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Abstract
Background: The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic
compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1), previously known as
Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal
Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a
reductase and a ferredoxin (BPDO-FB1). One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase
(BPDO-OB1), is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene
and benzo[a]pyrene.

Results: In this study, crystal structures of BPDO-OB1 in both native and biphenyl bound forms are
described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most
similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB
9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly
larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the
binding of large aromatic substrates. There are no major structural changes observed upon binding of the
substrate. BPDO-FB1 has large sequence identity to other bacterial Rieske ferredoxins whose structures
are known and demonstrates a high structural homology; however, differences in side chain composition
and conformation around the Rieske cluster binding site are noted.

Conclusion: This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic
rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger
entrance to the active site as well as the ability of the active site to accommodate larger substrates. While
the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the
amino acids near the iron-sulfur cluster. Because this ferredoxin is used by multiple oxygenases present in
the B1 organism, this ferredoxin-oxygenase system provides the structural platform to dissect the balance
between promiscuity and selectivity in protein-protein electron transport systems.
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Background
Sphingobium yanoikuyae B1 (B1), previously known as
Sphingomonas yanoikuyae B1 and Beijerinckia sp. strain B1
[1], was isolated by virtue of its ability to use biphenyl as
its sole source of carbon and energy for growth [2]. B1 is
capable of using naphthalene, phenanthrene, anthracene,
toluene, m- and p-xylene as sole sources of carbon and
energy [3]. Other compounds are also oxidized by this
microorganism and many of these are converted to cis-
dihydrodiols. B1 remains one of the only known
microbes, along with Mycobacterium vanbaalenii PYR1 [4]
and Sphingomonas sp. strain CHY-1 [5-7], able to oxidize
large aromatic hydrocarbons such as benzo[a]pyrene,
benzo[a]anthracene and chrysene [8] to cis-dihydrodiols.

In the B1 genome, at least six sets of putative oxygenase
genes are present [9] and are all believed to share a com-
mon electron donor system [10]. The genes bphA1A2f,
which encode BPDO-OB1, have been sequenced and
found to encode a Rieske oxygenase (RO) [11-13] related
to naphthalene and biphenyl dioxygenases [14]. BPDO-
OB1 is responsible for the oxidation of large aromatic com-
pounds, such as benzo[a]pyrene, by B1. Structural infor-
mation [15-17] and molecular modeling [18] have been
used to determine features important for substrate specif-
icity in other biphenyl oxidizing oxygenases; however,
most of the effort has been targeted at understanding how
biphenyl dioxygenases catalyze the degradation of poly-
chlorinated biphenyls (reviewed in [19-22]). Previous
structural studies of several ROs provide insight into com-
mon features of how the terminal component of the RO
systems are organized and how substrate interacts with
the enzyme to form the hydroxylated product [23]. To
date, structures of enzymes that catalyze cis-dihydroxyla-
tion of aromatic substrates with more than three rings
have not been reported.

Rieske oxygenase systems have multiple components
whose function is to transfer electrons from NAD(P)H to
active molecular oxygen and ultimately oxidize aromatic
hydrocarbon substrates [23]. A single reductase for the
multiple Rieske oxygenases is present in the B1 genome
[10]. This reductase passes one electron at a time from
NAD(P)H to the Rieske ferredoxin, BPDO-FB1, which in
turn passes the electron on to the dioxygenase enzyme
[24]. The terminal oxygenase component is responsible
for catalyzing the addition of molecular oxygen to the aro-
matic substrate. This occurs at the mononuclear iron, con-
tained in a large, primarily hydrophobic active site. The
residues that form the active site have been shown to con-
trol substrate specificity.

Here we report the structures of BPDO-FB1 and BPDO-
OB1. The structure of BPDO-FB1 shows similarities and
important differences compared to other known Rieske

dioxygenase ferredoxins. Structures of BPDO-OB1, in both
the native form and bound to biphenyl, are presented.
These structures demonstrate how BPDO-OB1 binds sub-
strate in the active site. We also discuss the similarities and
differences of this terminal oxygenase to other RO termi-
nal oxygenase structures that have been previously deter-
mined and how these differences play a role in substrate
specificity and regio- and stereoselectivity of product for-
mation.

Results & discussion
Ferredoxin structure determination
The asymmetric unit contains two copies of the BPDO-FB1
molecule. The final model contains residues 3 – 104 in
chains A and B. The structure has been refined to a resolu-
tion of 1.9 Å with a final Rfactor of 19.3% and an Rfree of
24.0%. The first two N-terminal and last three C-terminal
residues could not be modeled into the electron density.
The superposition of all Cα atoms in both chains using
Lsqman [25] had an RMSD of 0.40 Å. Residues Lys-25,
Pro-104, and Glu-95 through Gly-97 had the largest devi-
ations between chains A and B. The surface loop contain-
ing Lys-25 and Met-26 had little to no density for their
side chains, Pro-104 is the last residue modeled, while
Asp-96 assumes two conformations in chain B. The Rieske
[2Fe-2S] cluster had isotropic displacement factors of 19.6
and 18.5 Å2 for chains A and B respectively. Crystallo-
graphic statistics are reported in Table 1.

Oxygenase structure determination
The asymmetric unit contains the entire BPDO-OB1α3β3
hexamer and residues 6 – 454 of the α subunits and resi-
dues 5 – 174 of the β subunits were modeled into the elec-
tron density. The structure has been refined to a resolution
of 1.7 Å with a final Rfactor of 18.8 % and an Rfree of 22.9
%. The loop region located at the entrance of the α subu-
nit active site is disordered, with higher than average B-
factors and low side-chain electron density. This region
spanned from residues 220 – 240 with residues 235 – 239
being the most disordered. Corresponding regions in
other ROs are also disordered [15,26-30]. Lsqkab [25] was
used to determine the superposition RMSDs of the three
α and β subunits in the asymmetric unit. A few regions in
the α subunit, residues 108 – 123 and 411 – 434, and in
the β subunit, residues 77 – 85 and 139 – 148, had higher
than average RMSDs when compared; however, electron
density clearly defined the coordinates of these residues.
Crystallographic statistics are reported in Table 1.

Structure of the substrate-free oxygenase enzyme
The three copies of the α and β subunits form an α3β3 qua-
ternary structure similar to the quaternary structure
observed in all known RO structures. The hexamer forms
a mushroom-shaped structure, illustrated in Figure 1,
where the three α subunits form the cap and the three β
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subunits form the stem. The hexamer structure is believed
to be the active biological unit, similar to other known
ROs.

The α subunit consists of 454 residues, which form two
domains. The N-terminal portion consists of a Rieske
[2Fe-2S] iron-sulfur cluster domain, defined by residues
40 – 140. The Rieske domain consists of β strands and
loops, forming an ISP domain fold [31]. Four residues,
two histidines and two cysteins, in the α subunit coordi-
nate the Rieske non-heme iron cluster [2Fe-2S]. His-82
and His-103 coordinate one iron, while Cys-80 and Cys-
100 coordinate the other. The C-terminal domain is a mix
of helices and strands forming a TBP-like or helix-grip fold
and is a member of the Bet v1-like superfamily [31]. The
structural conservation suggests that the intraprotein elec-
tron transport in BPDO-OB1 is similar to the system
described for NDO-O9816-4 and benzoate dioxygenase [32-
37].

The mononuclear iron is coordinated by two histidines,
His-207 and His-212, and one aspartate, Asp-360, at the

rear of the active site. This iron has been shown to bind
water(s) or dioxygen in other structures. In BPDO-OB1, a
clear bimodal electron density distribution was not
observed, but instead an egg-shaped electron density
above the mononuclear iron was present (Figure 2).
When a single water/hydroxide molecule was modeled in
this position, it resulted in residual positive density on the
Fo-Fc electron density maps. Residual positive electron
density was not observed on the Fo-Fc electron density
maps when modeling molecular oxygen as the fourth iron
ligand; however, refinement with relaxed restraints
(refinement restraints allowing the oxygen-oxygen bond
an RMSD of 0.3Å) placed the oxygen-oxygen bond dis-
tance at 0.8 – 1.1Å in the three subunits. This is slightly
shorter than the average distance of 1.21 Å between two
oxygen atoms in O2. B-factors for the refined oxygen mol-
ecule also suggested that it was less than fully occupied.
The final model has both molecular oxygen and water
bound to the iron in partially occupied states (Figure 2).
In previous studies, both dioxygen species [15,27,38,39]
and water [16,26,28,29,39-42] have been observed as lig-
ands in RO crystals grown in atmospheric conditions. The

Table 1: Summary of crystallographic data and refinement statistics

Crystal Ferredoxin (2I7F) Oxygenase (native) (2GBW) Oxygenase (biphenyl bound) (2GBX)

Space group P6522 P3121 P3121
Cell parameters
a = b (Å) 62.064 134.96 134.43
c (Å) 238.436 219.89 220.53
Resolution (Å)1 9.49 – 1.90 Å (1.96 – 1.90 Å) 19.80 -1.70 Å (1.76 -1.70 Å) 43.15 – 2.75 (2.85 – 2.75)
Data collection
X-ray source NSLS X6A IMCA-CAT 17-ID IMCA-CAT 17-ID
Wavelength (Å) 1.03320 1.00000 Å 1.00000 Å
Total observations 108720 1083097 343108
Unique observations 20866 241600 56040
Completeness (%)1 93.7 % (65.2 %) 95.3 % (98.1 %) 92.6 % (99.7 %)
(I)/σ(I)1 8.2 (2.9) 8.2 (2.9) 9.6 (3.7)
Multiplicity1 5.21 (3.46) 4.48 (4.10) 6.12 (7.14)
Rsym

1,2 0.121 (0.417) 0.083 (0.394) 0.104 (0.409)
Crystallographic refinement
Rfactor/Rfree (%)3 19.1/20.3 18.8/22.9 22.8/26.9
RMSD from ideality
Bond lengths (Å) 0.017 Å 0.017 Å 0.006 Å
Bond angles (deg) 1.925° 1.616° 0.880°

1 Outer shell values are in parentheses.

2 , where Ii(hkl) is the ith measurement of reflection hkl and I(hkl) is the average for that reflection.

3 , where Fobs and Fcalc are the observed and calculated structure factors, respectively. Rfree is the same, but 
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Top and side view of the BPDO-OB1 hexamerFigure 1
Top and side view of the BPDO-OB1 hexamer. The structure of biphenyl 2,3-dioxygenase is a mushroom-shaped α3β3 
hexamer. This quaternary structure is typical of αβ Rieske oxygenases. This structure allows a mononuclear iron from one α 
subunit to come within ~15 Å of a Rieske cluster from a neighboring subunit, allowing electron transfer to take place.
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BPDO-OB1 crystals were grown in atmospheric condi-
tions, therefore molecular oxygen or water could consti-
tute the fourth ligand on the mononuclear iron.

The β subunit of BPDO-OB1 has a Cystatin-like protein
fold and belongs to the protein superfamily of NTF2-like
proteins [31]. The function of the β subunits of ROs is not
well understood and reports vary as to whether or not
mutations in the β subunit of ROs can influence regiose-
lectivity of product formation (reviewed in [43]). In the
case of BPDO-OB1, the β subunit is not directly involved
in creating the topology of the active site; however, the
mononuclear iron is within 11 Å of the α-β subunit inter-
face. This distance may allow select β-subunit side chains
to indirectly affect the topology of the active site by inter-
acting with residues that directly form the active site.

Structure of the biphenyl bound oxygenase enzyme
B1 has been shown to catalyze the dihydroxylation of
biphenyl at positions 2 and 3 of the carbon ring [2,44]
and recent studies have confirmed that BPDO-OB1 is
responsible for this activity [45]. Previous structural inves-
tigations of ROs have demonstrated that substrate bound
in the active site is oriented such that the carbon(s) oxi-
dized in the dihydroxylation reaction is (are) closest to the
mononuclear iron [16,26,27,30,40,42,46]. This trend is
also seen in the structure of BPDO-OB1 bound to biphe-
nyl. The 2 and 3 carbons of biphenyl are positioned clos-
est to the iron, with a water/hydroxide molecule bound to
the iron positioned between the substrate and the iron
(Figure 3). Crystals were grown and biphenyl was added
in the presence of atmospheric oxygen. The enzyme was
oxidized and no electron source was added; therefore,

catalysis did not occur. We are unable to determine
whether the iron is coordinated to a water molecule
(hydroxide ion) or an oxygen molecule at this resolution.
No significant changes in the active site main chain were
observed near the mononuclear iron compared to the
native structure. However, small changes in the main-
chain and side-chain positions of the distal portion of the
active site were observed. The largest changes were seen in
the loop regions that cover the entrance to the active site.
The loop main-chain was pushed slightly away (~0.2–0.3
Å) from the substrate in the complex structure, while the
main-chain proximal to the mononuclear iron remained
static.

Comparison of BPDO-FB1 to other Rieske oxygenase 
ferredoxins
The structure of the biphenyl dioxygenase system's ferre-
doxin component, BPDO-FB1, is the fourth Rieske oxyge-
nase ferredoxin structure to be determined and shares
significant sequence and structural homology with these
proteins (Table 2). BPDO-FB1 has structural features simi-
lar to other ferredoxins including three stacked beta sheets
and a solvent exposed Rieske cluster (Figure 4) [47]. The
protein fold surrounding the Rieske cluster is similar in all
Rieske ferredoxins, including the high-potential Rieske
ferredoxins found in respiratory electron transport chains
such as the bc1 complex [48] and the Rieske clusters found
in dioxygenase enzymes such as BPDO-OB1.

In addition to the conserved CXH-CXXH motif present in
all Rieske ferredoxins, there are two additional conserved
residues, Phe-71 and Pro-82, in the dioxygenase ferredox-
ins [47,49,50]. The phenylalanine is part of the small
ferredoxin core near the Rieske cluster. The neighboring
side-chains include Thr-46, Leu-52 and Ile-87. These resi-
dues are highly conserved with Thr-46 most commonly
being a serine or a threonine, Leu-52 existing almost
exclusively as a leucine, and Ile-87 being the most varied
with leucine as the most common substitution (Table 3).
The conserved proline is located at a hairpin turn at the
apex of the ferredoxin and has previously been classified
as part of a polyproline loop in Rieske ferredoxins (Figure
5). Unlike the biphenyl ferredoxin from LB400, which has
three consecutive prolines, this ferredoxin has only a sin-
gle proline in the loop.

The reduction potential of the Rieske cluster in bacterial
dioxygenase systems is expected to be approximately -150
mV, similar to that found in BPDO-FLB400 [47] and NDO-
F9816-4 (Lindsay Eltis, personal communicaton). It is
believed that the local electrostatic environment, created
by charged and hydrogen bonded residues near the clus-
ter, differentiates the reduction potential of the cluster
from homologous structures. Thus the low potential oxy-
genase ferredoxins, with negative reduction potentials,
have an electrostatic environment that is more negative

Mononuclear iron bound to oxygen and waterFigure 2
Mononuclear iron bound to oxygen and water. Active 
site of BPDO-OB1 showing the dioxygen molecule and water 
molecule modeled. The dioxygen molecule is shown as a ball 
and stick molecule, while a sphere represents the water mol-
ecule. The mesh is 1.0 σ 2Fo-Fc electron density.
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than the mitochondrial Rieske ferredoxins, with positive
reduction potentials. BPDO-FB1 is the ideal protein for
exploring these effects; unlike the other Rieske oxygenase
ferredoxins, this protein contains a residue which hydro-
gen bonds to the cluster through the side-chain (Figure 6),
as opposed to through the main-chain as present in other
ferredoxins. Thus substitution of Cys-83 with alanine,
valine, or serine, can probe the effect of local charge and
hydrogen bonding on the reduction potential. Interest-
ingly, the conserved Phe-71 in dioxygenase Rieske ferre-
doxins is exclusively a tyrosine in the Rieske ferredoxins
found in mitochondrial and chloroplast electron trans-
port chains. The increased polarity or hydrogen bonding
ability of the tyrosine may assist in raising the reduction
potential of these ferredoxins. This provides a second
rational target for mutational analysis.

Comparison of BPDO-OB1 to other Rieske oxygenases
The X-ray diffraction structural model shows that BPDO-
OB1 is structurally similar to other known ROs, as pre-
dicted by sequence analysis. Structure and sequence align-
ment confirm that NDO-O9816-4 is the most structurally
similar, with most of the variation in the α subunit
around the active site. Table 2 gives information on
sequence and structural similarity between BPDO-OB1
and other ROs. Of the 21 residues that form the active site,
only 6 differ from NDO-O9816-4. Thr-308 in BPDO-OB1,
analogous to Ser-310 in NDO-O9816-4, is positioned at the
entrance to the active site. Thr-308 seems to push residue
Leu-260 toward the entrance of the active site compared
to the position of Val-260 in NDO-O9816-4. This change

results in an indentation in the wall at the far side of the
active site. Leu-356 in BPDO-OB1, analogous to Trp-358
in NDO-O9816-4, also contributes to this relative indenta-
tion in the active site wall. Residue Phe-224 in NDO-
O9816-4 is also in this bulge region and is analogous to Leu-
223 in BPDO-OB1. Leu-226 is conserved between BPDO-
OB1 and NDO-O9816-4, but the side-chain positions differ.
These mutations and side-chain rotamer conformations
effectively make a hydrophobic indentation in the wall of
the active site, both changing the shape and increasing the
volume of the active site compared to NDO-O9816-4. A
similar indentation is present in the structure of BPDO-
ORHA1 [16] (Figure 7). In both BPDO-ORHA1 and BPDO-
OB1, the phenyl ring of biphenyl distal to the mononu-
clear iron is in this portion of the active site. By situating
the distal ring in this location, the enzyme is able to posi-
tion the 2 and 3 carbons to be directly facing the mono-
nuclear iron. In NDO-O9816, the side-chain of Trp-358
occupies part of this indentation, which would cause the
biphenyl substrate to rotate slightly, relative to the mono-
nuclear iron. This rotation would move the 2 carbon far-
ther away from the iron and the 4 carbon closer. This
would also explain the differences in the regioselectivity
of enzymes, where BPDO-OB1 and BPDO-ORHA1 produce
the cis-2,3-biphenyldiol exclusively, while NDO-O9816-4
produces a mixture of the cis-2,3- and cis-3,4-biphenyldiol
[51].

The BPDO-ORHA1 (PDB entry 1ULI) active site has a signif-
icantly smaller volume, ~27 Å3, than BPDO-OB1, ~43 Å3.
This is due to bulkier side-chains in BPDO-ORHA1 and var-

BPDO-OB1 bound to biphenylFigure 3
BPDO-OB1 bound to biphenyl. Stereo image of the active site of BPDO-OB1 with biphenyl bound. The biphenyl molecule is 
shown in yellow. A 1.0 σ 2Fo-Fc electron density map calculated without biphenyl present (unbiased) is shown in blue mesh for 
the biphenyl ligand. The residues that coordinate the mononuclear iron are shown in red, while the residues that form the 
active site pocket are shown in green. Black lines show distances between the biphenyl carbons and the mononuclear iron and 
red lines show distances between the biphenyl carbons and the water/hydroxide bound to the mononuclear iron. Left and 
center images are wall-eyed stereo, center and right images are cross-eyed stereo.
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iability in the loop positions at the active site entrance.
Comparing the ligand bound structures, biphenyl carbons
2 and 3 are closer to the mononuclear iron in BPDO-
ORHA1, 4.3 and 4.6 Å respectively, as compared to BPDO-
OB1 which has an average distance of approximately 5.0 Å
for both the 2 and 3 carbons in the three subunits. How-
ever, in both BPDO-ORHA1 and BPDO-OB1, the distances
between the biphenyl and the iron-bound water are simi-
lar. The closer position in BPDO-ORHA1 is mediated by an
interaction with Met-222, which is not present in BPDO-
OB1. The glycine (Gly-205) present in the structurally
analogous position leaves room for the ligand to move
slightly further from the iron. The lack of large side-chain
rearrangement upon substrate binding is similar to results
seen in NDO-O9816-4 [27,40] and BPDO-ORHA1 [16]. The
loop covering the active site entrance of BPDO-OB1 shifts
upon binding of biphenyl. While large changes in this
loop are not seen in the structures of NDO-O9816-4, this
loop is believed to be flexible in NDO-O9816-4[27,40].
BPDO-ORHA1 does show significant movement of residues
271 – 276 shifting 1 – 2 Å toward the active site, with the
side-chain Leu-274 forming van der Waals interactions
with the ligand [16]. Loops covering the active site in the

α3 Rieske monooxygenase 2-oxoquinoline 8-monooxyge-
nase also demonstrate changes upon substrate binding
[30]. This loop motion observed in the BPDO-OB1 and
other RO structures allows the active site to "breathe" to
accommodate ligands and may be one of the key features
that allows this class of enzymes to perform catalysis on
diverse sets of substrates with respect to overall size and
shape.

Role of oxygenase active site entrance
Evidence for large aromatic compound dihydroxylation
by NDO-O9816-4 has not been observed in the past. While
the overall active site volumes are relatively similar
between NDO-O9816-4 and BPDO-OB1, the active site
entrance of BPDO-OB1 is larger. Phe-235 is positioned fur-
ther away from the active site in BPDO-OB1 compared to
the analogous residue in NDO-O9816-4. This, along with
the decreased side-chain bulk at Leu-223, compared to
NDO-O9816-4, effectively increases the size of the active
site entrance in BPDO-OB1. Figure 8 and Additional file 1
demonstrate the differences in the active site entrance
between BPDO-OB1 and NDO-O9816-4. The entrance to
RO active sites is similar to an inverted funnel, with a
small aperture leading to a large vestibule. Based on struc-
tural comparison, we propose that the shape and size of
the active site entrance may keep larger substrates out of
the NDO-O9816-4 active site even though there would be
enough space inside the pocket to accommodate the lig-
and. Drawing from that comparison, we also believe that
the active site entrance could influence the rates of prod-
uct turnover by BPDO-OB1 with respect to large com-
pounds, such as benzo[a]pyrene and benzo[a]anthracene.
While studies to determine rates of product formation by
BPDO-OB1 have not been performed to date, it has been
shown that biotransformation of large compounds, such
as benzo[a]pyrene and benzo[a]anthracene are much less
efficient than those for smaller compounds such as naph-
thalene, and biphenyl [2,3,8,11,52]

Conclusion
Crystal structures of BPDO-FB1 and BPDO-OB1 from
Sphingobium yanoikuyae strain B1 are presented and dem-
onstrate strong structural conservation with other RO
ferredoxin and oxygenase components. The structures
reported here provide a rational basis for the ability of
BPDO-OB1 to catalyze large aromatic substrates. It also
provides a framework to interpret the product regioselec-
tivity of BPDO-OB1 and the differences in product regiose-
lectivity compared to other ROs. While the Rieske
ferredoxin structure is very similar to other Rieske ferre-
doxins, the differences in amino acid composition near
the cluster in BPDO-FB1 provide a unique opportunity
among the Rieske oxygenase ferredoxins to examine the
effect of cluster environment and hydrogen bonding on
reduction potential.

Ribbon diagram of BPDO-FB1 showing the location of the Rieske iron-sulfur clusterFigure 4
Ribbon diagram of BPDO-FB1 showing the location of 
the Rieske iron-sulfur cluster. The ribbon diagram shows 
the conserved Rieske binding domain of the ferredoxin, 
where the Rieske cluster is positioned near the surface of the 
protein. The Rieske cluster is shown as spheres, where iron 
is orange and sulfur is yellow. The residues that directly 
interact with the Rieske cluster are shown as sticks. Beta 
sheets are shown in blue and alpha helices are shown in pur-
ple.
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Stereo images showing the conserved residues near the Rieske cluster of BPDO-FB1Figure 5
Stereo images showing the conserved residues near the Rieske cluster of BPDO-FB1. The cartoon diagram shows 
that side chains of Thr-46, Leu-52, Phe-71, and Ile-87 form a highly conserved core among the Rieske oxygenase ferredoxins 
near the iron-sulfur cluster. The residues flanking Pro-82 are proline in BPDO-FLB400 and some high-potential Rieske ferredox-
ins, but are not proline in BPDO-FB1. Left and center images are wall-eyed stereo, center and right images are cross-eyed 
stereo.

Table 2: Sequence and structural statistics for various Rieske oxygenases compared to biphenyl 2,3-dioxygenase

Ferredoxin (PDB ID) RMSD (Cα) Sequence identity Sequence similarity

BPDO-FLB400 (1FQT) 1.017 (97) 36.6 % 56.4 %

T4MOC-F (1SJG) 1.697 (93) 24.1 % 52.7 %

CARDO-FCA10 (1VCK) 1.312 (98) 36.3 % 60.8 %

Terminal oxygenase α 
Subunit (PDB ID)

RMSD (Cα) Sequence identity Sequence similarity

NDO-O9816-4 (1NDO) 1.24 (420) 43.5 % 62.0 %

NBDO-OJS765 (2BMO) 1.23 (413) 41.2 % 59.4 %

BPDO-ORHA1 (1ULI) 1.48 (388) 39.6 % 55.1 %

CDO-OIP01 (1WQL) 1.50 (377) 36.8 % 52.7 %

NDO-O12038 (2B1X) 1.59 (358) 35.0 % 52.5 %

Terminal oxygenase β Subunit 
(PDB ID)

RMSD (Cα) Sequence identity Sequence similarity

NDO-O9816-4 (1NDO) 1.19 (156) 28.1 % 46.0 %

NBDO-OJS765 (2BMO) 1.19 (160) 29.5 % 47.0 %

BPDO-ORHA1 (1ULI) 1.15 (159) 31.6 % 53.2 %

CDO-OIP01 (1WQL) 1.17 (161) 31.8 % 48.6 %

NDO-O12038 (2B1X) 1.20 (156) 35.3 % 49.3 %
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Methods
Protein expression, purification and crystallization
BPDO-OB1, bphA1fA2f [11,14] and BPDO-FB1, bphA4
[10], were each cloned from B1 into the protein expres-
sion vectors pET101D (Invitrogen, Carlsbad, CA) and
pT7-7, respectively, and expressed as described in Yu et al.
[45]. Crystallization of the ferredoxin protein was per-
formed using 33 mg/mL of BPDO-FB1 protein in a 50 mM
phosphate buffer, pH 6.8, with 0.1 M citric acid and 1.6 M
ammonium sulfate as precipitants. Crystallization of the
oxygenase protein was performed using purified BPDO-
OB1 protein at 20 mg/ml in a 20 mM potassium phos-
phate buffer, pH 6.8 [45]. Mineral oil was used as a cryo-
protectant for the crystals.

Oxygenase crystals were also used for soaking experiments
in an attempt to generate the BPDO-OB1 protein-biphenyl
complex. Soaking experiments were based on similar
experiments previously done with NDO-O9816-4 to gener-
ate crystals of ligand-bound enzyme [27,38,40]. Crystals
were moved to fresh drops containing reservoir buffer.
Ethanol saturated with biphenyl was added to these
drops. The crystals tolerated up to 5% ethanol in the drop.
Crystals were allowed to soak for 3–5 days, then were
removed from the drop and flash-cooled to 100 K. Min-
eral oil was used as a cryoprotectant.

Data collection, processing, structure solution and 
refinement
X-ray diffraction data for BPDO-FB1 were collected on
beamline X6A at Brookhaven National Laboratory and
data for BPDO-OB1 were collected on the IMCA-CAT
beamline 17-ID at the Advanced Photon Source in
Argonne National Laboratory. Crystallographic statistics

are presented in Table 1. d*TREK [53] was used to process
the data for BPDO-FB1 to a resolution of 1.60Å. Analyzing
systematic absences, the space group was determined to
be either P6122 or P6522. Molecular replacement using
AMoRe [54] and a polyalanine model based on BPDO-
FLB400 (PDB entry 1FQT) produced a solution in space
group P6522. Model building using O [55] and Coot [56],
density modification using DM, and refinement using
Refmac5 [57] from the CCP4-4.0 program suite were
assisted by non-crystallographic symmetry between the
two monomers in the asymmetric unit. These NCS
restraints were loosened as refinement progressed. Cycles
of Refmac5 with ARP/wARP [58,59] or the Coot find
waters routines were used to identify solvent atoms. Asp-
96 in chain B was modeled as having two side chain con-
formations. A single round of TLS optimization was used
at the end of refinement with each protein monomer act-
ing as a TLS group.

Data collected from native BPDO-OB1 crystals was proc-
essed using d*TREK [53] to a resolution of 1.70 Å. Analy-
sis of systematic absences suggested that the space group
was P3x21. Molecular replacement was performed using a
polyalanine model based on NDO-O9816-4(PDB entry
1NDO) [28]. Molecular replacement using AMoRe [54]
gave a clear solution in the space group P3121. Initial
refinement of the polyalanine model with the program
Refmac5 [57] of the CCP4-5.0.2 [60] suite of programs
yielded good starting electron densities. The molecular
visualization program O [55] was used for model build-
ing. After the bulk of the structure was modeled, refine-
ment was continued with Refmac5 without NCS
restraints. Solvent molecules were found using the pro-
gram Arp/Warp [58,59] and multiple side-chain confor-

Table 3: Structurally analogous residues near the iron-sulfur cluster in various Rieske dioxygenase ferredoxins

BPDO-FB1 BPDO-FLB400 T4MOC-F CARDO-FCA10

Rieske cluster coordinating residues

CYS 45 CYS 43 CYS 45 CYS 46
HIS 47 HIS 45 HIS 47 HIS 48
CYS 64 CYS 63 CYS 64 CYS 65
HIS 67 HIS 66 HIS 67 HIS 68

Outer shell residues

ASN 43 ASP 41 ALA 43 ASP 44
GLY 48 GLY 46 GLN 48 GLY 49
ALA 50 TRP 48 ALA 51
PHE 66 LEU 65 ALA 66 PHE 67
GLY 69 GLY 68 TRP 49* GLY 69
ALA 80 SER 79 ASN 80 SER 81
CYS 83 PRO 82 CYS 84

In the structural superposition, residues marked with an asterisk were more than 3.0 Å from the corresponding residue in BPDO-OB1.
Page 9 of 14
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Residues coordinating Rieske [2Fe-2S] cluster in BPDO-FB1Figure 6
Residues coordinating Rieske [2Fe-2S] cluster in BPDO-FB1. All residues interacting with Rieske iron-sulfur cluster or 
its ligands. Hydrogen bonds are displayed in dashed lines. Gly-48 interacts with His-47 and Ala-50 via hydrophobic interactions. 
Note the interaction between the side-chain of Cys-83 and the iron-sulfur cluster, a feature not present in other known Rieske 
oxygenase ferredoxins.
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mations were modeled using the molecular visualization
programs XtalView [61] and Coot [56]. The calculated sol-
vent content was 50 % [62]. The asymmetric unit contains
a complete α3β3 protein.

Data from biphenyl soaked oxygenase crystals were proc-
essed using d*TREK to a resolution of 2.8 Å. The native
BPDO-OB1 structure, with solvent molecules removed,
was used as a starting point for the refinement of the lig-
and bound structure. An energy-minimized structure of
the small molecule biphenyl was constructed using the
program SYBYL 7.1 [63]. This model was used to create a
refinement dictionary for Refmac5 using the ligand
sketcher program in CCP4-5.0.2. After initial refinement
of the protein model, the biphenyl ligand was modeled
into the active site of the enzyme where electron density
maps showed un-modeled density in both 2Fo-Fc and Fo-
Fc maps. The torsion angle between the two rings of

biphenyl was allowed to rotate during refinement and sol-
vent molecules were modeled as appropriate.

Sequence and structural alignments
TCoffee [64] was used to produce a structure-based
sequence alignment of the four known RO ferredoxin
structures and 19 other RO ferredoxin sequences. Struc-
tural alignment of native BPDO-OB1 with structures of
other RO oxygenases was performed using the program
Indonesia [65]. Structural alignments in Indonesia were
done pairwise using the Levitt and Gerstein method with
a cut-off value of 3.5 Å. Sequence alignment and compar-
ison was done using full sequences for each of the pro-
teins without structural information. Protein-protein
sequence alignments were performed using blastp on the
NCBI blast server [66]. All figures showing structures were
created using PyMOL 0.98 [67]. Figure 6 was produced
using a modified version of LigPlot [68].

Comparison of biphenyl 2,3-dioxygenase active site to other Rieske oxygenaesFigure 7
Comparison of biphenyl 2,3-dioxygenase active site to other Rieske oxygenaes. Comparison of the active sites of 
NDO-O9816-4 and BPDO-ORHA1 with BPDO-OB1. NDO-O9816-4 (top) and BPDO-ORHA1 (bottom) active site residues are 
shown as smooth grey lines and the active site iron is shown as a grey sphere. BPDO-OB1 is aligned and overlaid in each of the 
images. Residues that coordinate the mononuclear iron are shown as red ball and stick models, while residues that form the 
active site pocket are shown as green ball and stick models. The mononuclear iron for BPDO-OB1 is shown as a rust colored 
sphere. Residues are labeled using numbering from BPDO-OB1. Left and center images are wall-eyed stereo, center and right 
images are cross-eyed stereo.
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Abbreviations
RO – Rieske Oxygenase

BPDO-OB1 – Biphenyl 2,3-dioxygenase from Sphingobium
yanoikuyae strain B1

BPDO-FB1 – Biphenyl 2,3-dioxygenase ferredoxin from
Sphingobium yanoikuyae strain B1

BPDO-ORHA1 – Biphenyl 2,3-dioxygenase from Rhodococ-
cus sp. strain RHA1

NDO-F9816-4 – Naphthalene 1,2-dioxygenase ferredoxin
from Pseudomonas sp. strain NCIB 9816-4

NDO-O9816-4 – Naphthalene 1,2-dioxygenase from Pseu-
domonas sp. strain NCIB 9816-4

B1 – Sphingobium yanoikuyae strain B1

Authors' contributions
D.J.F. generated the biphenyl-bound oxygenase crystals
and carried out the structural work with the oxygenase
component. E.N.B. carried out work on the ferredoxin
component. D.J.F. and E.N.B. contributed equally to the

Comparison of the active site entrances of BPDO-OB1 and NDO-O9816-4Figure 8
Comparison of the active site entrances of BPDO-OB1 and NDO-O9816-4. Cartoon diagrams of the active site 
entrances for BPDO-OB1 (green) and NDO-O9816-4 (cyan). Multiple differences in the loop structure lead to a larger opening to 
the active site in BPDO-OB1. At position 1, the loop structure is pushed away from the entrance, compared to NDO-O9816-4. 
Position 2 shows the increased bulk of the Phe-224 side chain in the entrance opening, compared to the side chain of Leu-223 
of BPDO-OB1. Finally, postion 3 shows a shift of the helix, which pulls the active site entrance open, compared to NDO-O9816-

4. Biphenyl bound in the active site is shown in yellow and the mononuclear iron is shown as a rust-colored sphere. See Addi-
tional file 1, which shows these structures rotating in three dimensional space.
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Comparison of the active site entrances of BPDO-OB1 and NDO-
O9816-4. Animation of cartoon diagrams of the active site entrances for 
BPDO-OB1 (green) and NDO-O9816-4 (cyan). Multiple differences in the 
loop structure lead to a larger opening to the active site in BPDO-OB1. 
Biphenyl bound in the active site is shown in yellow and the mononuclear 
iron is shown as a rust-colored sphere. Phe-224 (NDO-O9816-4) and Leu-
223 (BPDO-OB1) are shown with side chains as ball and stick models.
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