
an MR job is shown in the circled part of Figure 3.b, for

which we assume the centered chunking method, with
fixed ¢ = 60 bases, and we vary L and G between 3 and 8
and between 0 and 8 respectively. As previously outlined,
for a sequence and a combination of parameters, the map-
pers perform the chunking and predictions. The input to
each mapper is a (k;, v1) value pair, in which k; is the ID
of the sequence, and v, is the chunking parameters’ values
(including the chunking method). Each mapper cuts the
sequence according to the chunking parameters values in
the chunking step by identifying a variable number of
chunks meeting the parameter requirements. Note that
each combination of parameters (each branch of the tree)
can result in a variable number of chunks. Each mapper
performs the prediction on one or more chunks using a
certain prediction program. Here we use five secondary
structure prediction programs capable of predicting pseu-
doknots (IPknot [24], pknotsRG [25], HotKnots [3],
NUPACK [26], and PKNOTS [8]) and two programs that
do not include this capability (i.e., UNAFOLD [27] and
RNAfold [28]). Other programs can be easily used in our
framework as a plug-and-play software module. After the
prediction, each mapper outputs the list of (ky, v,) pairs as
the intermediate output to reduce. The k; is the ID of the
whole secondary structure to which the predicted chunk
belongs and v, is the predicted secondary structure of the
chunk. After the Hadoop runtime system groups all the
values associated with the same key and passes the (k,, list
(v,)) to the reducer, the reducer reconstructs the whole
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secondary structure of the sequence using all the v, (pre-
dicted chunk structures) associated with the same k. If
required, the reducer analyzes the results in terms of their
accuracy. After the accuracy has been computed, the redu-
cer outputs the final results as a list(v3), in which v; is the
AR for reconstructed structures.

Granularity of mappers

In general, a mapper is the process that runs on a proces-
sor which applies the map function to a specific key and
value pair. In our framework, each mapper runs the
chunking process on an RNA sequence with a given set
of parameter values and then predicts one or multiple
chunks. The granularity of the mapping can vary based on
the number of chunks each mapper is assigned to predict.
Our MR framework includes both a coarse-grained map-
ping and a fine-grained mapping as shown in Figure 12, in
which each box represents a mapper. With the coarse-
grained mapping, each mapper explores one branch of the
chunking tree: it cuts the sequence into a set of segments
based on a combination of L and G values and predicts all
the segments it generates locally in order. With the fine-
grained mapping, multiple mappers explore one branch of
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the chunking tree: each mapper cuts the same sequence
into the same set of segments, but this time it predicts
only one chunk that it generates. This means that if, for
example, the sequence is cut into five segments, then
there will be five mappers exploring the same branch of
the chunking tree, replicating the chunking process but
predicting only one distinguished segment of the five
chunks available. The mappers determine which segment
to predict based on a hash function; thus the mappers do
not need to synchronize their work or directly agree on
what chunk to predict. The hash function uses the ASCII
value of the chunk identifier as the key and the identifier
of each mapper as the value. The function selects the
segments to mappers in a round robin fashion.

Results and discussion

Datasets and hardware platform

For the study of both accuracy and performance, we plug
seven RNA secondary structure prediction programs into
our framework for both the chunk-based predictions and
the predictions of the same sequences without chunking
(the whole sequence is taken). Five of the programs,

RNA sequence

chunking
method

maximum chunk
length

L parameter

sequence

prediction ]

[ prediction ]

mapping
P01
P02 P12 o
P03
fine-grained
mapping
P I (&0} Co Cc8
P01 P02 - | P80

prediction ]

coarse-grained

Figure 12 Example of coarse-grained and fine-grained mapping. Each mapper explores one branch of the tree and generates the set of
segments as the output of the chunking program. The mapper predicts one or more segments generated based on the number of segments each
mapper is assigned. Coarse-grained mappers explore one whole branch of the tree at the time. Fine-grained mappers predict one chunk at a time.




Zhang et al. BMIC Structural Biology 2013, 13(Suppl 1):S3
http://www.biomedcentral.com/1472-6807/13/51/S3

IPknot [24], pknotsRG [25], HotKnots [3], NUPACK
[26], PKNOTS [8] can predict both stem-loops and pseu-
doknots. The remaining two programs, UNAFOLD [27]
and RNAfold [28], can predict stem-loops only. We con-
sider both the centered (C) and optimized (O) chunking
methods and compare them against the naive regular
method (R) as a reference. We also consider a wide range
of parameter settings with maximum chunk length ¢
from 60 to 150 bases, minimum stem length L from 3 to
8, and maximum gap length G from O to 8.

To study the framework accuracy, we use two datasets
of sequences which have previously established secondary
structures. The first dataset, compiled from the RFAM
database, consists of 50 non-pseudoknotted sequences
and the lengths of sequences range from 127 to 568
bases. The second dataset, compiled from the RFAM and
Pseudobase++ [21,29] databases, consists of 23 pseudo-
knotted sequences, and the lengths of the sequences in
this dataset range from 77 to 451 bases. Note that there
are no large datasets of experimentally determined RNA
secondary structures including pseudoknots, and to the
best of our knowledge the one used in this paper is one
of the few available to the public for free.

To study the framework performance, we use a smaller
dataset of longer sequences (i.e., 14 RNA sequences from
the virus family Nodaviridae) for which the secondary
structures are not known. We assume pseudo-knots may
be present and use the above-mentioned five prediction
programs that are capable of capturing pseudoknots and
we report only performance values but not accuracy.
Because these RNA sequences are long (each has about
1300 to 3200 bases) and contain possible pseudoknots,
none of the available programs can predict the secondary
structures for the entire sequences. The use of the
MapReduce framework is vital for the exhaustive, effi-
cient exploration of the tree branches.

We ran the MapReduce framework on a cluster com-
posed of 8 dual quad-core compute nodes (64 cores), each
with two Intel Xeon 2.50 GHz quad-core processors. A
front-end node is connected to the compute nodes and is
used for compilation and job submissions. A high-speed
DDR Infiniband interconnect for application and I/O traf-
fic and a Gigabit Ethernet interconnect for management
traffic connects the compute and front-end nodes. Our
implementation is based on Hadoop 0.20.2.

Accuracy

There are three main questions that we want to answer in
regard to the effects of our chunk-based approaches on
the accuracy of various established secondary structure
prediction programs. First, we want to evaluate to what
extent chunk-based predictions retain the prediction accu-
racy. Second, we want to identify whether the capability of
a chunking method to retain the prediction accuracy
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might decline with increasing sequence lengths. Third, we
want to assess the extent to which the inversion based
chunking methods (C and O) outperform the naive
chunking method (R), and whether there is any difference
in accuracy between the C and O chunking methods.

To assess how well the predictions based on chunking
agree with known RNA structures, we measure the maxi-
mum AC (MAC) values of the sequences in the two data-
sets. Figures 13 and 14 present the box-and-whisker
diagram for the two datasets and the three chunking
methods - i.e., Figures 13.a,b, and 13.c show the box-and-
whisker diagram for the regular, centered, and optimized
methods respectively for the dataset of 50 non-pseudo-
knotted sequences. Figures 14.a,b, and 14.c show the
box-and-whisker diagram for the regular, centered, and
optimized methods respectively for the dataset of 23
pseudoknotted sequences. In the figures, the lower and
upper quartiles are at the top and bottom boundaries of
the box for the kernels; the median is the band inside the
box; the mean is the black square; the whiskers extend to
the most extreme data points or outliers; and outliers are
plotted individually as “+” symbols.

As described in the Method section, the AC value for a
predicted RNA structure is the percentage of agreement
between the known structure and the structure obtained
by concatenating the predicted structures of the chunks.
Likewise, the AW value is the percentage of agreement
between the known structure and the predicted structure
when the whole sequence is used. These values indicate
how closely the predicted structure resembles the real
structure. A larger AC value means that the chunk-based
predicted structure is more similar to the real structure.
For a given dataset, prediction program, and chunking
method, our MR framework collects multiple predicted
structures associated with different ¢, L, and G para-
meters. The MAC value for a sequence is the maximum
AC value, which gives the highest accuracy that can
be attained for that sequence by the chunking method
and the specific prediction program employed. In
Figures 13.d and 14.d, the AW of the sequences in the
two datasets are presented respectively. From these fig-
ures, it appears that most of the prediction methods have
similar accuracy ranges regardless of the chunking
method used and whether the prediction was obtained
with the whole sequence or with the chunks; however,
the PKNOTS program produces somewhat lower accura-
cies. This lower accuracy is quite expected because
PKNOTS is actually the earliest algorithm allowing for
pseudoknot prediction. The other prediction programs
with pseudoknot prediction capability that have devel-
oped afterwards have incorporated improvements over
the original PKNOTS.

From Figures 13 and 14, the prediction accuracies with
chunking (MAC values in (a) - (c)) appear to be higher
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Figure 13 MAC and MAW for chunking methods (R,C,0) for 50 sequences. MAC and MAW values obtained using the prediction programs
IPknot, pknotsRG, HotKnots, NUPACK, PKNOTS, RNAfold, and UNAFOLD for the dataset of 50 non-pseudoknotted sequences.

)

(d)

than those without (AW values in (d)), suggesting that
the prediction accuracy, on average, can be enhanced by
sequence segmentation. To get a clearer characterization
of the effect of sequence segmentation, we carry out sta-
tistical tests on the maximum accuracy retention (MAR)
obtained for each RNA sequence over the ¢, L, and G
parameters. In the majority of the sequences in our data-
set, the MAR turns out to be greater than 1. With a one-
sample t-test, we test whether the mean MAR is signifi-
cantly greater than 1 with p-value > 0.05. Tables 1 and 2
display the means, standard deviations, and p-values for
the non-pseudoknotted and pseudoknotted sequences
respectively.

For non-pseudoknotted sequences, the mean MAR is
significantly greater than 1 for all three chunking methods,
whereas the mean MAR values for the pseudoknotted
sequences are greater than 1 for the C and O chunking
methods. With the R chunking method, one of the mean
MAR values (with NUPACK) falls below 1 to 0.93. Look-
ing at all the p-values, one can conclude that the average
prediction accuracy attained with segmentation is not

significantly less than that without. With the inversion
based C and O chunking methods, we can conclude that
the average prediction accuracies attained with segmenta-
tion are at least as good as, and often even better than,
those without segmentation.

While the above results show that sequence segmenta-
tion will not reduce prediction accuracy on average, we
still need to examine whether the MAR values would
decline as the whole sequence length grows, because a
declining trend would imply that the accuracy retention
will deteriorate when the segmentation approaches are
applied to longer RNA sequences. To this end, for each
dataset, chunking method, and prediction program, we
perform the Pearson correlation analysis on the MAR
values of the sequences [30]. For each dataset, we report
both the correlation coefficient r and corresponding
p-value between MAR and sequence length. If the r value
is close to -1, it means that MAR and sequence lengths
are negatively correlated, implying a decline in accuracy
retention of the chunking method. If the associated
p-value is less than 0.05, we consider the correlation
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Table 1 MAR statistics for 50 non-pseudoknotted sequences.

Page 15 of 24

Cut Regular Centered Optimized

Prediction Mean Stdev P Mean Stdev p Mean Stdev P

IPknot 113 032 0.002 123 0.36 0.000 1.21 0.36 0.000
pknotsRG 1.19 050 0.005 1.27 049 0.000 1.27 047 0.000
HotKnots 1.19 048 0.003 132 050 0.000 133 050 0.000
NUPACK 1.12 0.34 0.010 123 041 0.000 1.24 041 0.000
PKNOTS 1.33 0.19 0.000 1.65 0.35 0.000 1.70 0.35 0.000
UNAFold 1.19 049 0.003 1.31 047 0.000 1.31 046 0.000
RNAfold 1.19 0.46 0.002 1.31 048 0.000 1.30 045 0.000

Mean and standard deviations of MAR for regular, centered, and optimized chunking methods over 50 non-pseudoknotted sequences, and the corresponding

p-values of the t-test for mean MAR >1.

statistically significant; otherwise the correlation is not
significant.

Figure 15 is a scatter plot of MAR values versus
sequence lengths for one of the prediction programs,
IPknot. Similar scatter plots for the other prediction
programs have also been examined and no statistically
significant negative correlation has been detected in any
of these plots. Table 3 presents the correlation coeffi-
cients r and their corresponding p-values when the null
hypothesis of no correlation is tested against the alterna-
tive hypothesis of having a negative correlation. These
p-values indicate that no significant negative correlation
has been detected for any of the prediction programs
and chunking methods. We therefore do not expect any
substantial decline in accuracy retention of our chunk-
ing methods while sequence length increases.

Given the three chunking methods considered (i.e., reg-
ular, centered, and optimized) we also want to determine
which among them is better at retaining the accuracies of
the various prediction programs. For this purpose, we
examine each sequence in our two datasets and keep
track of which chunking method produces the highest
MAR. Table 4 gives the total counts of sequences attain-
ing the highest MAR for each of the chunking methods.
If more than one chunking method gets the same highest
MAR for one sequence, we split the count of this
sequence equally among the methods. We can see that
the sequence counts in Table 4 for the centered and

Table 2 MAR statistics for 23 pseudoknotted sequences

optimized (C and O) methods are higher than those for
the regular method (R).

To see if there are any differences among the accuracy
retention capabilities among the three cutting methods, we
perform the Friedman test for each dataset and each pre-
diction program. The Friedman test is a non-parametric
statistical test based on rank sums [23] and requires rank-
ing the MAR attained by each chunking method for each
prediction program and each sequence in our data sets.
The method producing the lowest MAR is given a rank of
1 and the method producing the highest MAR is given a
rank of 3. Again, the ranks are averaged for ties. Table 5
shows the p-values of the Friedman tests in the “R-C-O”
columns. From these very low p-values, we can conclude
that there are significant differences among the three
methods.

Because the Friedman test does not reveal whether any
one method is significantly better than another, we also
perform the post-hoc pairwise comparison test on each
pair of the three chunking methods in order to confirm
that the inversion based centered and optimized chunking
methods are indeed superior to the naive regular method.
The p-values, shown in the “R-C,” “R-O,” and “C-O” col-
umns, indicate that both the centered and optimized
methods are better than the regular method. Furthermore,
there are no significant differences between the centered
and optimized chunking methods except when PKNOTS
is applied to the pseudoknotted sequences.

Cut Regular Centered Optimized

Prediction Mean Stdev P Mean Stdev p Mean Stdev P
IPknot 1.19 048 0.037 133 062 0.009 140 0.64 0.004
pknotsRG 1.21 0.84 0.116 139 0.99 0.036 148 1.00 0016
HotKnots 1.11 041 0.098 132 0.71 0.021 143 0.80 0.009
NUPACK 093 0.18 0.955 1.14 0.39 0.071 117 035 0.032
PKNOTS 1.16 0.20 0.003 1.29 0.26 0.000 1.38 0.29 0.000

Mean and standard deviations of MAR for regular, centered, and optimized chunking methods over 23 pseudoknotted sequences, and the corresponding

p-values of the t-test for mean MAR >1.
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Figure 15 MAR values for IPknot on non-pseudoknotted sequences. Scatter plot of MAR values versus sequence lengths for the IPknot
program. Similar scatter plots for the other prediction programs have been examined and no statistically significant negative correlation has
been detected in any of these plots.

The results above demonstrate that, for a variety of sec-
ondary structure prediction programs, our segmentation
approach for handling the long RNA sequences can
retain and even enhance the average prediction accuracy.
Furthermore, using the inversion based C and O methods
to cut the sequence will produce better prediction accu-
racy than the naive R method. More questions remain to
be answered and are part of our current research.

Our current investigations focus on the following two
questions. First, we want to study how we should choose
the parameters ¢, L, and G to maximize the accuracy
retention. We have been conducting studies to identify
how the prediction accuracy correlates with these para-
meters. Some of the results have been reported in preli-
minary work of the group [12,13]. So far we have not
found any definitive criteria that work for all sequences in
general. Rather, the nucleotide base composition and
length of the individual sequence, as well as the sequence

length limitations imposed by the particular prediction
program, need to be taken into account. Second, the fact
that segmentation can in many cases improve the predic-
tion accuracy for an RNA sequence is somewhat counter-
intuitive. One possible explanation is that secondary struc-
ture prediction algorithms are generally based on global
minimal free energy, resulting in the most thermodynami-
cally stable isoforms. However, these structures may not
be most favorable for biological functions, which often
require RNAs to interact with other molecules or unfold
during replication. Our results suggest that local structures
formed by pairings of bases in close proximity, rather than
the global energies, may better correlate with the real
structures of large RNA molecules. This hypothesis is
being tested in coauthor Johnson’s molecular virology lab
using the virus family Nodaviridae.

The above idea also prompted us to initiate a study on
the correlation between accuracy and the free energy of
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Table 3 MAR correlation coefficients (r) and p-values (p)

Non-pseudoknotted Pseudoknotted
sequences sequences

Prediction R C (o} R C (o}
IPknot r -02077 -02141 -01629 01379 01572 0.0841

p 01478 01354 02582 05303 04738 0.7028
pknotsRG ~ r -0.1550 -00670 -0.0756 02030 0.1971 0.1987

p 02825 06437 06018 03528 03673 03634
HotKnots  r -0.1434 -00476 -0.0732 -00360 -0.0669 -0.0855

p 03204 07428 06136 08705 07618 0.6982
NUPACK r -01622 -00137 -00059 -0.0532 0.0666 -0.1331

p 02604 09249 09676 08340 0.7928 0.5986
PKNOTS r 04598 07053 07045 -0.0233 0.1001 0.0597

p 00008 00000 00000 09294 07023 08199
UNAFold r -0.1449 -0.1055 -0.1311

p 03155 04658 03643
RNAfold r -0.1056 -0.0646 -0.0538

p 04654 06559 07104

Correlation coefficients (r) between MAR and sequence lengths and
corresponding p-values (p) when testing for a negative correlation.

our chunk-based predicted structures. Since there are no
straightforward mechanisms within the current predic-
tion programs to compute the free energy of a given
structure other than those outputted by the program,
we try to obtain the overall free energy of our chunk-
based predictions by simply summing the free energies
associated with the chunks. Among several examples
that we have studied to date, most do not show any sta-
tistically significant relationship to support the idea that
global structures with lower free energies are more simi-
lar to the known structure. One example scatter plot of
the prediction accuracy versus free energy of different
predicted structures of the sequence RFO00_2A using
the centered and optimized chunking methods with dif-
ferent L and G parameters with maximum chunk length
of 100 is shown in Figure 16. The correlation coefficient
is found to be positive 0.11, which is against the expec-
tation of a negative correlation. We anticipate that this
line of investigation will require more coordinated
efforts with the developers of the various prediction

Table 4 Count and rank sum of sequences
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programs to establish appropriate ways of computing
the free energies of any given predicted-or experimen-
tally-determined structure.

Performance

For the performance analysis, we use a smaller dataset of
longer sequences from the virus family Nodaviridae
[31,32] and we explore a wider range of parameter values.
The virus family Nodaviridae is divided into two genera:
alphanodaviruses that primarily infect insects and beta-
nodaviruses that infect only fish. These viruses share a
common genome organization, namely a bipartite posi-
tive strand RNA genome (i.e., mRNA sense). The longer
genome segment RNAI (ranging in size from 3011 to
3204 nucleotide bases) encodes the RNA-dependent
RNA polymerase that catalyzes replication of both gen-
ome segments, while the shorter RNA 2 (ranging in size
from 1305 to 1433 nucleotide bases) encodes the precur-
sor of the viral capsid protein that encapsidates the RNA
genome. The 14 sequences we analyze in this paper are
identified as follows: Boolarra virus (BoV) RNA2 (1305
nucleotide bases), Pariacoto virus (PaV) RNA2 (1311),
Nodamura virus (NoV) RNA2 (1336), Black beetle virus
(BBV) RNA2 (1393), Flock House virus (FHV) RNA2
(1400), Striped jack nervous necrosis virus (SJNNV)
RNA2 (1421), Epinephelus tauvina nervous necrosis virus
(ETNNV) RNA2 (1433), BoV RNA1 (3096), PaV RNA1
(3011), BBV RNAL1 (3099), ETNNV RNA1 (3103), FHV
RNA1 (3107), SINNV RNA1 (3107), NoV RNA1 (3204).
These sequences are sorted based on their increasing
lengths, and this order is preserved in all the figures and
tables presented below. There are three important ques-
tions that we want to answer when measuring perfor-
mance. First, we want to quantify the time spent for
exploring the several branches of the search trees for
these 14 sequences using each of the two chunking meth-
ods (centered or optimized) and for the granularity of the
mapping (coarse-or fine-grained). Second, we want to
identify how the time is spent for each search in terms of
map, reduce, and data shuffling among processors. Third,
we want to measure the efficiency of the search and

Non-pseudoknotted sequences

Pseudoknotted sequences

Prediction R-co R-rs C-co C-rs O-co O-rs R-co R-rs C-co C-rs O-co O-rs
[Pknot 7.7 74.0 247 115.5 17.7 110.5 20 320 7.0 470 14.0 59.0
pknotsRG 6.3 715 223 115.5 213 1130 20 30.0 7.0 50.0 14.0 58.0
HotKnots 40 68.0 220 115.5 24.0 116.5 1.0 320 6.0 470 16.0 59.0
NUPACK 40 68.5 17.0 115.5 29.0 1200 13 245 73 40.5 93 430
PKNOTS 10 555 175 1145 315 1300 1.5 210 4.0 355 11.5 455
UNAFold 40 67.0 250 118.0 21.0 115.0

RNAfold 40 65.0 180 112.5 280 122.5

Count (co) and rank sum (rs) of sequences attaining the highest MAR with each chunking method for the various prediction programs.
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Table 5 P-values from the Friedman test
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Non-pseudoknotted sequences

Pseudoknotted sequences

Prediction R-C-O0 c-0 R-C R-O R-C-O Cc-0 R-C R-O
[Pknot 9.21E-06 5.27E-01 243E-05 4.02E-04 2.16E-05 4.55E-02 4.50E-03 3.74E-05
pknotsRG 1.82E-07 5.27E-01 1.86E-06 9.72E-06 3.65E-06 1.84E-02 1.08E-04 9.62E-05
HotKnots 8.80E-09 6.47E-01 4.20E-07 5.36E-07 247E-05 1.84E-02 1.30E-03 1.62E-04
NUPACK 5.16E-09 2.178-01 5.79E-08 141E-06 3.70E-04 5.64E-01 9.11E-04 1.30E-03
PKNOTS 1.22E-15 2.69E-02 3.56E-10 1.18E-11 6.78E-06 6.70E-03 5.32E-04 1.83E-04
UNAFold 5.25E-09 2.74E-01 6.91E-07 2.96E-07

RNAfold 1.18E-08 8.82E-01 1.29E-06 1.81E-07

P-values from the Friedman test to compare the accuracy retention of the three chunking methods as well as the posthoc pairwise comparison tests.

look for those aspects of the search that can impact
performance.

We measure the total time needed to explore the
chunking tree of each sequence using either the centered
or optimized methods and with either coarse-grained or
fine-grained mapping. The total time includes the time

needed for chunking and prediction (map time), recon-
struction (reduce time), exchange of predictions among
nodes (shuffling time), and any overhead due to load
imbalance and synchronizations. Note that the total time
does not include the time needed for analysis since the
secondary structures of the sequences considered here
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with maximum chunk length of 100. Correlation coefficient r = 0.11.

Energy value

Figure 16 Accuracy versus free energy for the RFAM sequence RF0002_A. Scatter plot of prediction accuracy versus free energy of different
predicted structures of the RFAM sequence RFO002_A using the centered and optimized chunking methods with different L and G parameters
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are not known experimentally; thus an analysis in terms
of accuracy is not feasible. We use IPknot for our predic-
tions since it is the most recently implemented program
and its accuracy values are very high in the previous
section.

Each of the four subfigures in Figure 17 shows the total
times in seconds for exploring the prediction trees (left
y-axes) and the number of map tasks (right y-axes) for the
14 sequences when a maximum chunk length of 60, 150,
and 300 bases is used. In each subfigure there are three
groups of times, one for each maximum chunk length.
Each group lists the 14 sequences sorted based on their
length in nucleotide bases. More specifically, Figure 17.a
presents the times and number of map tasks when the
coarse-grained MR implementation and the centered
method are used; Figure 17.b presents the times and num-
ber of map tasks when the coarse-grained MR implemen-
tation and the optimized method are used; Figure 17.c
presents the times and number of map tasks when the
fine-grained MR implementation and the centered method
are used; and Figure 17.d presents the times and number
of map tasks when the fine-grained MR implementation
and the optimized method are used. As already presented
above, when using coarse-grained mapping, each mapper
performs the chunking for the assigned sequence using a
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set of parameter values for the max length of stems (L)
and gap sizes (G). The mapper then predicts the secondary
structures of all its local chunks. This results in the
exploration of a whole branch of the tree by the mapper.
The total number of branches (and map tasks) is given by
the combinations of L and G values (i.e., 54). When using
fine-grained mapping, chunking of a sequence based on a
set of L and G values is performed across mappers and
mappers are assigned resulting chunks in a round-robin
fashion. Computationally this is performed by replicating
the chunking processes across mappers and by using a
hash function to assign different chunks to different map-
pers. The number of chunks equals the number of map
tasks and depends on the number of inversions identified
in the chunking process.

When comparing centered vs. optimized chunking
methods for the coarse-grained mapping, we observe
that the two methods result in similar execution times
(Figure 17.a and Figure 17.b). Table 6 quantifies the
similarity for both subgroups (i.e. RNA2 and RNA1)
which is within 3%. This observation is different from the
previous work in which the centered method resulted in
shorter execution times due to the fact that a different
implementation of the chunking methods and a different
program were used.

Figure 17 Total MapReduce times for different methods and mapping. Total time in seconds for coarse- vs. fine-grained mapping and
centered vs. optimized methods, i.e, (a) Coarse-grained mapping using centered method; (b) Coarse-grained mapping using optimized method;
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Table 6 Total times for RNA2 and RNA1 with coarse-
grained mapping
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Table 8 Average number of chunks for RNA2 and RNA1
with fine-grained mapping

Mean Total Time (sec) RNA2(~1300 bases) RNA1(~3100 bases)

Mean Total Time (sec) RNA2(~1300 bases) RNA1(~3100 bases)

60 150 300 60 150 300

60 150 300 60 150 300

Centered 687 990 1343 4107 6180 9717
Optimized 667 989 1316 4043 6189 9861
Opti/Cent. 097 100 098 098 100 101

Centered 395 258 155 939 622 383
Optimized 355 218 134 825 525 312
Opti/Cent. 090 084 086 088 084 081

Average total times for the seven sequences in RNA2 and in RNAT for
coarse-grained mapping using centered and optimized methods.

When comparing centered vs. optimized chunking
methods for the fine-grained mapping, the optimized
method results in a slightly lower execution time. As
shown in Table 7, the execution times of fine-grained
mapping when using the optimized chunking method for
both subgroups (RNA2 and RNA1) is 11% to 18% slower
than using the centered method. Table 8 shows the aver-
age number of chunks (i.e., map tasks) for both sub-
groups using centered and optimized methods. We can
see that the optimized method results in 10% to 19% less
chunks. The optimized method tends to cut sequences
into fewer chunks, which leads to fewer map tasks and
shorter MapReduce total times. This observation is dif-
ferent from the previous work in which the centered
method results in shorter execution times due to the
same reason we mentioned above [17].

When comparing coarse-grained mapping vs. fine-
grained mapping, we observe that coarse-grained mapping
results in shorter execution time compared to fine-grained
mapping, independent of the chunking method used. Also
we observe the trend that when the maximum chunk
length grows from 60 to 300, the time gain of coarse-
grained mapping over fine-grained mapping decreases.
The speedup of coarse-grained mapping over fine-grained
mapping using the centered chunking method for RNA2
subgroup of sequences decreases from 3.75 to 1.38, and
for RNAT1 it decreases from 7.86 to 2.37. A similar beha-
vior is observed for the optimized chunking method:
speedup of coarse-grained mapping over fine-grained
mapping for RNA2 subgroup of sequences decreases from
3.4 to 1.25, and for RNA1 it decreases from 6.82 to 1.93.

The same trend of the total times is summarized in
the box-and-whisker diagram of minimum, median,

Table 7 Total times for RNA2 and RNA1 with fine-grained
mapping
Mean Total Time (sec)

RNA2(~1300 bases) RNA1(~3100 bases)
60 150 300 60 150 300
2577 2323 1857 32287 28717 23039
Optimized 2266 1974 1646 27580 23660 1907.7
Opti/Cent. 088 085 089 085 082 083

Centered

Average total times for the seven sequences in RNA2 and in RNAT for fine-
grained mapping using centered and optimized methods.

Average number of chunks (i.e. number of map tasks) for the seven
sequences in RNA2 and in RNA1 for fine-grained mapping using centered and
optimized methods.

mean, and maximum execution time for each subgroup
of sequences (RNA2 and RNA1) in Figure 18. More spe-
cifically, in Figure 18.a, we show the box-and-whisker
diagram of the total times for the RNA2 subgroup of
sequences (~1300 nucleotides bases) using coarse-
grained mapping, both centered and optimized methods,
and maximum chunk lengths of 60,150, and 300. In
Figure 18.b, we show a similar box-and-whisker diagram
but for the RNA1 subgroup of sequences (~3100 bases).
In Figure 18.c, we show the box-and-whisker diagram of
the minimum, mean, and maximum execution time for
the RNA2 subgroup of sequences using fine-grained
mapping, centered and optimized methods, and max
chunk lengths of 60, 150, and 300. In Figure 18.d, we
show a similar box-and-whisker diagram but for the
RNA1 subgroup of sequences. We observe that for coarse-
grained mapping, when using the centered and optimized
methods, the average total times increase with the maxi-
mum chunk length at the rate of 2.0 for RNA2 and 2.4 for
RNA1. On the contrary for the fine-grained mapping,
when using centered and optimized methods, the average
total times decrease with the maximum chunk length at
the rate of 0.7 for both subgroup of sequences. This
suggests that potentially for larger maximum chunk length
and sequence lengths the fine-grained mapping can
outperform the coarse-grained mapping in terms of
performance.

When decoupling the total time in its components, we
observe that the time components for the reduce function
and shuffling are very marginal compared to the times
used for the mapping functions (around 1% of the total
time). We also observe that, as we explore a prediction
tree, some mappers are performing more work than
others, resulting in idle time and low efficiency. The load
imbalance among mappers depends on the granularity
and chunking methods used. To better understand the
causes of load imbalance we cut down the mapping times
into compute time (i.e., chunking and predictions) and
idle time (i.e., waiting for all the mappers to complete
their predictions). Figure 19 shows the percentage of com-
pute and idle times in map function for coarse-grained
mapping vs. fine-grained mapping as well as for centered
vs. optimized methods. More specifically, Figures 19.a and
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19.b show the percentages for compute and idle times for
the coarse-grained framework with the centered and opti-
mized methods respectively; Figures 19.c and 19.d show
the same percentages but for the fine-grained framework
and the two chunking methods.

Independent of the maximum chunk length, Figure 19
shows how fine-grained mapping reaches better effi-
ciency compared to coarse-grained mapping. In other
words, with fine-grained mapping, the mappers spend
more time doing real chunking and predictions. We
observe in Figure 17 (left y-axes) how fine-grained map-
ping has a larger number of map tasks and each map task
is shorter (it predicts only one chunk) making easier for
the Hadoop scheduler to allocate the several tasks effi-
ciently by using a first-in-first-out (FIFO) policy. On the
other hand, coarse-grained mapping has a smaller num-
ber of map tasks and each map task is longer (all the
sequence chunks of a given L and G combination are pre-
dicted by a single mapper). In this case, once the schedu-
ler assigns a longer task to a mapper, it has to wait for its
completion, even if the other mappers have generated
their chunk predictions, before proceeding to the reduce
phase. We also observe that as the maximum chunk

length increases from 60 to 300 bases, the map efficiency
tends to drop. More specifically, the average map effi-
ciency for coarse-grained mapping decreases from 36% to
25% on RNA2 and from 18% to 15% on RNA1 when
using centered or optimized chunking methods. The aver-
age map efficiency for fine-grained mapping decreases
from 91% to 79% on RNA2 and from 97% to 93% on
RNAL. This is due to the fact that the centered and opti-
mized chunking methods tend to produce more chunks
with shorter chunk lengths when using a maximum chunk
length of 60. On the other hand, when using a maximum
chunk 300, the same methods tend to produce fewer
chunks each with longer lengths.

Diverse chunk lengths within a prediction can also cause
inefficiency. To study this phenomenon, we consider the
Nodamura virus (NoV) RNA2 sequence which shows the
largest drop in efficiency when moving from 60 to 300
max chunk lengths, as shown in Figure 19. Figures 20 and
21 show the number of chunks and their lengths (i.e.,
max, min and median) for the different L and G parameter
combinations with centered and optimized methods when
the maximum chunk length is equal to 60 (Figure 20) and
when the length is equal to 300 (Figure 21). When the
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maximum length grows from 60 to 300, the number of
resulting chunks for each combination of L and G para-
meters decreases. At the same time the length of each set
of chunks increases as well as the length variability within
the set of chunks for a defined combination of L and G
values. Note that for some combinations of L and G, the
chunking process does not identify any set of chunks and
we do not report any result for these cases. This confirms
our observation that as the number of chunks decreases,
the chunk lengths increase but not homogeneously within
a prediction, causing load imbalance and loss in efficiency.
Selecting the shorter maximum length for the sake of effi-
ciency is not always a wise decision: a maximum chunk
length of 60 bases may be too short for the type of RNA
sequences we are considering. In Figure 20, the median is
very close to the maximum length of 60 for the centered
methods, indicating that we are cutting out valuable parts
of the inversion and ultimately of the secondary structures
we are predicting.

The overall results suggest that the best set of parameter
values to achieve higher accuracy, performance, and effi-
ciency depend on multiple aspects including the input
sequence and the available resources. Driven by these two
aspects, in future work we will integrate an automatic
selection of these values into our MR framework.

Conclusions

In this paper, we propose a MapReduce-based, modular-
ized framework that allows scientists to systematically
and efficiently explore the parametric space associated
with chunk-based secondary structure predictions of
long RNA sequences. By using our framework we can
observe how sequence segmentation strategies, directed
by inversion distributions enable us to predict the sec-
ondary structures of large RNA molecules. Furthermore,
the chunk-based predictions can, on average, attain
accuracies even higher than those obtained from predic-
tions using the whole sequence. The observations in this
study have led to our hypothesis that local structures
formed by pairings of bases in close proximity, rather
than the global free energies, may better correlate with
the real structures of large RNA molecules. This
hypothesis will be tested by further computational and
experimental investigations.
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