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Abstract
Background: To discover remote evolutionary relationships and functional similarities between
proteins, biologists rely on comparative sequence analysis, and when structures are available, on
structural alignments and various measures of structural similarity. The measures/scores that have
most commonly been used for this purpose include: alignment length, percent sequence identity,
superposition RMSD and their different combinations. More recently, we have introduced the
"Homologous core structure overlap score" (HCS) and the "Loop Hausdorff Measure" (LHM).
Along with these we also consider the "gapped structural alignment score" (GSAS), which was
introduced earlier by other researchers.

Results: We analyze the performance of these and other conventional measures at the task of
ranking structure neighbors by homology, and we show that the HCS, LHM, and GSAS scores
display considerably improved performance over the conventional measures of sequence or
structural similarity.

Conclusion: The HCS, LHM, and GSAS scores are easily computable quantities that allow users
of structure-neighbor databases to more easily identify interesting structural similarities between
proteins.

Background
Discovering structural similarity between proteins or their
parts can shed light on their evolutionary relationships.
Since evolutionarily related proteins are highly likely to
share common aspects of function, measures of structural
similarity that can distinguish between related and unre-
lated proteins can be particularly useful for protein func-
tional annotation. Discerning homology between
structurally similar proteins is complicated by the fact that
proteins can have very similar structures but be quite
diverse in sequence and there is a belief that structurally

similar proteins can arise due to either convergent or
divergent evolution. Sequence similarity searches very
often fail to rank correctly structurally similar but
remotely related proteins, and also have limited ability to
distinguish structurally similar evolutionarily related pro-
teins from the unrelated ones.

Structure-structure alignment algorithms are the best
known methods to produce evolutionarily correct align-
ments between remotely related proteins [1]. All structure
alignment methods require a target scoring function to

Published: 10 April 2007

BMC Structural Biology 2007, 7:23 doi:10.1186/1472-6807-7-23

Received: 13 October 2006
Accepted: 10 April 2007

This article is available from: http://www.biomedcentral.com/1472-6807/7/23

© 2007 Madej et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425794
http://www.biomedcentral.com/1472-6807/7/23
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Structural Biology 2007, 7:23 http://www.biomedcentral.com/1472-6807/7/23
optimize and a large variety of different scoring functions
have been developed in this connection. Unlike sequence
alignment methods which all use conventional amino
acid substitution matrices for scoring, there is no consen-
sus among different statistical scores used in structure
alignment algorithms. Moreover, these algorithms can be
successful at finding a reasonable alignment but can fail at
ranking good alignments ahead of the problematic ones
using the target scoring functions [2,3].

To compensate for this effect researchers have developed
a number of different structural similarity measures to
rank structurally similar proteins [3-6] or to produce
meaningful clustering based on structural comparison
[5,7,8]. Some commonly used measures are: length of the
alignment, superposition RMSD, percent sequence iden-
tity and their various algebraic combinations. It has been
shown that these particular measures of structural similar-
ity have a limited success at ranking of structurally similar
proteins and distinguishing structurally similar related
proteins from unrelated ones [9-14]. As an improvement
Matsuo and Bryant introduced the "Homologous Core
Structure overlap score" (HCS score) [9] which is calcu-
lated as a fraction of a "homologous core" that is covered
by a structural alignment, where the homologous core is
determined by that part which is conserved in structural
superposition of homologous proteins. More recently,
Panchenko and Madej have introduced the "Loop
Hausdorff Measure" (LHM), which measures the (aver-
age) amount of deviation between the loop regions in a
pair of superposed protein structures [15]. This new simi-
larity measure is analogous to the traditional RMSD, but
has the advantage that it can be applied to the correspond-
ing but non-alignable regions in the two structures. It was
shown that the loop regions in homologous proteins dis-
play a certain level of structural conservation, and the
LHM is very sensitive in detecting subtle differences
between protein structures otherwise unrecognized by
conventional similarity scores [15].

It should be noted that there are different ways to assess
the ability of structural similarity scores to rank structur-
ally similar homologs with respect to their relatedness.
For example, Yang and Honig showed that there exists a
correlation between the significant sequence similarity
and their measure of structural distance even in the twi-
light zone of sequence similarity, so that high values of
structural distance would correspond to the high proba-
bility that proteins are related by common descent and
vice versa [15]. Similarly, in a recent paper sequence-struc-
ture relationships for homologous proteins have been
analyzed for different families/folds and it has been found
as a corollary to other results that the quality of linear
sequence-structure correlation varies depending on the
structure similarity scores used in the study [16].

In this paper we apply a ROC analysis to the problem of
ranking of structure neighbors with respect to homology,
where we decide evolutionary relationships based on the
SCOP database [17]. We use the "superfamily" level in the
SCOP database hierarchy because almost certainly the
proteins in a SCOP superfamily display probable homol-
ogy and common functionality. Using SCOP as a standard
for evolutionary relationships in this study is problematic
since other researchers have produced convincing argu-
ments for homology between proteins in different SCOP
superfamilies. However, the particular cases where diffi-
culties would be expected are largely confined to families
involving "superfolds", such as TIM barrels or Rossmann
folds, and the analyses to convincingly establish homol-
ogy are rather complicated. Thus, although evolutionarily
related proteins may be excluded because SCOP con-
cluded there was insufficient evidence for homology, it
remains the case that the superfamily members of a query
protein are those for which there is clear and convincing
evidence of functional relatedness. Based on structure-
structure superpositions we define different structure sim-
ilarity scores and test their performance on the difficult
benchmark of VAST neighbors (structurally similar pro-
tein domains found by the VAST algorithm [18]). We find
that from among the scores we consider, the LHM, HCS,
and GSAS score ("gapped structural alignment score"
introduced in [3]) exhibit the best performance, especially
for the remotely related proteins.

Results
For convenience we quickly summarize out methods. Fur-
ther details are provided in the Methods section. A selec-
tion of conserved domain (CD) families were taken from
the Conserved Domain Database (CDD). For each CD
family a query (representative) structure was chosen and a
list of similar structures (neighbors) was generated using
the VAST algorithm. The lists were filtered by sequence
identity to reduce redundancy. For a given query structure,
those neighbors on its list were considered to be "true pos-
tives" if and only if they belong to the same superfamily
as the query in the SCOP database. A given structural sim-
ilarity measure/score can be used to rank the pairs of que-
ries and neighbors, and for a chosen cutoff, we can
compute the fractions of true positives (sensitivity) and
false positives found at or above the cutoff. The fractions
of true and false positives provide a basis for comparing
the performance of the different similarity measures.

Table 1 shows the sensitivities of all eight similarity scores
at two given error (false positive) rates (1% and 5%). As
can be seen from this table the LHM, GSAS and HCS
measures demonstrate greater sensitivity than the conven-
tional measures of structural and sequence similarity. For
example, at the 1% error rate, LHM detects more than
twice as many true positives on average as RMSD and frac-
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tion aligned, and more than 1.5 times as many true posi-
tives as percent identity. In Figure 1 we plot the sensitivity
curves for the three scores which perform the best (GSAS,
LHM and HCS). It is apparent from this figure that the
LHM curve lies lower than the curves corresponding to
HCS and GSAS indicating that LHM outperforms on aver-
age these two other measures for the overall test set of 152
families.

It is also of interest to compare the performance of the dif-
ferent measures with respect to the ranking difficulty. To
estimate the ranking difficulty for each CDD family we
take the average percent identity between its query struc-
ture and the non-redundant set of true positive structures
(homologous structure neighbors). There is a broad distri-
bution of sensitivity values across the different degrees of
ranking difficulty as shown in Figure 2, implying that
some domain families are easier to recognize than others.
Queries which have closely related structure neighbors
show higher sensitivity and vice versa, this trend is appar-
ent for all similarity scores used in the study. It should be
noted that this analysis was done on a smaller test set of
97 families which had enough family members (at least
20) to make the calculation of sensitivities per family
more reliable. We also note that 13 of the CDD families
are in the most difficult bin (no more than 10% average
sequence identity) and 52 are in the second most difficult
bin, where the average sequence identity ranges from 10–
20%. Thus, 65 of the 97 CDD families may be considered
to be well within the zone of sequence similarity where
homology is hard to ascertain.

Comparing the different scores, it is clear from this figure
that HCS, GSAS and LHM exhibit better sensitivity in the
twilight zone of sequence similarity below 30% compared
to other scores used in this study. Moreover, HCS and
GSAS outperform the others in the most difficult cases
below 10% of sequence identity. This is not surprising, for
example, GSAS represents a combination measure using
alignment length, RMSD and the number of unaligned
gapped regions. It is not unexpected that a combination
measure should do well. As was shown earlier, a linear
combination of alignment-based structural score (RMSD)
and loop-based structural score (LHM) had a much better
performance compared to each of the scores used sepa-
rately [19].

The HCS scores use CD core models which have been
determined by careful manual alignment curation using
both sequence and structure data. From Figure 2 it is quite
clear that recognizing this common conserved core is a
powerful method for inferring homology and functional
similarity in the most difficult cases. For example, the
Class I amino acyl-tRNA synthetase (aaRS) catalytic core
domain (cd00802) using the HCS score yields a sensitivity
of 0.79 at the 5% error rate whereas the sensitivities
obtained with other measures are substantially lower
(0.44, 0.26, 0.67, 0.23, and 0.44 with percent identity,
RMSD, LHM, fraction aligned, and GSAS respectively).
The aaRS catalytic core domain has 56 non-redundant
structure neighbors of which 12 are in the same SCOP
superfamily, with an average of about 10% sequence iden-
tity. The aaRS structural core is based on the Rossmann
fold and is well-conserved with a number of functionally
important sites located at different core regions. These
include a pair of ATP-binding sites with important
sequence/structural motifs (the "HIGH" and "KMSKS"
motifs) that are characteristic for class I aaRS and included
in the core model. Such features cause the HCS score to
rank the SCOP superfamily members in this family more
highly than the other numerous Rossmann folds with
more remote evolutionary relationships and less func-
tional similarity.

The preceding analysis concerns the average performance
of the various measures. However, in practice most
researchers will be interested in particular protein fami-
lies, and so we should also investigate what happens in
specific cases. To do so, we first further limit the test set to
those CDD families with at least 10 true positives and 10
false positives among their non-redundant structure
neighbors; there are 44 such CDD families altogether. We
found that there are 20 CDD families for which at least
one similarity score (LHM, HCS or GSAS) had a sensitivity
higher than 80% at the 5% false positive rate. On the
other hand, there are seven CDD families for which all
three scores have a sensitivity of less than 50% at the 5%
false positive rate (Table 2).

It is apparent from Table 2 that the seven "difficult" CDD
families involve folds that span a broad range of sequence,
function, and phylogenetic diversity and are often referred
to as "superfolds". It is certainly to be expected that the

Table 1: Sensitivity values estimated from curves. Sensitivity values estimated from the curves (Figure 1) at 1% and 5% error rates 
(fraction of false positives) are listed for different similarity measures: loop Hausdorff measure (LHM), HCS score (HCS), gapped 
structural alignment score (GSAS), percent aligned (%aln), percent identity (%id), root mean square deviation (RMSD), and two other 
structural similarity measures (SI and MI) from [3].

LHM HCS GSAS % aln % id RMSD MI SI

1% error rate 0.36 0.24 0.26 0.14 0.23 0.17 0.15 0.07
5% error rate 0.59 0.54 0.49 0.45 0.44 0.44 0.43 0.31
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measures we consider should encounter difficulty in the
correct evolutionary ranking for structure neighbors of
such families. Most of these superfolds have protein cores
which are very well conserved among all diverse members
of these folds due to stability, foldability, or other require-
ments. Certainly, subtle structural/sequence features or
motifs that may provide clues to evolutionary relation-
ships are not all included in our CDD-derived core mod-
els. Moreover, as was shown previously there is evidence
that all proteins from certain superfolds have a common
ancestor and are all therefore possibly homologous (by
definition) [19-21].

We also compared the measures over the four different
major SCOP fold classes, at the 1% and 5% error rates.

These results are available as supplementary data [see
Additional file 1] and via the internet at [22].

Discussion and conclusions
Most users of structure comparison methods will be inter-
ested mainly in those similarities which may shed light on
the function of their query protein, and hence are prima-
rily interested in the homologous neighbors. The scoring
functions of the various structure comparison algorithms
are useful for ranking the neighbors, however, the rank-
ings they produce are much less than perfect, particularly
in the "twilight zone" of similarity. This is not surprising.
For example, VAST scores and E-values are devised to rec-
ognize fold similarity for simplified vector models of pro-
tein structures. Such vector models capture only gross

Sensitivity curves for the three best-performing measuresFigure 1
Sensitivity curves for the three best-performing measures. The fraction of correctly ranked homologous VAST neigh-
bors (true positives, sensitivity) is plotted against the fraction of incorrectly ranked homologous VAST neighbors for similarity 
measures yielding the best performance: HCS (green)), LHM (red) and GSAS (cyan). True and false positive (error) rate values 
at each cutoff of similarity measures were averaged over protein families from the overall test set (152 families).
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similarities between the spatial arrangements of second-
ary structure elements in proteins, and one would suspect
that such scores are too coarse-grained to do well at rank-
ing homologs. In fact, in a recent paper by Sierk and Pear-
son [2], the authors have found that the scoring schemes
for a number of different structure alignment algorithms
do not perform appreciably better at detecting homologs
than normalized RMSD.

We have compared the different similarity measures via
an ROC analysis using the SCOP superfamily level as our
definition of functional similarity/evolutionary related-

ness. It is arguable as to whether or not this definition is
inclusive enough, for example, the current consensus
seems to be that almost all the TIM barrels are homolo-
gous, although SCOP groups them into 31 distinct super-
families (SCOP release 1.69). Nonetheless, if we are to
rank by functional relatedness, the SCOP superfamily
members of a given query protein are surely more closely
related than other similar structures.

In this paper we have presented scores such as the "Loop
Hausdorff Measure" and "Homologous Core Structure",
which are superior to the conventional structural similar-

Performance on families of differing degrees of difficultyFigure 2
Performance on families of differing degrees of difficulty. The barplot shows the sensitivity at 5% error rate for each 
bin of ranking difficulty. Ranking difficulty is estimated as an average percent identity between the query structure and non-
redundant set of true positive structures (homologous VAST neighbors) for each CDD family. Each bin of percent identity con-
tains at least five CDD families within a given range of ranking difficulty and sensitivity is averaged over the sensitivities of CDD 
families within a given bin. CDD families were chosen here as those with at least 20 non-redundant VAST neighbors. There are 
13 CDD families in the 0–10% bin; 52 in the 10–20% bin; 21 in the 20–30% bin; and 11 in the 30–100% bin (97 CDD families 
altogether).
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ity measures (percent identity, normalized RMSD, and
fraction aligned) at the task of ranking homologous, struc-
turally similar proteins. A combination measure such as
the "Gapped Structural Alignment Score" also performs
well. We have shown (see Figure 2) that in the more diffi-
cult cases, where the sequence identity between the query
and its neighbors is low (30% or less), the LHM, HCS, and
GSAS scores clearly produce the better rankings.

Protein structure comparison continues to be an active
area of research and highly interesting new methods and
studies continue to appear, e.g. [23-25]. However, we
have focussed on the LHM and HCS scores in this paper
since they are of intrinsic biological interest. Indeed, the
LHM and HCS are easily interpretable as they quantify
divergence of loop regions and conservation of structure,
respectively, so that consideration of these measures can
lead to deeper insights into structural evolutionary rela-
tionships.

More detailed case-by-case examination of individual
CDD families shows that none of the scoring schemes
works perfectly. For this reason it is important to make
available several of the best-performing ranking schemes,
and we are currently working on adding the LHM and
HCS scores to the VAST web server and VAST Search web
service. Improved rankings may reduce the number of
neighbors in the "twilight zone", where it is difficult to
discern homology/functionality, however, users will still
need to examine other evidence such as sequence/struc-
ture conservation at functional sites in order to reach a
firm conclusion.

Methods
Description of the test set
In this paper we design a test set of structure-structure
neighbors with recorded "homologous" relationships
between them, which are defined as those structurally
similar proteins belonging to the same SCOP (version
1.67) superfamily category [17]. A homologous core
model for HCS calculation was taken from the curated
Conserved Domain Database (CDD) alignments [26].
Curated CDD alignments have been refined using three-

dimensional structures and structure-structure alignments
and core regions in CDD alignments are defined as those
conserved/aligned among all family members of a given
conserved domain (CD). We start our analysis with a set
of 362 curated alignments from CDD version 2.00 [27],
the current version of which is available at [28]. The cho-
sen CDD alignments correspond to the top node ("par-
ent") alignments in the hierarchy of CDD families. This
means that they represent more general families, whereas
nodes that occur below them in the hierarchy represent
more specific families.

It is necessary to filter our initial list of CDs in order to
ensure mutual consistency between the CD core models,
MMDB domains [29](which are automatically generated
and used by the structure comparison method), and
SCOP domains [17]. In order to do this we first exclude
small CD core models from further consideration (those
with less than 50 residues) since these core models are
often too general to be able to find specific family mem-
bers. For each remaining CDD alignment we choose one
representative structure so that the CDD footprint on this
structure and corresponding MMDB domain/chain
boundaries are consistent to a degree of 80% mutual over-
lap and, simultaneously, the mutual overlap between
MMDB domain/chain boundaries and SCOP domain
boundaries of this structure is at least 80%. In this case we
can say that the CD core model is consistent with the cor-
responding representative MMDB domain. The "foot-
print" here is defined as a region on a representative
structure between the first and the last residues aligned in
the CD. All MMDB domains and a full length chain of the
representative structure (disregarding chain discontinu-
ous domains) are checked and the domain/chain with the
maximum overlap is used as a representative for a given
CD. The collection of all representative structures forms
the set of queries.

All structure neighbors and structural alignments were
obtained from the PubVast database, which contains the
results of pairwise comparisons between all structures in
the PDB, using the VAST algorithm [18]. At the next stage
all structure neighbors for each query domain/chain were

Table 2: Difficult families. Difficult families for all of the measures. For these seven CDD families all of the six measures had 
sensitivities of under 0.50 at the 5% error rate.

CDD acc CDD short name SCOP fold class

cd00945 Aldolase_Class_I TIM β/α barrel
cd00529 RuvC_resolvase Ribonuclease H-like motif
cd01120 RecA-like_NTPases P-loop containing nucleoside triphosphate hydrolases
cd00079 HELICc P-loop containing nucleoside triphosphate hydrolases
cd00453 FTBP_aldolase_II TIM β/α barrel
cd00102 IPT Immunoglobulin-like β-sandwich
cd00234 RPA14 OB-fold
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retrieved from the PubVast database and only those with
more than 80% mutual overlap between VAST alignment
and SCOP domain footprints were selected for further
analysis. By doing this we can compare the SCOP classifi-
cation for the query and its structure neighbors. In order
to eliminate the redundancy among structure neighbors
we use redundancy groups which were constructed previ-
ously by single-linkage clustering of MMDB chains based
on BLAST E-value of 10-40 or less. Only those structure
neighbors belonging to distinct redundancy groups were
counted as being different and those structure neighbors
from the same redundancy group as the query were
excluded from consideration.

True positives in our test set are defined as those neigh-
bors having the same SCOP superfamily category as the
query. At the end of this filtering procedure, 152 queries
with corresponding CDD alignments were collected, each
of them having at least one true positive entry satisfying
all the above criteria. The list of queries together with the
corresponding CDD families for HCS definition is availa-
ble at [30].

Evaluation of the measures – sensitivity analysis
We evaluate the different measures of structural similarity
based on correct detection and ranking of homologous
structure neighbors (true positives) versus non-homolo-
gous structure neighbors (false positives). For a given
query and its structure neighbor list, we descend the list
and calculate the true positive and false positive ratios at
each similarity measure cutoff. This produces a sensitivity
curve. The true positive ratio (sensitivity) is defined as the
number of detected true positives divided by the overall
number of true positives of the given CDD family. The
false positive ratio is simply the number of found false
positives divided by the overall number of false positives
of the given CDD family. To compare the sensitivities for
different scoring schemes we use the sensitivity values
found at 1% and 5% of false positive rate (error rate). The
higher the sensitivity at a given error rate, the better the
performance of a given similarity measure. Since different
CDD families have different numbers of true and false
positives there can be a certain bias towards large families.
To compensate for this bias we plot the sensitivity curves
averaged over all CDD families (Figure 1). We also calcu-
late the sensitivity at the 5% error rate separately for each
CDD family (Figure 2), in which case a test set of 97 CDD
families has been used with at least 20 non-redundant
structure neighbors.

Measures of sequence and structural similarity
The HCS overlap score for each pair of aligned structures
(i.e. alignment of a query to each structure neighbor) was
calculated as a ratio between the number of residues from
the CD core model that were also included in the struc-

ture-structure alignment and the total number of residues
in the conserved core model (both of these instances of
"core model" refer to the query structure). This quantity
was originally defined in [9]. The loop structural similar-
ity measure (Loop Hausdorff Measure) was calculated as
described previously [19]. Informally, LHM is the average
amount by which the corresponding loop regions
(regions between aligned secondary structure elements)
differ from each other in a pair of superimposed struc-
tures. The structural neighbors having more than 25% of
the loop residues with missing coordinates for Cα atoms
were not considered in the analysis for LHM. Root mean
squared deviation (RMSD) was computed for the struc-
ture alignments using the superposition algorithm due to
McLachlan [31]. "Fraction aligned" was calculated as the
ratio between the number of residues aligned and the
total number of residues in the smaller of the two
domains.

The structural similarity measures RMSD and LHM were
normalized by dividing by the square root of the number
of aligned residues in order to eliminate dependence on
the number of residues and protein size. Non-normalized
conventional measures of structural similarity have
yielded weaker performance in the current sensitivity
analysis (not shown) and other analyses reported earlier
[16]. To compare the abovementioned similarity scores
with the measures used by other authors we also calcu-
lated structural similarity measures used by Kolodny et al
in their evaluation of different structure-structure align-
ment methods [3]. Two of these measures (SI and MI) rep-
resent an algebraic combination of RMSD and "fraction
aligned", while the third one (GSAS) depends not only on
RMSD and the alignment length but also on the number
of gaps in the structure-structure alignment.

We do not expect that the results described are dependent
in any essential way on the particular algorithms or data-
bases used in this study. For example, the LHM is not sen-
sitive to the particular secondary structure assignment
algorithm that is used, because it is an average over maxi-
mum deviations in the loop regions between two super-
posed stuctures. The precise secondary structure element
definitions do not usually affect this. The major factor that
could cause our results to be unreliable is if the structure-
structure superpositions that we used were grossly inaccu-
rate. However, the statistics on the superposition RMSDs
for the alignments in this study indicate that the align-
ments must be very reasonably accurate. For our collec-
tion of alignments, the average superposition RMSD was
2.7 Å with a standard deviation of under 0.9 Å. The largest
RMSD was 6.2 Å and only 3% of the alignments were
under 1.0 Å while less than 1% were over 5.0 Å in RMSD.
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Availability of data and programs
Pre-computed VAST structure neighbors are accessible by
PDB codes and chain/domain identifiers via the internet
at [32]. The structure neighbor list may be sorted by vari-
ous options, including alignment length, percent
sequence identity, and RMSD. These sorting options are
also available for viewing neighbor lists in the VAST
Search web server. The VAST Search web server computes
the structure neighbors for user-submitted files in the PDB
format; it is located at [33]. The LHM and GSAS scores
have been added to the pre-computed VAST neighbors.
The work to add the HCS score for the pre-computed
neighbors, and all three scores to the VAST Search web
server, is in progress. All computer programs used in this
work are freely available upon request.
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