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Abstract
Background: Secondary structure prediction is a useful first step toward 3D structure prediction.
A number of successful secondary structure prediction methods use neural networks, but
unfortunately, neural networks are not intuitively interpretable. On the contrary, hidden Markov
models are graphical interpretable models. Moreover, they have been successfully used in many
bioinformatic applications. Because they offer a strong statistical background and allow model
interpretation, we propose a method based on hidden Markov models.

Results: Our HMM is designed without prior knowledge. It is chosen within a collection of models
of increasing size, using statistical and accuracy criteria. The resulting model has 36 hidden states:
15 that model α-helices, 12 that model coil and 9 that model β-strands. Connections between
hidden states and state emission probabilities reflect the organization of protein structures into
secondary structure segments. We start by analyzing the model features and see how it offers a
new vision of local structures. We then use it for secondary structure prediction. Our model
appears to be very efficient on single sequences, with a Q3 score of 68.8%, more than one point
above PSIPRED prediction on single sequences. A straightforward extension of the method allows
the use of multiple sequence alignments, rising the Q3 score to 75.5%.

Conclusion: The hidden Markov model presented here achieves valuable prediction results using
only a limited number of parameters. It provides an interpretable framework for protein secondary
structure architecture. Furthermore, it can be used as a tool for generating protein sequences with
a given secondary structure content.

Background
Predicting the secondary structure of a protein is often a
first step toward 3D structure prediction of a particular
protein. In comparative modeling, secondary structure
prediction is used to refine sequence alignments, or to
improve the detection of distant homologs [1]. Moreover,
it is of prime importance when prediction is made with-

out a template [2]. For all these reasons protein secondary
structure prediction has remained an active field for years.
Virtually all statistical and learning methods have been
applied to this task. Nowadays, the best methods achieve
prediction rate of about 80% using homologous sequence
information. A survey of the Eva on-line evaluation [3]
shows that the top performing methods include several
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approaches based on neural networks, e.g. PSIPRED by
Jones et al [4], PROFsec and PHDpsi by Rost et al [5].
Recently several publications reported secondary structure
prediction using SVM [6-8]. A number of attempts using
Hidden Markov Models (HMM) have also been reported.
A particularity of these models is their ability to allow an
explicit modeling of the data. The first attempt to predict
secondary structure with HMMs was due to Asai et al [9].
Asai et al presented four sub-models, trained separately on
pre-clustered sequences belonging to particular local
structures: alpha, beta, coil and turns. The sub-models,
each of them made of four or five hidden states, were then
merged into a single model, achieving a Q3 score of
54.7%. At the same period, Stultz et al [10,11] proposed a
collection of HMMs representing specific classes of pro-
teins. The models were "constructed as generalization of
the study-set example structures in terms of allowed con-
nectivities and surface loop/turn sizes" [10]. This involved
the distinction of N-cap and C-cap positions in helices, an
explicit model of amphipatic helices and β-turns. Each
model being specific of a protein class, the method
required first that the appropriate hidden Markov model
be selected and then used to perform the secondary struc-
ture prediction. The Q3 scores, reported for only two pro-
teins, were respectively 66 and 77%. Goldman et al [12-
15] proposed an approach unifying secondary structure
prediction and phylogenetic analysis. Starting with an
aligned sequence family, the model was used to predict
the topology of the phylogenetic tree and the secondary
structure. The main feature of this model was the inclu-
sion of the solvent accessibility status, and the constrained
transitions to take into account the specific length distri-
bution of secondary structure segments. The Q3 score,
reported for only one sequence family, was 65.7% using
single sequence and 74.4% using close homologs. Later,
Bystroff et al [16] proposed a complex methodology
based on the I-Sites fragment library. One of the models
was dedicated to the prediction of secondary structures.
The model construction made use of a number of heuris-
tic criteria to add or delete hidden states. The resulting
models were quite complex and modeled the protein 3D
structures in term of succession of I-site motifs. The pre-
diction accuracy of the model dedicated to secondary
structure prediction was 74.3%, using homologous
sequence information. Other approaches used slightly dif-
ferent type of HMM, based on the concept of a sliding
window along the secondary structure sequence. Crooks
and Brenner [17] proposed a methodology where a hid-
den state represents a sliding window along the sequence.
The prediction accuracy was 66.4% for single sequences
and 72.2% with homologous sequence information.
Zheng et al [18] used a similar approach in combination
with amino-acid grouping, achieving a Q3 score of 67.9%
on single sequences. An extension of hidden Markov
Model, semi-HMM, were also applied to secondary struc-

ture prediction by several groups [19-21]. These models
allow an explicit consideration of the length of secondary
structures. Very recently, Aydin et al claimed a Q3 score of
70.3% for single sequences [22]. Chu et al [21] obtained
a Q3 score of 72.8% using homogous sequence informa-
tion.

Here, we exploit a novel HMM learned from secondary
structures without taking into account prior biological
knowledge [23]. Because the choice of a particular model
does not rely on any prior constraints, the HMM itself is
an interesting tool to reveal hidden features of the internal
architecture of secondary structures. We first analyze in
detail the model. We then evaluate its predictive potential
on single sequences and on multiple sequence informa-
tion using an evaluation data set of 506 sequences and a
data set of 212 sequences obtained from the EVA Web site
[24]. The influence of the secondary structure assignment
method on the performance is also discussed. The predic-
tion results appear very promising and open the perspec-
tive for further refinements of the method.

Results and discussion
Hidden Markov model selection
The optimal hidden Markov model for secondary struc-
ture prediction, referred as OSS-HMM (Optimal Second-
ary Structure prediction Hidden Markov Model), was
chosen using three criteria: the Q3 achieved in prediction,
the Bayesian Information Criterion (BIC) value of the
model and the statistical distance between models. The
whole selection procedure described in details in [23].
Here we only present the main steps of the selection. Let
nH, nb and nc be the number of hidden states that model
respectively α-helices, β-strands and coils. The optimal
model selection was done in three steps. In the first step,
we set nH = nb = nc = n and models were estimated with n
varying from 1 to 75. The Q3 score evolution indicated
that 10 to 15 states were sufficient to obtain good predic-
tion level without over-fitting and that increasing n above
15 had little impact on the prediction. The BIC selected a
model with n = 14. The statistical distances between mod-
els revealed a great similarity across models for n varying
from 13 to 17. In the second step, models were thus esti-
mated with (1) nH = 1 to 20 and nb = nc = 1, (2) nb = 1 to
15 and nH = nc = 1 or (3) nc = 1 to 15 and nH = nb = 1. The
BIC selected (1) nH = 15, (2) nb = 8 and (3) nc = 9. In the
third step, all the architectures were tested with nH varying
from 12 to 16, nb from 6 to 10 and nc from 3 to 13. The BIC
selected the optimal model having nH = 15, nb = 9 and nc =
12, i. e., a total of 36 hidden states. Overall, nearly 300 dif-
ferent model architectures were tested in this procedure
[23]. The automatic generation of a HMM topology has
been previously addressed by several groups [25-29]. Two
main strategies were used: the first one consists in build-
ing models of increasing size starting from small models
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[25,29] and the second one, inversely, consists in progres-
sively reducing large models [26,28]. Regarding the first
strategy, the use of genetic algorithm was introduced and
applied to the modeling of DNA sequences [25,29]. In the
approach presented by Won et al [29], an initial popula-
tion of hidden Markov models with 2 states is submitted
to an iterative procedure of mutations, training and selec-
tion. There are five types of mutation: addition or deletion
of one hidden state, addition or deletion of one transition
and cross-over, consisting in exchanging several states
between two HMMs. The second strategy requires the use
of a pruning algorithm and was applied to language
processing [26] and to describe the structure of body
motion data [28]. The initial model, consists of an explicit
modeling of the training data: each sample is represented
by dedicated HMM states. Hidden states are then removed
iteratively by merging two states. The merging criterion is
based on the evolution of the log-likelihood.

Our approach of automated selection of HMM topology
is related to the first strategy because we also start from
small models and increase them afterward. However,
Won et al note that their mutation operations, even if they
do allow highly connected models, bias the architectures
toward chain structures [29]. A previous experience of
knowledge-based design of HMM for secondary structure
prediction [30] convinced us that highly connected mod-
els are more appropriate in our case. We adopt a system-
atic approach, when we introduce a new state all
transitions between hidden states are initially allowed. We
then let the system evolve. Our final model does not
exhibit a chain structure. A major concern of the genetic
algorithm applied to HMM topology seems to be the over-
fitting of the model toward learning data [25,29]. In our
approach, the over-fitting is monitored by considering an
independent set of structures that is never used in the
cross-validation procedure. An original aspect of our
method is that we not only check the fit with the model
but also the predictive capabilities on these independent
data. The other strategy described in the literature based
on the merging of states requires the manipulation of
large initial models. The large size of the learning datasets
available for secondary structure prediction might be a
problem when employing such a strategy. Nonetheless, a
common feature of our approach with the work of Vasko
et al [28] is the use of initial models were all transitions
are allowed.

It is likely that the appropriate strategy for automated
topology selection depends on the amount and nature of
data to be modeled. Here we are confronted with a prob-
lem with large datasets and, presumably, a complex con-
nected underlying structure. Our approach results in a
model having a reasonable number of parameters

although it is larger and more complex than the one we
designed in a knowledge-based approach [30].

Hidden Markov model analysis
Our optimal model OSS-HMM was built without prior
knowledge and without imposing any constraint. Thus, it
is interesting to examine the final model as it reveals the
internal architecture of secondary structures learned by
the model. In the following section, we will describe the
main features of the model obtained with DSSP assign-
ment and link these observations with previous studies.

All transitions between hidden states are initially allowed.
As shown in Table 1, many transitions in the final model
are estimated to have probability zero. Only 36% of
potential transitions remain within the helix box, 57%
within the strand box and 68% in the coil box. This high-
lights a first feature of secondary structures: even though
helices require 15 hidden states they can be modeled by
relatively few transitions. On the contrary, β-strand
sequences are fuzzier, with a higher connectivity between
hidden states. Thus, the paths within the helix box are
more constrained than in the strand box. The final model
has 448 non-null transitions (out of 1296), of which 89
have a probability greater than 0.1, for a total of 1096 free
parameters.

The structure of OSS-HMM is presented in Figure 1. For
the sake of clarity, only transitions with probabilities
larger than 0.1 are shown. Hidden states are colored
according to their amino acid preference. The blue figure
close to each state is its Neq value. The Neq value of a hid-
den state is an estimation of the number of output states,
derived from the Shannon Entropy:

where p(s; r) denotes the transition probability from state
s to state r. The sum is taken over all the hidden states. Neq
varies from 1 (only one output state) to the total number
of hidden states (a state uniformly connected to all the
others, including itself). Emission parameters are also pre-
sented in the lower part of Figure 1. The emission proba-
bility of each amino-acid in each hidden state is given
using preference score relative to amino-acid background
frequencies.

Some general remarks can be made from this representa-
tion:

• The different secondary structures are characterized by
different transition usage. Very strong transitions appear
in the helix box, whereas they are weaker in strand and

Neq s p s r p s r
r

( ) exp[ ( ; ) ( ( ; ))]= −∑ ln
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coil boxes. This is confirmed for helices since some helical
states have very low Neq: e. g., H3, H2, H9 and H1 have
Neq lower than 2, meaning that the number of output
states is limited. No such states are apparent in the strand
and coil boxes. The mean Neq value per state is 3.28 for
helix, 4.70 for strand and 5.44 for coil. This confirms the
observations made from Table 1: helices appear very
"structured" motifs with strong transitions and few paths
allowed, whereas strands appear to be "fuzzier", less con-
strained, with many alternative paths and relatively low
transitions probabilities. The coil box is even less struc-
tured than the strand box.

• An examination of amino acid preference scores shows
that hidden states specifically tend to avoid particular res-
idues (many scores less than -2), rather than favor other
ones (few scores greater than 2). This seems to denote a
kind of "negative design", where there is a stronger con-
straint not to include particular residues, than to have some
others.

Helix architecture
Helices in proteins are characterized by the so-called
amphipathic rule (also known as helical wheel rule): one
face is in contact with the solvent and thus bears
hydrophilic residues and one face is in contact with the
protein interior and shows preference for hydrophobic
residues. The canonical a helix has a periodicity of 3.6.
The helix periodicity and the amphipathic rule generate a
periodicity of 3 or 4 in terms of amino acid properties in
the sequence.

The helix box is characterized by a topology that allows
unidirectional paths through the graph.

• There is only one entry state for helices: state H3. The
amino acid preference of this state is peculiar since it does
not favor nor disfavor any amino acids except for a slight
tendency to prefer proline and to avoid asparagine. Only
state c10 shows a similar lack of strong preference for
amino acids (i.e., without score larger than 2 or smaller
than -2 and only two scores greater than 1 or less than -1).

• Two alternative trajectories among the states are then
possible: a "bypass" trajectory proceeding to state H7 and
exiting the helix at state H6 and the "main" trajectory that
is detailed below. Note that there is a small probability to
get back to the main trajectory from the bypass trajectory
(state H7). Interestingly this state, H7, is the only helix
state with a self transition.

• States belonging to the main trajectory can be divided
into two groups: core states (H10, H14, H2, H9, H1, H8,
H12) and exit states (H4, H15, H11, H5, H13). As
expected from the helix periodicity and amphipathic rule,
the graph shows a mixture of 3-state and 4-state cycles
with characteristic patterns of hydrophobic and
hydrophilic preferences. It is likely that the strong direc-
tionality observed between the core states is due to the fact
that once in a helix the system must remain in this helix
for at least 4 or 6 residues, i.e., one turn or one turn and a
half. In other words, the core states correspond to the
beginning of a helix.

• The second group of states, the exit states, shows the
same 3-state and 4-state cycles with similar patterns of
hydrophilic or hydrophobic preferences as the core states
but now the cycles can be interrupted at any time to move

Table 1: Number of transitions in the final 36 states HMM

Transitions Ninit Nfinal N>0.1 Ratiofinal

Helix to helix 225 81 24 36%
Helix to coil 180 47 9 26%
Helix to strand 135 21 0 15%

Strand to Strand 81 46 20 57%
Strand to coil 108 50 5 46%
Strand to helix 135 17 0 13%

Coil to coil 144 98 25 68%
Coil to helix 180 31 2 17%
Coil to strand 108 57 4 29%

Total 1296 448 89 34%

Ninit: number of allowed transitions in the initial model, Nfinal: number of non-null transitions in the final model, N>0.1: number of transitions 
associated with probabilities greater than 0.1 in the final model, Ratiofinal: percentage of non-null transitions relative to the initial number.
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to a coil state. This shows that helices can end without the
need for completing a turn.

Strand architecture
The strand box shows a different structure. The progres-
sion through the graph is also rather directional:

• There are 3 entry states (b3, b5, b7) that are all intercon-
nected. All entry states are also connected to the same
state, b1, that belongs to the core of the strand architec-
ture.

Final 36 hidden states HMM learned using DSSP assignmentFigure 1
Final 36 hidden states HMM learned using DSSP assignment. Upper part: hidden state graph. Only transitions associ-
ated with probabilities greater than 0.1 are shown. The larger the transition probabilities the thicker the arrows. States are 
colored according to their amino acid preference (hydrophobic versus hydrophilic). Purple state indicates no strong amino acid 
preference and red states strongly favor glycine. The two groups of coil states (c1, c6, c12, c5, c4) in green and (c3, c2, c8, c10, 
c9) in red are discussed in the text. For periodic secondary structures, helix and strand, the entry and exit states are indicated 
by different symbols. Lower part: amino-acid propensities of each hidden state. Propensities are measured by log-odd scores. 

The propensity score of amino-acid a for state s is given by: , with P(a | s) the emission probability of amino-

acid a in state s and f(a) the background frequency of a in the dataset. A score equal to 1 means that the amino-acid is twice as 
frequent in state s as in the whole dataset.
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• the core of the strand architecture is made of states b1,
b6, and b8 that form a 3-state cycle. State b1 is connected
to entry states, state b6 to exit states and state b8 is one of
the two strand states that exhibit a self transition. It is
interesting to note that the core of the strand architecture
contains only states with a preference for hydrophobic
amino acids.

• There are 3 exit states, b2, b4 and b9. There exists two
exit routes, one through b2 that is connected to state c7
and c11 and one through states b9 and b4 that are con-
nected to states c3 and c2. b2 is peculiar in that, unlike
other strand states, it favors proline and aspartate.

There is a number of 2-state cycles that correspond to an
alternation of hydrophilic and hydrophobic states. This is
a known pattern, observed in strands that are at the pro-
tein surface. Another pattern often observed in strands is
the occurrence of several hydrophobic residues. This pat-
tern is represented by paths amongst the core states b1, b8
and b6. It is also known that hydrophobic/hydrophilic
patterns in strands are fuzzier than similar patterns in hel-
ices. This is clearly apparent when one compares the
strength of the connections between states in the helix and
strand boxes.

When assigning secondary structure with DSSP, there are
very few helices immediately followed by a strand or
strands immediately followed by a helix therefore direct
connections between helices and strands are associated
with small probabilities that do not appear on Figure 1.

Coil architecture
The graph structure of the coil box presents a very different
organization compared to the helix and strand boxes. The
most striking feature is the existence of specific states lead-
ing to and coming from helices or strands (there are only
two "core" states, c8 and c6, that are exclusively connected
to other coil states). Unlike the two other boxes, half the
states in the coil box (c2, c6, c7, c10, c11, c12) have self
transitions. The coil states can be divided into 3 groups:

• states c11 and c7 are the only states that are found both
at the termination of helices and strands (although only
the exit route through b2 leads to this states). These states
are very connected, including a self connection and act as
kinds of "hub" in the coil box.

• a group of states (c2, c3, c8, c10, c9) within the red con-
tour that interact with strands.

• a group of states (c4, c5, c6, c1, c12) within the green
contour that interact with helices.

These two groups have the same organization: two states
are connected to secondary structure exit states (c4 and c5
after a helix exit state and c2 and c3 after a strand exit
state), one state is a "core" state, c6 for the first group and
c8 for the second group, and two states lead to a secondary
structure entry state (cl and c12 to the helix entry state,
and c9 and c10 to the strand entry states). These two
groups are relatively independent, there is a weak direct
connection between the two groups (through states c10
and c6) and an indirect connection through the hub state
c11. These two groups seems to model different types of
loop. To further analyze the specific usage of the states in
different loop types, the paths through the coil states are
analyzed for different kind of loops. Note that these paths
are obtained with the Viterbi algorithm. Both amino-acid
and secondary structure sequences are given as input to
OSS-HMM: in a way similar to the estimation of labeled
sequence of secondary structures [31], it is possible to
monitor the Viterbi algorithm using the product of
amino-acid and label emission parameters instead of the
amino-acid emissions only. The protein sequence and the
label sequence are considered to be independent emis-
sions by the same hidden process. In that case, the Viterbi
algorithm computes the most probable trajectory in the
hidden Markov Model, given the real secondary structure
of the protein. Hence, it is not a secondary structure pre-
diction, but the analysis of protein sequences using OSS-
HMM. We then collect the number of times each coil state
is observed in the four different classes of loops: α/α, β/β,
α/β and β/α. The data obtained on the cross-validation set
are shown in Table 2.

The repartition of the coil states indicates that the hidden
states are preferentially found in particular loop types. For
example, state c6 is observed 5256 times in a/a loops and
only 2894 in β/β loops, although α/α loops represent
20.1% of the data, and the β/β loops represent 35%. To
take into account this non-uniform repartition of differ-
ent loop types, Table 2 is then submitted to a correspond-
ence analysis. The data projection on the first two axes is
shown on Figure 2. The first two axes respectively explain
66% and 32% of the variance. As shown by Figure 2, the
first axis differentiate loops found after an helix (α/α and
α/β) on one hand, and loops found after a strand (β/β and
β/α) on the other hand. It means that, according to the
hidden state usage, α/α or α/β differ from β/β or β/α
loops. The data projection confirms the observations
made from Figure 1: states c4, c5, c6 and c12 appear
clearly associated to α/α loops and states c2, c3, c8, c9 and
c10 to β/β loops. When projected on the first axis, state c1
appears close to the α/α type.

As shown on Figure 1 states c11 and, to a lesser extend c7,
act as "hubs", allowing to switch between α/α and β/β
loops. They are located near the origin on the correspond-
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ence plot. States of the coil box show a marked tendency
to favor particular amino acids: glycine for states c5, c8
and c9 and proline for states c12, and c2.

Comparison with available data in the literature
Several authors studied the sequence specificities of helix
termini [32-35]. A direct comparison with these previous
studies is not straightforward for several reasons. First, sec-
ondary structure boundaries must be the same. As we
showed in a previous study [36], the boundaries of helices
and strands are the main point of disagreement between
different secondary structure assignment methods. For
instance, in their study Kumar and Bansal [33] re-assigned
helix boundaries (based on DSSP assignment) using geo-
metrical criteria. Thus, the reader should keep in mind
that eventual discrepancies might occur because the refer-
ence assignment is different (see for example ref. [35] that
addresses this particular problem). Secondly, these previ-
ous studies often revealed some general trends, whereas
our model found several states for helix termination. The
computation of general trends leads to the attenuation of
the information because they average different signals.

Previous studies [32-35] showed that amino-acid prefer-
ences vary according to the position (begin/middle/end)
in helices. Our model shows a directional progression in
the hidden state graph in agreement with this feature.
Aurora and Rose [32] found that PQDE are preferred at
the first positions of alpha-helices. The helix starter H3 in
our model shows a preference for proline residues, and
H10, the second state in helix favors residues D and E.
Kumar and Bansal identified a clear preference for resi-
dues GPDSTN at positions preceding a helix [33]. It was
confirmed in a recent study [35] in which Gibbs-sampling
and helix shifting were used to reveal amino-acid prefer-
ence in conjunction with a potential re-definition of helix
termini. The idea was to allow a shift in the helix assign-
ment, to maximize the sequence specificity of helix-cap.

In our model, the pre-helix state c1 favors residues D, S, T
and N (weakly G). State c12, that also leads to the helix
box, has a strong preference for Proline.

A typical motif of C-terminal capping in helices is the ter-
mination of an helix by a glycine residue [37]. This feature
has also be learned by OSS-HMM, since state c5, that fol-
lows an helix, shows a strong preference for glycine. More
precisely, Aurora and Rose identified several structural
motifs of helix capping, corresponding to distinct
sequence signatures [32]. This is in agreement with OSS-
HMM since several helix states with different features (e.g.
H4 and H6) can terminate an helix, and lead to several
coil states (c11, c5, c4).

Engel and DeGrado showed a very clear periodicity of
amino-acid distribution in helix cores: alternation of resi-
dues with opposite physico-chemical properties every 3 or
4 residues [34]. This corresponds to the well-known
model of amphipatic helices. Such helices are found at the
interface between protein core and protein surface. One
face, thus, bears polar residues and the other face hydro-
phobic ones. Several cycles appear in the helix core in
OSS-HMM: H2/H9/H1 (with possibly H8), H12/H4/H15
and H15/H11/H5/H13. The succession of H12 (hydro-
phobic), H4 (polar) and H15(polar) fits well with the
amphipatic model, as well as the succession H15(polar),
H11 (hydrophobic), H5(hydrophobic) and H13(polar).
Although in our model, amino-acids are independent, the
periodicity of helices has been learned by the model, via
the hidden structure.

Preferences at strand ends have not been well character-
ized in the literature. Interestingly, OSS-HMM revealed
alternate polar (b3, b7) or apolar (b5) starters of β-
strands, as well as alternate polar (b2, b9) or apolar (b4)
terminators. This could explain why sequence signatures
are weak for strand-capping. If several capping motifs with

Table 2: Occurences of coil states in different types of loops in the Viterbi paths of the cross-validation data set

α/α β/β α/β β/α frequency

c1 3308 57 30 3962 5.2
c2 2686 10374 2920 6941 16.1
c3 14 5880 124 3014 6.3
c4 1953 151 2312 170 3.2
c5 2327 225 3101 231 4.1
c6 5276 2894 5609 2579 11.5
c7 3165 6684 2996 5691 13.0
c8 1677 6364 3054 2223 9.4
c9 2 2382 429 7 2.0
c10 1359 6670 3375 1671 9.2
c11 2828 5477 3585 2748 10.3
c12 3969 2943 4882 2025 9.7

frequency 20.1 35.2 22.8 21.9

Frequency denotes the marginal distribution of each variable (hidden states or loop type), in percentage.
Page 7 of 20
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opposite sequence signature co-exist, a global study
would conclude to the lack of signature, because several
signals are averaged. Our model exhibits several two state
cycles that allows the alternation of hydrophobic and
polar residues. This alternation has been pointed out in
previous studies [38], it reflects the alternation of polar/

non-polar environments of residues in β-strands at the
protein surface.

The path through the four states c3, c2, c8 and c10 allows
the connection between two strands. Amino-acid prefer-
ences are respectively (G, D, N), (P), (G) and (no prefer-

Principal component analysis of the association between hidden states and loop typeFigure 2
Principal component analysis of the association between hidden states and loop type. Data are obtained from the 
Viterbi decoding using secondary structure labeling on the cross-validation data.
Page 8 of 20
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ence). The propensities of c3, c2 and c8 fit well with the
overall turn potentials identified by Hutchinson and
Thornton [39] at position i, i + 1 and i + 2 of turns. How-
ever, state c10 has no clear amino acid preference.

The correspondence analysis indicates that some states are
preferentially used in certain loop type. Previous studies
have also revealed that sequence signatures differ accord-
ing to the loop type [40]. Much like the hydrophobic/
polar alternation in amphipatic helices, HMMs can take
into account such non strictly local correlations, by spe-
cializing hidden states according to the hidden states to
which they lead, instead of the amino-acids they emit, and
the resulting amino-acid sequence bears non strictly local
correlations. Amino-acid emissions are independent but
they are conditioned with respect to the hidden process.
OSS-HMM provides a new framework for the analysis of
protein sequences: for example, the paths within the hid-
den Markov model could be used to cluster the sequences.
It would be particularly interesting to correlate the path
based classification with known properties of the struc-
tures such as SCOP folds. Preliminary results indicate
however that a straightforward classification of the paths
is not sufficient [see Additional file 5].

Use of OSS-HMM for generating protein sequences
Hidden Markov models can be used to generate amino
acid sequences that are compatible with the underlying
model. OSS-HMM is thus useful in bioinformatics appli-
cation where simulated protein sequences are needed. For
example, in protein threading analysis it is necessary, in
order to assess the score significance, to use protein
sequences to obtain an empirical score distribution [41].

A simulation study was carried on using OSS-HMM, indi-
cating that simulated sequences share similar amino-acid
composition with real protein sequences [see Additional
file 3]. Concerning the length distribution of secondary
structure elements, as no explicit constraint is integrated
in the model, simulated sequences contain more very
short segments than real sequences. More sophisticated
models, i. e. semi-HMM, are needed to allows an explicit

modeling of the length of stay in the hidden states (Aydin
et al [22]).

Secondary structure prediction with OSS-HMM
Evaluation on the independent test set
The prediction performance of OSS-HMM is evaluated on
an independent test set of 505 protein sequences that
were never used for training or model selection. These
sequences share no more than 25% sequence identity
with the sequences of the cross-validation data set and
between sequence pairs; they constitute an appropriate
evaluation data set. Prediction is done using a single
sequence as input. To compare with existing methods,
prediction are also done with the PSIPRED program (ver-
sion 2.45) [4], using the single-sequence mode. This
method is based on neural networks and sequence pro-
files generated by PSI-BLAST. Here, PSI-BLAST is not used.

Prediction scores obtained with OSS-HMM and PSIPRED
are presented in Table 3. Here, the Q3 score is computed
on a per-residue basis. The Q3 score obtained by OSS-HMM
is 67.9% and 66.8% with PSIPRED. Due to its limited
number of parameters, OSS-HMM exhibits no over-fit-
ting: during the cross-validation, we obtained a mean per-
residue Q3 score of 67.9% on the data used to train the
model, and 67.6% on the data not used to train the model
(data not shown).

As can be seen from the various scores reported, OSS-
HMM is very efficient concerning α-helix prediction, with
a MCC of 0.56, but less efficient for β-strand and coil pre-
diction, with MCC equal to 0.47. The low Qobs (sensitivity)
of β prediction, 51.9%, and high Qobs for coil prediction,
73.2%, indicate that coils are frequently predicted instead
of β-strands. This difficulty to predict β-strands is a known
problem of secondary structure prediction method, prob-
ably due to the non-local component of β-sheet forma-
tion. It is difficult, with a HMM, to take into account this
kind of long-range correlation with a model that has a rea-
sonable number of parameters. We tried to integrate a
non-local information in the prediction, without any sig-
nificant amelioration (data not shown).

Table 3: Prediction accuracy obtained for the 505 sequences of the independent test set, using single sequences

OSS-HMM PSIPRED
Qobs Qpred MCC SOV Qobs Qpred MCC SOV

Helix 72.1 72.5 0.56 67.7 70.5 70.4 0.53 66.7
Strand 51.9 64.5 0.47 58.3 56.6 60.8 0.47 60.5
Coil 73.2 65.5 0.47 63.9 69.2 66.7 0.46 61.9

Q3 SOV Q3 SOV

Global 67.9 63.9 66.8 63.3

OSS-HMM refers to the HMM with 36 hidden states presented in this article.
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Comparison with PSIPRED prediction scores shows that
OSS-HMM offers a global Q3 score of more than one point
above PSIPRED score (67.9 vs 66.8%). Such a small differ-
ence has to be statistically tested for significance. Since the
variances of Q3 scores per protein obtained by OSS-HMM
and PSIPRED were not equal, as assessed by a F-test, the
Welch test was used to compare them. The test is signifi-
cant at the 5% level, we then conclude that OSS-HMM is
more efficient than PSIPRED for the single-sequence
based prediction. The detailed scores indicate OSS-HMM
is better than PSIPRED for helix prediction, both in sensi-
tivity and selectivity. PSIPRED detects more β-strand –
Qobs is 56.6%, vs 51.9% for OSS-HMM – but is thus less
specific – Qpred is 60.8 vs 64.5% for OSS-HMM.

Testing against EVA dataset
We also tested the prediction accuracy on a dataset of 212
protein sequence from the EVA website. This dataset has
been used to rank several secondary structure prediction
methods and was the largest available at this time. Using
homologous sequence information, the top-three meth-
ods on this dataset were:

1. PSIPRED [4]: Q3 = 77.8%,

2. PROFsec (B. Rost, unpublished): Q3 = 76.7%,

3. PHDpsi [5] : Q3 = 75%.

We ran the prediction on the 212 sequences, again using
single sequences only, with OSS-HMM and PSIPRED. The
per-sequence Q3 scores achieved for each protein chain, by
PSIPRED and OSS-HMM, are shown on Figure 3.

EVA dataset includes 20 membrane protein chains :
1pv6:A, 1pw4:A, 1rhz:A, 1zcd:A, 1zhh:B, 2a65:A, 1q90:N,
1q90:L, 1q90:M, 1s51:I, 1s51:J, 1s51:L, 1s51:M, 1s51:T,
1s51:X, 1s51:Z, 1rh5:B, 1rkl:A, 1u4h:A and ls7b:A. As can
be seen on Figure 3, PSIPRED achieves good prediction
for membrane proteins, whereas the prediction is rather
poor with the HMM. Membrane proteins have amino acid
propensities very different from those of globular pro-
teins. As membrane proteins were excluded from the
learning set to train the HMM, it is not surprising that
their HMM-based predictions are largely incorrect. When
these 20 sequences are excluded, the global Q3 score on
the remaining 192 proteins is 68.9% for PSIPRED and
68.6% for OSS-HMM, computed on 20 539 residues.

EVA data set also contains very short sequences : 42
sequences are shorter than 50 residues. On very short
sequence, a different prediction for a few residues has dra-
matic consequences on the Q3 score per protein, as shown
on Figure 3. Proteins shorter than 50 residues are plotted
in gray, they are responsible for the great dispersion of the

data. Some rather short sequences are shown in the plot:
1ycy (62 residues), 1r2m (70 residues), 1zeq:X (84 resi-
dues), 1zv1A (59 residues), 1r4g:A (53 residues). The
mean length of a sequence in the EVA dataset is 189 resi-
dues, and 212 residues in the independent test set. The
protein length distribution of EVA dataset is shifted
toward short sequences when compared to the length dis-
tribution in the independent test set (data not shown). In
order to analyze the effect of short sequences, and keep
sufficient data, a Q3 score is computed on the "core" of the
protein sequences: the five terminal residues of each
sequence are excluded from the computation. The global
Q3 score on the "core" of sequences are 68.1% for psipred
and 69.2% for OSS-HMM.

This analysis indicates that the performance observed on
our independent test set and the EVA dataset both con-
clude to a better single-sequence based prediction using
our OSS-HMM.

Confidence scale for the prediction
The posterior probabilities obtained for each structural
class can be used as a confidence scale. In Figure 4, we
show the per-residue Q3 scores computed on the independ-
ent test set, for residues with posterior probability lying in
a given range. As can be seen, the correlation is excellent
between posterior probability and the rate of good predic-
tion: residues with high probabilities are better predicted.
Thus, the posterior probability given by OSS-HMM is a
good indicator of the confidence in the prediction.

Influence of the secondary structure assignment software
During the development of our method, several second-
ary structure assignment methods were tested, both for
HMM training and during the prediction evaluation. We
tested the STRIDE [42], and KAKSI methods [36]. In Table
4, we report the per-residue Q3 obtained with three flavors
of OSS-HMM trained with KAKSI, DSSP and STRIDE
assignments, and PSIPRED, when compared to secondary
structure assignments provided by KAKSI, DSSP and
STRIDE.

Not surprisingly, a better accuracy is achieved by the
HMM when the same assignment method is used for
training and evaluation (the estimated standard deviation
being 0.2, the Q3 scores achieved by OSS-HMMdssp com-
pared to DSSP and STRIDE assignments are equivalent).
In these cases, the Q3 score of OSS-HMM is always higher
than the Q3 score of PSIPRED. It is interesting to note that
STRIDE assignments seem to be easier to predict either by
OSS-HMM or PSIPRED, even though PSIPRED was
trained with DSSP assignments.
Page 10 of 20
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Comparison with other HMM-based methods
For a precise comparison of OSS-HMM with other HMM-
based methods, the evaluation should be done on identi-

cal datasets and compared to the same reference assign-
ment. Here, we will only discuss the reported accuracies;
conclusion about the possible superiority of a method

Q3 obtained for each protein of the EVA 212 dataset, by PSIPRED and OSS-HMMFigure 3
Q3 obtained for each protein of the EVA 212 dataset, by PSIPRED and OSS-HMM. Globular proteins are shown as 
triangles and membrane proteins as crosses. Proteins shorter than 50 residues are indicated with gray symbols. The diagonal 
where both PSIPRED and OSS-HMM Q3s are equal is shown as a dashed line. OSS-HMM refers to the HMM presented in this 
article.
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should be made very cautiously. The first methods that
used HMM for protein secondary structure prediction,
proposed by Asai et al [9], Stultz et al [10,11], and Gold-
man et al [12-14] were tested on small datasets. Moreover,
the data bank contents are continuously growing, which
induces an automatic improvement of the predictive
methods because more data are available for training.
Thus, the comparison with Asai, Stultz, Goldman and
coworkers is not straightforward.

Among recent methods, Brenner et al [17], using a hidden
Markov model with a sliding window in secondary struc-
ture, reported a Q3 score of 66.4% on a dataset of 513
sequences, using single sequence only. This result was
obtained using the 'CK' mapping of the 8 classes of DSSP
into three: (H) = helix, (E) = strand, others = coil, because
it yielded a better accuracy than the 'EHL' mapping (see
Method section). Using an amino-acid sliding window
and amino-acid grouping, Zheng observed a Q3 score of
67.9% on a small dataset of 76 proteins [18]. Very
recently, Aydin et al obtained some very good results with
semi-HMM and single sequences: a Q3 score of 70.3%
[22]. Their assignment method was DSSP with the 'CK'
mapping and a length correction to remove strands
shorter than 3 residues and helices shorter than 5 residues,

whereas we use the 'EHL' mapping and no length correc-
tion. With the 'EHL' mapping and no length correction,
they reported a Q3 score of 67.4%, which is less than our
results with HMM, i. e. 67.9%. To explore the influence of
the length correction, we evaluate the Q3 score on the
independent test set of 505 sequences, assigned by DSSP
with the length correction. We obtained Q3 = 69.6%.
Thus, it seems that OSS-HMM is, at least as accurate,
maybe better than the other methods based on HMM that
use single sequences.

Prediction using multiple sequences
It is well established that the use of evolutionary informa-
tion improves the accuracy of secondary structure predic-
tion methods [4,5]. The optimal model OSS-HMM
estimated on single sequences can be used to perform the
prediction with several sequences without further modifi-
cation: homologous sequences retrieved by a PSI-BLAST
search are independently predicted and the predictions
are merged afterward in a consensus prediction. The
underlying hypothesis is that homologous sequence share
the same secondary structure. An example of multiple
sequence based prediction for the SCOP domain d1jyoa_
is shown on Figure 5. Using the sequence of dljyoa_, OSS-
HMM achieves a Q3 score equal to 68.5%. The region
around residues 60 to 100, indicated by ellipses, is not
correctly predicted. The true secondary structure in this
region consists in a α-helix of 15 residues (h1), a β-strand
of 5 residues (b1) followed by a very short helix, and a sec-
ond β-strand of 8 residues (b2) (see segments highlighted
by ellipses on Figure 5). Using the single sequence, h1 is
predicted as two strand segments and a short helix and s1
and s2 are predicted as one long helix interrupted by one
residue in strand. The PSI-BLAST search with the sequence
of d1jyoa_ produced a set of 8 sequences. Independent
predictions for the 8 sequences show that sequences 2 to
8 have a high probability associated with helix in the
region of h1. In the same way, sequences 2, 3 and 7 are
predicted correctly as strand in the region s1. Concerning
strand s2, only sequences 2 and 7 get a correct prediction.
In sequences 3 to 6 this region is predicted as a helix, but
have a non negligible probability of strand. The sequence
of d1jyoa_ is present twice in the set because it was
retrieved by the PSI-BLAST search (sequence 1 on Figure
5). This has no influence on the consensus prediction
because the Henikoff weighting scheme ensures that two
similar sequences receive the same weight and that the
removal of one sequence results in the remaining
sequence having a weight that is the double. The Henikoff
weights in this sequence family varies from 0.096 to
0.150. Sequences 2 and 7, that contain a correct predic-
tion for s2, have large weights (0.146 and 0.150). The
final Q3 score with the multiple sequences is 79.2%.

Q3 score as a function of the posterior probability valueFigure 4
Q3 score as a function of the posterior probability 
value. The Q3 score is computed on the subset of residues 
that are predicted with probabilities in given ranges. The dis-
tribution of residues in the probability ranges is shown as a 
gray bar-plot. The right axis is related to this distribution.
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Table 5 reports the per-residue Q3 scores obtained by OSS-
HMM trained using various assignment methods, with
different assignments taken as reference, on the 516
sequence of the independent test set. PSIPRED is also
tested on this data set, using the same data bank for the
profile generation. OSS-HMM achieves Q3 scores of 76.3,
75.5 and 76.7% using respectively KAKSI, DSSP and
STRIDE assignments. PSIPRED outperforms OSS-HMM,
whatever the assignment used for learning or evaluation
with Q3 scores ranging from 78.6 to 81.2%, depending on
the assignment considered as the reference. It should be
noted, however, that our HMMs were trained on single
sequences and thus may be not optimal for multiple
sequence prediction.

The detailed prediction scores of OSS-HMM trained on
DSSP assignment and by PSIPRED are reported in Table 6.
When compared to the single sequence-based prediction
(Table 3), all the prediction scores have increased. α-heli-
ces are still better predicted than strands and coil: the
MCC is equal to 0.7 for helices vs 0.6 and 0.57 for strands
and coil respectively. The sensitivity (Qobs) of β-strand pre-
diction is only 56.1%, for a specificity (Qpred) of 80.3%:
OSS-HMM predicts too few β-strands, but the β-strand
prediction can be trusted. With single sequence, the sensi-
tivity and specificity of β-strands of β-strand prediction
were respectively equal to 51.9 and 64.5%. The inclusion
of homologous sequence information thus greatly
increased the specificity and moderately increased the sen-
sitivity of the β-strand prediction. Previous studies based
on HMM and multiple sequences reported global Q3
scores of 74.3% by Bystroff et al [16], 72.2% by Brenner et
al [17], and 72.8% by Chu et al [21]. Thus, our HMM pre-
diction appears to be more efficient than the other meth-
ods reported before, when used with homologous
sequences. Moreover, our model is very parsimonious, i.
e., has a very limited number of parameters when com-
pared to complex models like the one of Bystroff et al, and
neural networks.

In most of the methods that use evolutionary information
with hidden Markov models, the likelihood and re-esti-
mation formula are modified to incorporate the probabil-
ity of a given profile in a hidden state. It is done using
various formulation such as multinomial distribution
[16,21,43], large deviation [17] or the scalar product of
the emission parameters and the observed frequency
(with a normalization to obtain a true probability) [44].
In all these cases, the estimation is done on a set of pro-
files and the input for the prediction is a sequence profile.
Another method, more closely related to ours, was pro-
posed by Kall et al [45]. In this approach, the prediction is
performed independently for each sequence. The predic-
tions are then used as input for an "optimal accuracy"
decoder that ensures that the predicted path is possible
within the state graph. This method has the advantage of
a satisfactory handling of gaps.

Here, we evaluated the predictive capability of our model,
previously trained on single sequences, using a simple
voting procedure. Since no strong constraints are applied
to the paths within the graphs, we do not need sophisti-
cated algorithm to be in agreement with the model struc-
ture. Despite the simplicity of the multiple sequence
procedure, the results are very promising: OSS-HMM
appears to be as good, maybe more efficient, than previ-
ous secondary structure prediction methods based on
HMM that use evolutionary information. It would be very
interesting to see if the explicit integration of sequence
profiles for prediction and estimation as in [16,43,44]
could increase the prediction accuracy.

Conclusion
In this paper we analyzed OSS-HMM, a model generated
using an automated design [23], that allows the discovery
of new features about the data. This method could in prin-
ciple be applicable to other similar prediction problems,
such as predicting transmembrane helices, splice sites, sig-
nal peptides, etc. OSS-HMM has a limited number of
parameters, which allows a biological interpretation of
the state graph. Mathematically speaking, it is simple: a

Table 4: Influence of the assignment method upon the Q3 score obtained for the 505 sequences of the independent test set

68.1 67.5 66.4

OSS-HMMdssp 66.5 67.9 68.3
OSS-HMMstride 67.1 67.8 68.8
PSIPRED 65.7 66.7 67.0

a: evaluation using KAKSI assignment, b: evaluation using DSSP assignment, c: evaluation using STRIDE assignment. d: OSS-HMMx denotes 36 state 
HMM trained using x assignment.

Testkaksi
a Testdssp

b Test stride
c

OSS-HMMkaksi
d
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Example of a multiple sequence prediction for d1jyoa_Figure 5
Example of a multiple sequence prediction for d1jyoa_. Each plot represents the posterior probabilities of α-helix, β-
strand and coil as a function of the position in the sequence, with the color scheme : magenta = helix, green = strand, grey = 
coil. "Query" indicates the sequence of the initial sequence d1jyoa_ and "sequence 1" to "sequence 7" are the homologuous 
sequences retrieved by PSI-BLAST. The Henikoff weight of each sequence is indicated on each plot. "Consensus" indicate the 
consensus prediction for the sequence family. The predicted secondary structure in each case is shown as a colored bar in the 
upper part of each plot. The observed secondary structure of d1jyoa_ is plotted in the lower part of the figure. Ellipses focus 
on zones of the secondary structures that are modified in the prediction using only the query sequence and in the prediction 
using the multiple sequence alignment.
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first order Markov chain for the secondary structure state
succession (hidden process) and independent amino-
acids, conditionally to the hidden process. Despite its sim-
plicity, it is able to capture some high order correlations
such as four-states periodicity in helices and even the spec-
ification of distinct types of loops. In this kind of model,
high order correlations are implicitly taken into account
by the constraints on the transitions. OSS-HMM learned
some classical features of secondary structures described
previously in other studies: specific sequence signature of
helix capping, sequence periodicity of helices and polar/
non polar alternation in β-strands. New features revealed
by our model are the presence of several, well distinct
amino acid preferences for β-strand capping. To the best
of our knowledge, previous studies about β-strand specif-
icities did not reveal such strong signatures.

Due to its limited number of parameters, no over-fitting
was observed when using OSS-HMM for secondary struc-
ture prediction. On single sequences, it performs better
than PSIPRED and other HMM-based methods, with a Q3
score of 67.9%. The use of the same model, OSS-HMM, in
a multiple sequence prediction framework gave very
promising results with a Q3 equal to 75.5%. This level of

performance is as good, maybe better, than the previous
methods based on HMMs and evolutionary information
[16,17,21]. The perspectives of this work are twofolds.
First, we can re-estimate the model and carry out the pre-
diction using sequence profiles as done in [16,43,44]. A
second perspective is the extension to the local structure
prediction of non-periodic regions. Most methods predict
protein secondary structures as 3 states: helix, strand and
coil. Coil is a 'complementary' state for those residues that
do neither belong to a helix nor to a strand, accounting for
about 50% of all residues. Therefore predicting coils does
not provide any information about the residue conforma-
tions. One way of extracting more information from the
protein sequence is to predict Φ/Ψ zones for coil residues.
Such a prediction can be readily included in the HMM and
we plan to use it for de novo prediction.

Methods
Data
The dataset is a subset of 2524 structural domains of
ASTRAL 1.65 [46] corresponding to the SCOP domain
definition [47]. An initial list of domains with no more
than 25% identity within sequence pairs was retrieved on
the ASTRAL web page [48]. This list is filtered in order to

Table 6: Prediction scores obtained for the 505 sequences of the independent test set using multiple sequence information

PSIPRED

Qpred MCC SOV Qobs Qpred MCC SOV

Helix 78.5 83.3 0.70 77.5 85.3 85.9 0.77 85.0
Strand 56.1 80.3 0.60 65.1 76.1 78.2 0.70 78.9
Coil 83.8 68.4 0.57 70.8 78.6 76.9 0.63 71.5

Q3 SOV Q3

Global 75.5 72.0 80.5 78.6

a: OSS-HMMdssp denotes 36 state HMM trained using dssp assignment, b: predictions scores are reported with the dssp assignment taken as the 
reference.

OSS-HMMdssp
a

Qobs
b

Table 5: Q3 scores obtained for the 505 sequences of the independent test set using multiple sequence information

76.3 74.4 75.2

OSS-HMMdssp 73.8 75.5 75.4
OSS-HMMstride 75.3 76.02 76.7
PSIPRED 78.6 80.5 81.2

a: evaluation using kaksi assignment, b: evaluation using DSSP assignment, c: evaluation using STRIDE assignment. d: OSS-HMMx denotes 36 state 
HMM trained using x assignment.

Testkaksi
a Testdssp

b Test stride
c

OSS-HMMkaksi
d
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remove NMR structures, X-ray structures with a resolution
factor greater than 2.25 Å, membrane proteins and
domains shorter than 50 residues [see Additional file 6].

Secondary structures are assigned by DSSP [49], STRIDE
[42] or KAKSI [36]. STRIDE and DSSP assignments are
reduced to three classes using the 'EHL' mapping
employed in EVA evaluation [3]: (H, G, I) = helix, (E, b) =
strand, others (S, T, blank) = coil. The whole dataset con-
tains 492 724 residues with a defined secondary structure.

The dataset is divided into a cross-validation data set and
an independent test set containing respectively 2019
sequences (397401 residues) and 505 sequences (95 323
residues). The independent test set is never used in param-
eter estimation and model selection. Models are trained
and tested using a four-fold cross-validation procedure on
the cross-validation data.

Secondary structure contents are similar in the cross-vali-
dation and the independent datasets: 38% helix, 22%
strand and 40% coil according to STRIDE assignment and
37% helix, 23% strand and 40% coil according to DSSP
assignment.

The method is also tested on a dataset of 212 protein
sequences retrieved from the EVA website ("common sub-
set 6" [50]). DSSP secondary structure assignment of the
corresponding sequences were also retrieved on this web-
site. This set of 212 protein sequences has been used to
evaluate the prediction performance of the methods
involved in EVA assessment.

Hidden Markov models
HMM applied to secondary structure prediction
Hidden Markov models are probabilistic models of
sequences, appropriate for problems where a sequence is
supposed to have hidden features that need to be pre-
dicted. The strong theoretical background of HMM (see
for example [51]) allows the estimation of model param-
eters, and the prediction of the hidden features from the
observed sequence. The secondary structure prediction
task can be expressed in term of a hidden data problem as
follows:

• the secondary structure of a particular residue along the
sequence is a hidden process,

• the amino acid sequence is the observed process.

The secondary structure succession is governed by a first
order Markov chain and amino-acids are independent,
conditionally to the hidden process.

In a very basic HMM, each secondary structure is modeled
by a single state. The parameters of the model are the tran-
sition and emission probabilities. Here, we will consider
more complex models with several hidden states per sec-
ondary structure. The difficulty is to choose the optimal
number of hidden states for each secondary structure.
Model parameters are then estimated from available data.

HMM training
The number of hidden states for each secondary structure
and initial parameter values are chosen as explained in the
next section. Models are trained with labeled sequence of
secondary structures [31] together with the amino-acid
sequence using the Expectation-Maximization (EM) algo-
rithm [51]. Secondary structures are labeled according to
the DSSP assignment. Labels of secondary structure are
removed for the prediction step. All models are trained
and handled with the software SHOW [52], extended to
handle protein sequences.

Optimal HMM selection

Models of increasing size are built without a priori knowl-

edge. All transition probabilities are initially set to , N

being the total number of hidden states. Initial emission
parameters are randomly chosen. The similarity of models
estimated on different data sets is checked [see Additional
file 2]. Ten different starting point are used and the model
with the best likelihood is selected during the EM estima-
tion. For large models, 100 starting points are used to ver-
ify that the EM estimation has sufficiently explored the
parameter space. This procedure provided results similar
to those obtained with 10 starting points. The optimal
models are then selected using three criteria:

• prediction accuracy assessed by the Q3 score,

where Nij denotes the number of residues in structure i
predicted in structure j, and Ntot the total number of resi-
dues,

• Bayesian Information Criterion [53] that ensures the
best compromise between the goodness-of-fit of the
HMM and a reasonable number of parameters,

BIC = logL - 0.5 × k × log(N),

where logL denotes the log-likelihood of the learning data
under the trained model, k is the number of independent
model parameters and N is the size of the training set. k is

1
N

Q
N

N
iii

tot
3 =

∑
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the actual number of free parameters in the final model, i.
e., parameters estimated to be null are not counted. The
first term of BIC increases with the number of parameters;
it is penalized for parsimony by the second term. BIC cri-
terion does not take prediction accuracy into account.

• the statistical distance between two models as described
by Rabiner [51]. The symmetric distance Ds between two
models M1 and M2 is given by:

where O(2) is a sequence of length T generated by model
M2 and log L(O(2)|Mi) is the log-likelihood of O(2) under
model Mi.

Briefly, the selection is done as follows (see [23] for fur-
ther details about the selection procedure). Initially, mod-
els with equal number of hidden states for each structural
class are considered. The three above criteria help select-
ing models with a limited number of hidden states, about
15 per structural class. Then we consider models for which
the number of states increases for one structural class
while it remains fixed to one for the two other classes. This
defines the model size range that needs to be explored for
each structural class: 12 to 16 states for helices, 6 to 10
states for strands and 5 to 13 states for coil. Finally, all 225
models within these size ranges are generated and evalu-
ated. The optimal model, described in the result section,
has 36 hidden states: 15 for helices, 9 for strands and 12
for coil. We will refer to this model as OSS-HMM.

HMM prediction using single sequences
Predictions are done using the forward/backward algo-
rithm. This allows the computation of the posterior prob-
ability of each hidden state in each position of the query
sequence, given the model and the whole sequence: P(St =
u | X), where St is the hidden state at position t, u is a par-
ticular hidden state and X is the amino-acid sequence (see,
e.g., [54] for computation detail).

The posterior probability of hidden states of the same
structural class c are summed together:

c being the set of hidden states modeling the structural
class. The structural class with the highest probability is
predicted.

HMM prediction using multiple sequences
Models estimated with single sequences can be used in a
framework of a multiple sequence prediction. The multi-
ple sequence based prediction is carried out in three steps:

1. a PSI-BLAST search is performed using the sequence to
be predicted, resulting in a family of n homologous
sequences,

2. the secondary structures of these n sequences are inde-
pendently predicted using the HMM,

3. the n predictions are combined into a unique predic-
tion.

In the first step, homologous sequences are extracted
using PSI-BLAST with search parameters -j 3 -h 0.001 -e
0.001, against a non-redundant data bank. The redun-
dancy level of the data bank is 70% (i.e., no pair of
sequences has more than 70% identical residues after
alignment) and the data bank has been filtered to remove
low-complexity regions, transmembrane regions, and
coiled-coil segments. Other data banks (80 and 90%
redondancy level, filtered or not) were tested and the
above choice provided the best results. In the second step,
n predictions are performed, independently for each
sequence retrieved in the first step, with the forward-back-
ward algorithm.

In the third step, the n independent predictions are com-
bined. At each position of the sequence family, the predic-
tions of the n sequences for the same position contribute
to the final prediction, with a sequence weight. Sequence
weights are used to correct for the fact that the n sequences
retrieved in the first step do not necessarily correctly sam-
ple the sequence space. For example, a sequence family
can be composed of several very similar sequences and a
few more distant sequences. Without sequence weights,
the final prediction would be biased toward the set of sim-
ilar sequences and the information carried by the more
distant sequences would be lost. The probability of the
secondary structure s at the position t of the sequence fam-
ily F is then given by:

where Pi (St = s) is the posterior probability of the second-
ary structure s obtained for the single sequence i at posi-
tion t (see equation 1). The sum is taken over all the n
sequences retrieved for the family that do not contain gap
at the considered position. The secondary structure with
the highest probability is taken as the prediction.
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Several weighting scheme were tested: Henikoff weights
[55], a weighting scheme introduced by Thompson et al
[56] that uses phylogenetic trees, and a new weighting
scheme based on information sharing in phylogenetic
trees [see Additional file 4].

We also developed a more sophisticated multiple
sequence prediction in which the HMM is fed with the
sequence families and the corresponding phylogenetic
trees [see Additional file 4]. In this case, it is supposed that
aligned sequences not only share the same secondary
structure but the same path of hidden states.

The best results were obtained using Henikoff weighting
scheme and are presented in the Result section.

Assessing the prediction
Accuracy of secondary structure prediction is assessed
using standard scores such as Q3, SOV [57], Qobs (sensitiv-
ity), Qpred (specificity) and Matthew's correlation coeffi-
cient [see Additional file 1].

Availability and requirements
Project name:

OSS-EMM
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Other requirements:

GSL library (1.3 or higher, http://www.gnu.org/software/
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GNU GPL
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