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Abstract
Background: α-Conotoxins have exciting therapeutic potential based on their high selectivity and
affinity for nicotinic acetylcholine receptors. The spacing between the cysteine residues in α-
conotoxins is variable, leading to the classification of sub-families. BuIA is the only α-conotoxin
containing a 4/4 cysteine spacing and thus it is of significant interest to examine the structure of this
conotoxin.

Results: In the current study we show the native globular disulfide connectivity of BuIA displays
multiple conformations in solution whereas the non-native ribbon isomer has a single well-defined
conformation. Despite having multiple conformations in solution the globular form of BuIA displays
activity at the nicotinic acetylcholine receptor, contrasting with the lack of activity of the
structurally well-defined ribbon isomer.

Conclusion: These findings are opposite to the general trends observed for α-conotoxins where
the native isomers have well-defined structures and the ribbon isomers are generally disordered.
This study thus highlights the influence of the disulfide connectivity of BuIA on the dynamics of the
three-dimensional structure.

Background
Nicotinic acetylcholine receptors (nAChRs) play a key role
in the central and peripheral nervous system and are
involved in neuronal growth and plasticity, development,
learning, memory and pain sensation [1-5]. α-Conotox-
ins, found in the venoms of marine molluscs belonging to
the genus Conus, act as antagonists at nAChRs and conse-

quently have a range of potential therapeutic applications
[6-8].

Members of the α-conotoxin family inhibit either muscle,
neuronal or both types of nAChRs and prevent channel
opening [6,9,10]. They comprise 12 to 19 amino acids,
including four highly conserved cysteine residues that
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form two disulfide bonds. Native α-conotoxins have a
disulfide connectivity linking the first and the third, and
the second and the fourth cysteine residues (CysI–CysIII

and CysII–CysIV), which is referred to as the "globular" iso-
mer. The alternative connectivities (CysI–CysIV and CysII–
CysIII) and (CysI–CysII and CysIII–CysIV) are referred to as
the ribbon and beads forms, respectively and are shown in
Fig. 1. The beads form has so far not been reported for nat-
urally occurring conotoxins, but the ribbon connectivity is
characteristic of the χ-conotoxins [6,11,12]. The segments
between cysteine residues define two loops in the peptide
backbone, also shown in Fig. 1.

The spacing between the cysteine residues in α-conotoxins
is variable, leading to their classification into sub-families
[6]. Table 1 shows the sequences of selected α-conotoxins
with different cysteine spacings. The original α-conotox-
ins discovered in the 1980's, such as the paralytic toxin GI,
have a 3/5 spacing, with three amino acids in the first and
five in the second loop [13]. They compete mainly for
nAChRs of the muscle endplate. Members of the "non-
classical" α-conotoxins display 4/X spacings (where X is 3,
4, 6, or 7) and target mainly neuronal nAChRs, with the
exception of EI, which is muscle specific [14,15]. In addi-
tion to the variations in cysteine spacing there is a signifi-
cant degree of sequence variation and it is this diversity
that results in the exquisite selectivity of the α-conotoxins.
The subtype selectivity of selected α-conotoxins is illus-
trated in Table 1.

BuIA is the only α-conotoxin with the unique 4/4 spacing
(see Table 1 and Fig. 1) and is the first conotoxin identi-
fied in the piscivorous Conus bullatus species. Azam et al.
[16] used conserved features of the α-conotoxin signal
sequence and 3'-untranslated sequence region of α-cono-
toxin prepropeptide genes to clone the gene coding for
BuIA. A synthetic version of the corresponding 13-amino
acid mature peptide with the globular disulfide connectiv-
ity (Cys2–Cys8, Cys3–Cys13) is active against α3- and α6-
containing nAChR subtypes, whereas α2- and α4-contain-
ing nAChRs are blocked less effectively. Strikingly, BuIA
kinetically discriminates between β2- and β4-containing
receptors, as the off-rates are rapid for β2-subunit, but very
slow for β4-containing nAChRs. This feature appears to
extend across different mammalian species, as similar
results for mouse, rat and human nAChRs were obtained
[16]. Thus the novel α-conotoxin BuIA appears to be a val-
uable probe to distinguish among nAChRs containing dif-
ferent α and β subunits.

Understanding the structure-activity relationships of α-
conotoxins has been a major focus of conotoxin research
in recent years and, as a result the structures of many of
the known α-conotoxins have been determined. Conoto-
xins are particularly suitable for structural analysis with

NMR spectroscopy because of their small size, solubility
and generally well-defined conformations, and the major-
ity of α-conotoxin structures have been determined using
this technique [17,18]. Despite the range of sequences
and spacings between the cysteine residues a well-defined
consensus structural motif has been found for the α-cono-
toxins, with the major features being the restraints
imposed by the conserved globular disulfide connectivity
and a helical region centred around CysII [18]. In the cur-
rent study we have examined the structures and activities
of the globular isomer and the non-native ribbon isomer
of BuIA with a Cys2–Cys13, Cys3–Cys8 connectivity and
show that the globular isomer is structurally heterogene-
ous while the non-native ribbon isomer has a well-
defined conformation.

Results
Orthogonal syntheses of globular and ribbon BuIA were
achieved using solid phase peptide synthesis via Boc
chemistry. Purification via HPLC yielded a single product
for each isomer whose mass was determined using elec-
trospray ionization mass spectrometry. Both isomers have
an observed mass of 1311.6 Da (calculated mass 1311.5
Da). HPLC traces for the purified products are shown in
Fig. 1B, from which it is clear that the ribbon form elutes
earlier than the globular form, indicating that its hydro-
phobic residues are buried to a greater extent. Interest-
ingly, under the HPLC conditions used the ribbon form
has a slightly broader peak than the globular form despite
having a more defined structure as described below. When
prepared without selective protection of the cysteine resi-
dues BuIA folds predominately into the globular isomer
in a 4:2:1 ratio (globular:ribbon:beads), consistent with
this being the native form in venom, as is the case with all
other α-conotoxins. For the oxidation profile of BuIA
without selective protection see Additional file 1.

The globular and ribbon isomers purified from oxidation
without selective protection were analyzed by NMR spec-
troscopy and found to be identical to their respective iso-
mers isolated following selective formation of the
disulfide bonds. However, the TOCSY and NOESY spectra
revealed considerable differences between the two iso-
mers, as illustrated in the upper panels of Fig. 2. The non-
native ribbon form with the Cys2–Cys13, Cys3–Cys8

disulfide connectivity displayed spectra consistent with a
well-defined structure with a single conformation. Specif-
ically, it yielded spectra with good dispersion of chemical
shifts in the amide region ranging from 7.7 to 9.1 ppm
and exactly the expected number of TOCSY spin systems.
In contrast, the spectra of globular BuIA displayed more
than the expected number of TOCSY cross-peaks, indicat-
ing the likely presence of conformational heterogeneity.
The possibility that the extra cross-peaks were due to
impurities was eliminated because only a single sharp
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HPLC peak was observed and only a single mass was
detected by mass spectrometry.

The sequential assignment of the spectra of the ribbon
and globular forms was undertaken using a combination
of TOCSY and NOESY spectra [19]. For the ribbon isomer
the assignment was straightforward. By contrast, the pres-
ence of multiple sets of peaks due to three conformers
(referred to here as conformers A, B and C), a lack of
detection of sufficient sequential NOESY cross-peaks and
peak overlap prevented complete sequential assignment
of all of the globular BuIA conformers. Nonetheless, with
the aid of the 900 MHz spectra conformers A and B were
assigned, as indicated in Fig 2A. The first six residues of
conformer C were assigned but the proline residue at posi-
tion 6 has weak spectral peaks and has an αH shift over-

lapped with several other residues and thus assignment of
Pro7 and sequentially following residues was not possi-
ble. A range of pH values (3, 4 and 5.5), temperatures
280–310 K and acetonitrile co-solvent concentrations
(20% or 40% v/v) were used to determine if solution con-
ditions influenced the presence of multiple conforma-
tions but similar ratios of isomers were present in all the
conditions used.

Conformers A and C both display sharp peaks, in contrast
to conformer B, which has significant broadening. Based
on peak integrals the ratio of the isomers is approximately
3:2:1 (A:B:C). Because peaks from conformers A and C in
the same solution are sharp, the broadened peaks of con-
former B presumably do not reflect aggregation, but are
likely to be the result of exchange broadening. Thus, not

Table 1: Sequences and activities of selected α-conotoxins

Name Spacinga Sequence Receptorb Species Ref.

GI 3/5 ECC-NPACGRHYSC* M α1β1γδ C. geographus [13]
ImI 4/3 GCCSDPRCAWRC* N α7 C. imperialis [41]

BuIA 4/4 GCCSTPPCAVLYC* N α6/α3 β4/β2 C. bullatus [16]
AuIB 4/6 GCCSYPPCFATNPDC* N α3 β4 C. aulicus [42]
PnIA 4/7 GCCSLPPCAANNPDYC* N α3 β2 C. pennaceus [43]
Cys I II III IV

a number of residues between the second and third, and the third and fourth cysteines
b M, muscle nAChR; N, neuronal nAChR
* C terminal amide
Sequences, in one letter code, are aligned using the conserved cysteines forming disulfide bonds, shown in bold.

Disulfide isomers of BuIAFigure 1
Disulfide isomers of BuIA. (A) A schematic representation of the ribbon, globular and beads disulfide connectivities of BuIA, a 
conotoxin having the unique 4/4 loop spacing. (B) HPLC traces of ribbon and globular BuIA. Analytical HPLC was carried out 
using a C18 Phenomenex analytical column (250 × 4.6 mm) with 90% acetonitrile and 0.043% trifluroacetic acid as the eluting 
solvent B and 1% B per minute as the gradient. Ribbon BuIA elutes earlier than the globular form but has a slightly broadened 
peak under the conditions utilized.
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NMR analysis of ribbon and globular BuIAFigure 2
NMR analysis of ribbon and globular BuIA. The upper panels show the amide regions of the TOCSY spectra at 600 MHz of 
globular (A) and ribbon BuIA (B) at 282 K in 95% H2O/5% 2H2O at pH 3. The one letter code and the residue numbers are 
used for labeling. For globular BuIA (A) stretches of assigned residues are labeled, as a or b to indicate conformers A and B. 
The lower panels (C & D) show a secondary shift analysis of conformers A and B from globular BuIA and ribbon BuIA com-
pared to AuIB. For each residue, represented by the one letter code, the differences between the actual chemical shifts for the 
α-protons and their respective random coil shifts are graphed. (C) Native AuIB (black bars), conformer A (white bars), con-
former B (grey bars). (D) Ribbon AuIB (black bars), ribbon BuIA (white bars).
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only does the globular isomer lead to at least three con-
formers in slow exchange on the NMR time scale, but one
set of peaks probably reflects the presence of two or more
conformers in intermediate to fast exchange. Overall this
isomer of BuIA appears to be much more conformation-
ally heterogeneous than other conotoxins studied to date.

Inspection of the sequential cross-peaks associated with
the proline residues indicated that the conformational
heterogeneity observed for globular BuIA originates from
cis-trans isomerisation of the two proline residues. Con-
former A has both proline residues in a trans conforma-
tion, consistent with the report of Chi et al. [20] whereas
conformer B has a trans Pro6 and cis Pro7 based on strong
NOEs observed between the α- and δ-protons of Thr5 and
Pro6 and a strong αH-αH NOE between Pro6 and Pro7

respectively. The lack of a complete assignment for con-
former C and peak overlap prevented determination of
the proline configurations for this conformation. In the
ribbon form of BuIA, which adopts an ordered structure,
the same proline conformation pattern as conformer B
was observed, namely trans Pro6 and cis Pro7.

Analysis of the secondary αH chemical shifts of ribbon
BuIA indicates a lack of regular secondary structure. There
is no continuous stretch of residues exhibiting negative
deviations that would be indicative of helices or positive
deviations indicative of extended structures, such as β-
sheets. Panel D of Fig. 2 shows a comparison of the αH
secondary shifts of ribbon BuIA with the ribbon isomer of
AuIB [21]. The trends are similar, but in general the sec-
ondary shifts of ribbon BuIA deviate from random coil to
a greater extent than that observed for ribbon AuIB con-
sistent with a well-defined structure for ribbon BuIA.

Despite the lack of complete assignment of all the confor-
mations of globular BuIA an analysis of the chemical
shifts was very informative. The secondary shifts of con-
former A are very similar to the related α-conotoxin AuIB
[21] as shown in Fig. 2C, indicating that the native cono-
toxin fold is present [18]. In contrast, the secondary shifts
of conformer B differ significantly from those of AuIB
(Fig. 2D). While our work was in progress the structure of
the native conformation (i.e. conformer A) of BuIA was
reported by Chi et al and confirms that the consensus
structure of the α-conotoxins is maintained [20]. It was
not possible to directly compare our findings with those
of Chi et al because chemical shifts or spectra were not
provided in the study but consistent with our study, Chi et
al reported the presence of additional peaks that they pre-
sumed arose from a cis conformation in the globular iso-
mer. In the present study, we have shown there is more
than one additional conformation present. The ribbon
isomer, which is the focus of our study, was not examined
in the Chi et al study [20].

Given the single conformation observed for ribbon BuIA
it was of interest to determine the three dimensional struc-
ture of this isomer. Structure calculations were carried out
with 96 NOE distance restraints (comprising 12 long-
range, 18 medium-range, 50 sequential and 16 intraresid-
ual distance restraints) and six dihedral angle restraints,
using a simulated annealing protocol in CNS. The ϕ-angle
restraints, derived from αN coupling constants, were -65
± 15° for Ala9 and Leu11, -120 ± 15° for Thr5, and -120° ±
30° for Cys8. The ϕ-angle for Cys13 was restrained to 100
± 80° based on the intraresidual Hα-HN NOE being
clearly weaker than the NOE between HN and the Hα of
the preceding residue. The χ1-angle of Cys8 was restrained
to 180 ± 30° based on the αβ coupling constants and
NOE intensities. Hydrogen bonds were not included in
the calculations but measurement of the exchange rates
for the amide protons of ribbon BuIA revealed that 3 of
the 11 amides, namely Val10, Leu11 and Tyr12, are slowly
exchanging. Their amide proton signals were still detected
in NMR spectra recorded 30 minutes after dissolution of
the sample in 2H2O, but all amide protons had exchanged
after 45 minutes in 2H2O. This result suggests that Val10,
Leu11 and Tyr12 are more protected from the solvent than
are the other residues.

Fig. 3 shows a stereoview of the superposition of the 20
lowest energy structures of ribbon BuIA. Despite its small
size it adopts a well-defined three-dimensional structure.
The ensemble of structures aligns well over the whole
molecule with a pairwise backbone RMSD of 0.36 ± 0.12
Å and a RMSD of 1.1 ± 0.49 Å for all heavy atoms, and had
good structural and energetic statistics, as shown in Table
2. No NOE violations higher than 0.3 Å and no dihedral
angle restraint violations greater than 3° were observed
within these 20 structures. In the Ramachandran plot,
showing the favored ϕ- and ψ-angle combinations for res-
idues in proteins, all residues of ribbon BuIA (except Pro
and Gly) lie in the most favored and additionally allowed
regions.

Using the program PROMOTIF [22] the 20 lowest energy
structures of ribbon BuIA were examined to identify con-
sensus structural elements. In agreement with the predic-
tion from the secondary shifts, ribbon BuIA shows no α-
helices or β-sheets. The structure comprises an inverse γ-
turn for residues 2–4 but no regular secondary structure is
present in the remainder of the molecule. One of the two
disulfide bonds stabilizing the three dimensional struc-
ture, namely that formed by Cys3 and Cys8, overlays very
well in the 20 lowest energy structures. In 17 of 20 struc-
tures the torsion angles of this disulfide bond are repre-
sentative of a right-handed hook [23]. By contrast, the
disulfide bond joining Cys2 to Cys13 is classified as right-
handed hook in 9 out of 20 structures but not recognized
as a standard disulfide type in the other structures. Calcu-
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lation of the hydrogen bonds using MolMol [24] revealed
that in 13 of 20 structures the amide proton of Leu11 is
bonded to the carbonyl of Ala9. This hydrogen bond is
consistent with the relatively slow exchange of the amide
proton of Leu11, but Val10 and Tyr12 were also slowly
exchanging and no hydrogen bond acceptors were appar-
ent from the calculated structures.

Using the program InsightII the solvent accessible surface
of ribbon BuIA was calculated and is shown in Fig. 3, from
which the large hydrophobic surface formed by Ala, Val,
Leu, Tyr and Pro residues is clear. The hydrophobic patch
extends across a wide stretch of the whole molecule, as it
comprises only a few hydrophilic residues, namely Ser
and Thr. Strikingly, there are no charged residues in the
molecule. Tyr12 protrudes conspicuously, making the
overall shape of ribbon BuIA non-spherical. In contrast to
many other α-conotoxins the cysteine residues are rather
exposed to the solvent, presumably as a result of the rib-
bon disulfide connectivity and the fact that BuIA is only
13 residues in length.

The biological activities of the BuIA globular and ribbon
analogues, as well as a form where the cysteine residues
were alkylated, were examined in an electrophysiological
assay by measuring the % inhibition of ACh-evoked cur-
rent amplitude at the α3β2 and α3β4 nAChR subtypes

expressed in Xenopus oocytes (Fig. 4A). The alkylated form
of BuIA was analyzed by mass spectrometry and had an
observed molecular mass (1571.9 Da) consistent with the
calculated mass (1571.64 Da). Membrane currents were
evoked with 100 μM ACh and concentration-response
curves were fitted to determine IC50 values and Hill coeffi-
cients. The concentration-response curves for inhibition
of α3β2 and α3β4 nAChR subtypes by globular BuIA gave
IC50 values of 4.8 ± 0.4 nM (nH = 1.3) and 59.1 ± 2.3 nM
(nH = 1.2), respectively, whereas almost no inhibition was
observed with 1 μM ribbon BuIA at either nAChR subtype
(n = 4–7; Fig. 4B). Furthermore, the globular BuIA isomer
is approximately ten-fold more potent at β2- compared to
β4-subunit containing nAChR subtypes. These results for
synthetic globular BuIA are consistent with that reported
previously [16]. Alkylated BuIA was inactive at α3β2 and
α3β4 subtypes when tested at 10 nM and 100 nM respec-
tively. Increasing the concentration of alkylated BuIA to
10 μM also failed to inhibit nAChRs.

Discussion
As BuIA is the only α-conotoxin reported so far with a 4/
4 spacing its three dimensional structure is of significant
interest. In the current study we examined the structural
features and determined the biological activity of the
globular (CysI–CysIII, CysII–CysIV) and ribbon (CysI–
CysIV, CysII–CysIII) disulfide isomers of BuIA. These stud-

Table 2: NMR and refinement statistics for ribbon BuIA

NMR distance & dihedral constraints
Distance constraints

Total NOE 96
Sequential (|i-j| = 1) 50
Medium-range (|i-j| < 4) 18
Long-range (|i-j| > 5) 12
Intra-residual 16

Total dihedral angle restraints
Phi 5
chi1 1

Structure statistics
Violations (mean and s.d.)

Distance constraints (Å) 0.05 ± 0.003
Dihedral angle constraints (°) 0.61 ± 0.2
Max. dihedral angle violation (°) 3
Max. distance constraint violation (Å) 0.3

Deviations from idealized geometry
Bond length (Å) 0.004 ± 0.00025
Bond angles (°) 0.53 ± 0.02
Impropers (°) 0.35 ± 0.02

Average pairwise r.m.s.d.** (Å)
Backbone 0.36 ± 0.12
Heavy atoms 1.1 ± 0.49

Ramachandran statistics (%)
Most favoured 55.6
Additionally allowed 44.4
Disallowed 0.0

**Pairwise r.m.s.d. was calculated among 20 refined structures
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ies show that the general trend observed for α-conotoxins
where the native globular form has a well-defined confor-
mation and the ribbon isomer is disordered is reversed for
BuIA.

NMR analysis of the globular isomer of BuIA revealed
more cross-peaks than expected for a 13 residue peptide.
At least three conformations are present in the two-
dimensional spectra of globular BuIA and as native α-
conotoxin structures determined to date generally display
well-defined structures, the significant heterogeneity dif-
fers from usual findings for α-conotoxins. Surprisingly,
this conformational heterogeneity is not seen in the rib-
bon isomer, which forms a single well-defined conforma-
tion. The observation that the HPLC trace of the ribbon

reveals a broad peak, but the structure is well-defined is
interesting and unusual. One possibly is that the different
conditions under which the HPLC and NMR are carried
out are responsible for these differences. The more hydro-
phobic environment used for the HPLC analysis coupled
with the presence of TFA could potentially affect how the
ribbon isomer behaves on RP-HPLC. However, recording
NMR spectra of globular BuIA in the presence of varying
amounts of acetonitrile co-solvent did not influence the
conformational heterogeneity, making the sharper peak
observed by HPLC analysis for globular BuIA compared to
ribbon BuIA a puzzling result.

The conformational heterogeneity of globular BuIA origi-
nates form cis/trans isomerisation of the pair of adjacent
proline residues in the middle of the sequence. The pro-
line configurations for the globular isomers and ribbon
BuIA are highlighted in Fig. 5. Conformer A has both pro-
line residues in a trans conformation, consistent with the
trend observed for other native α-conotoxins, whereas
conformer B is broadened and displays a trans/cis config-
uration for Pro6 and Pro7 respectively. The conformations
of the proline residues in conformer C were not deter-
mined because of the lack of a complete assignment. Rib-
bon BuIA displays the same proline geometry as
conformer B despite the difference in disulfide connectiv-
ity. The BuIA sequence can clearly accommodate a range
of geometries of the proline residues in contrast to what
has generally been observed in previous structural analy-
ses of α-conotoxins [17,18]. One exception is α-conoto-
xin GI that has previously been shown to have two
interconverting conformations [25] but this differs from
BuIA where there are clearly multiple conformations.
Other peptides are known to contain similar proline
motifs to BuIA, including SFTI-1[26], and in that case the
Pro-Pro motif has a cis/trans configuration as shown in
Fig. 5. This highlights the complexity that can be associ-
ated with the geometry of proline residues in small
cysteine-rich peptides and how changes in structure and
sequence can result in different geometries being favored.

The structurally heterogeneous globular isomer of BuIA is
active on α3-containing neuronal nAChRs, with a prefer-
ence for receptors comprising β2- rather than β4-subunits.
This specificity is quite similar to some of the 4/7 α-cono-
toxins such as MII [20]. The structure of conformer A of
globular BuIA, determined by Chi et al [20], has been
compared to that of MII and it appears that the two-turn
helical motif present in both MII and BuIA is important
for binding to the α3-subunit of neuronal nAChRs [20].
Recent studies on the binding of α-conotoxins to the ace-
tylcholine binding protein, a homolog of the nAChR
extracellular domain, have shown that the rigid consensus
structure found in solution does not change significantly
upon binding [27-29]. Thus, as ribbon BuIA does not con-

Three-dimensional structure of the ribbon isomer of BuIAFigure 3
Three-dimensional structure of the ribbon isomer of BuIA. 
(top) Stereoview of the 20 NMR-derived lowest energy 
structures of ribbon BuIA. For clarity only the backbone (N, 
Cα, C') is shown and the two disulfide bonds are omitted. 
The structures are superimposed over the whole molecule. 
N refers to the N-terminus; C refers to the C-terminus. Res-
idues were labeled with the one letter code. (bottom) Sol-
vent accessible surface of ribbon BuIA. The two views are 
rotated by 180° about the vertical axis. Hydrophobic resi-
dues (Pro, Ala, Val, Leu, Tyr) are green, hydrophilic residues 
(Ser, Thr) are blue, Gly is grey and the Cys residues are yel-
low. Selected residues are labeled with the one letter code.
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tain the consensus structural motif it consequently exhib-
its no inhibitory activity at nAChRs up to 1 μM. It appears
that the well-defined conformation of ribbon BuIA pre-
vents it from adopting an appropriate conformation for
binding to the nAChR.

We have also shown here that an analogue of BuIA with
the cysteine residues reduced and alkylated is inactive at
the nAChR. This is consistent with studies on ImI where
the reduced and alkylated form had a significant decrease
in activity at the α7 receptor [30]. Given that the reduced
and alkylated form of BuIA is likely to be devoid of struc-
ture based on the strong influence of disulfide bonds on
the structures of small cysteine-rich peptides, the lack of
activity of this peptide indicates that it cannot adopt an
appropriate conformation for binding to the nAChR.
Thus, the linear sequence alone is not sufficient for activ-
ity and a propensity to form a helical structure in solution
appears to be correlated with activity at the nAChR.

The ribbon isomer of BuIA, despite having a well-defined
structure, is not the preferred isomer formed during air
oxidation using standard conditions applicable to other
conotoxins. The fact that the folding pathway favors the
globular disulfide connectivity indicates that it is energet-
ically more favorable, even though multiple conforma-
tions are present in solution. Although the ribbon isomer
is less favoured during oxidation, as is often the case for
non-native isomers, it displays significantly different
properties to both non-native and native conotoxin rib-
bon isomers. The ribbon isomers of both α-AuIB and α-GI
exhibit greater conformational flexibility than their glob-
ular counterparts [21,31], in contrast to ribbon BuIA,
indicating that the unique sequence of BuIA stabilizes the
ribbon isomer. Structures of globular and ribbon AuIB are
shown in Fig. 6. Although a single structure is shown for
the ribbon isomer of AuIB it displays considerable confor-
mational heterogeneity relative to the globular isomer.
Furthermore, the ribbon isomer of BuIA lacks any regular
secondary structure, in contrast to the χ-conotoxins that
naturally contain a ribbon connectivity. The χ-conotoxin
MrIA consists of a β-hairpin connected by an inverse γ-
turn [32], as shown in Fig. 6.

Another similarity between the ribbon isomers of α-cono-
toxins is related to the geometry of the proline residues
[6,18]. The inactive ribbon isomers of BuIA and GI [31]
both contain a cis proline (Pro7 and Pro5 respectively) in
contrast to the trans Pro seen in the native disulfide con-
nectivity for all α-conotoxin structures determined to date
[18]. In one conformation of globular BuIA (conformer B,
Fig. 2) Pro7 is also in a cis geometry, but the alternative
trans conformation may be stabilized upon binding to the
receptor. The implications for the presence of the cis pro-
line in activity have not yet been elucidated.

Conclusion
The native globular isomer of BuIA, although being the
favored isomer during oxidative refolding, has multiple
conformations in solution, unlike the majority of native
α-conotoxins. In addition, the structure of the ribbon iso-
mer is stabilized whereas all other non-native isomers dis-
play disordered structures. Overall our results highlight
the influence of the disulfide connectivity of BuIA on the
dynamics of the three-dimensional structure. This infor-
mation is potentially important for on-going efforts to
understand the structure-activity relationships of this val-
uable class of peptides.

Methods
Materials
Protected N-α-Boc-L-amino acids and reagents used for
peptide chain assembly were purchased from NovaBio-
chem. Methylbenzhydrylamine resin was from Peptide
Institute Inc. (Osaka, Japan). p-Cresol and p-thiocresol
were purchased from Aldrich (Sydney, Australia). HBTU
was purchased form Richelieu Biotechnologies (Quebec,
Canada). Anhydrous HF was from Matheson Gas (BOC
Gases, Melbourne, Australia). All of the solvents used for
HPLC and peptide synthesis were purchased from Lab-
scan, (Bangkok, Thailand).

Peptide synthesis
BuIA analogues were manually assembled using a step-
wise in situ neutralization protocol for Boc chemistry [33].
The four Cys residues were differentially protected in pairs
corresponding to the globular and ribbon isomers with
HF-labile methylbenzyl groups and HF-resistant acetami-
domethyl groups. An additional synthesis was also done
without selective protection of the cysteine residues.
Other amino acid side-chain protection was as follows:
Tyr (BrZ), Thr (Bzl) and Ser (Bzl). All the syntheses were
carried out on a 0.25 mmol scale using HBTU (0.5 M/
DMF) as the activation reagent, and DIEA as neutralizing
reagent on MBHA resin. Neat trifluoroacetic acid was used
as the amine-deprotecting reagent. Deprotection and
cleavage were carried out in HF:p-cresol:p-thiocresol
(9:0.5:0.5) for 2 h. Methylbenzyl groups attached to
cysteines were removed during the HF cleavage and the
oxidation of the first disulfide bond was performed in 0.1
M NH4HCO3 oxidation buffer at pH 8 at a concentration
of 0.1 mg/mL. The one pair disulfide bonded peptides
were purified by HPLC and lyophilized prior to the forma-
tion of the second disulfide bond. Simultaneous depro-
tection and oxidation of acetamidomethyl protected
cysteine residues was performed in 80% methanol at low
pH. Iodine was added and the reaction mixture was stirred
for 5 min under argon. Methanol and iodine were
removed by rotary evaporation. The resultant mixture was
diluted 10-fold and purified by RP-HPLC. The peptide
synthesized without selective protection of the cysteine
Page 8 of 13
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Effect of globular and ribbon isomers of α-conotoxin BuIA at nAChR subtypes expressed in Xenopus oocytesFigure 4
Effect of globular and ribbon isomers of α-conotoxin BuIA at nAChR subtypes expressed in Xenopus oocytes. (A)Representa-
tive ACh-evoked currents mediated by α3β2 and α3β4 nAChR subtypes obtained in the absence (control) and presence of 10 
nM and 100 nM BuIA-globular, respectively. Complete recovery was observed after 10 min washout (broken line). (B)Concen-
tration-response curves for the inhibition of α3β2 and α3β4 nAChRs by globular (filled symbols) and ribbon (open symbols) 
isomers of BuIA. Best fit of the data gave IC50 values of 4.8 ± 0.4 nM (nH = 1.3) and 59.1 ± 2.3 nM (nH = 1.2) for α3β2 and α3β4 
nAChRs, respectively, whereas the ribbon isomer of BuIA exhibited no inhibition at 1 μM. Responses are shown as a percent-
age of ACh (100 μM)-induced peak current amplitude after a 5 min incubation of the BuIA isomers with respect to control 
(ACh alone). Error bars are SEM with n = 4–7 for each data point.
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residues was oxidized in 0.1 M NH4HCO3 pH 8, and 1
mM reduced glutathione. Linear reduced BuIA was
alkylated with iodoacetamide in 0.1 M ammonium ace-
tate buffer for testing in biological assays.

RP-HPLC and mass spectrometry
Preparative HPLC were performed on Waters 600E sol-
vent delivery system. Data were collected via a 484-
absorbance detector from Waters at 230 nm. Analytical
HPLC was performed on Shimadzu LC-2010 instruments.
Preparative HPLC was carried out using a Phenomenex
C18 column (250 × 21.20 mm, 10 μm). Analytical HPLC
was performed on a Phenomenex C18 (250 × 4.6 mm, 10
μm) column. 90% acetonitrile and 0.043% trifluoroacetic
acid was used as the eluting solvent B. 0.05% trifluoroace-
tic acid was used as the eluting solvent A. 1%B per minute
was used as the linear gradient at standard column flow
rates (8 mL/min for preparative HPLC and 1 mL/min for
analytical HPLC). Electrospray mass spectra were acquired
on a Micromass LCT (Manchester, UK), a liquid chroma-
tography-orthogonal acceleration reflecting TOF mass
spectrometer, coupled to an Agilent HPLC system. Sam-
ples (~5 μL) were injected into a moving solvent (70 μL/
min, 70% acetonitrile/formic acid 0.05% in water) cou-
pled directly to the electrospray ionisation source. Full
scan mass spectra were acquired over the mass range of

400–1600 Da with a scan step size of 0.2 Da. Molecular
masses were derived from the observed m/z values.

NMR spectroscopy
Although X-ray crystallography has been used in a few
cases to solve conotoxin structures [34,35] NMR has been
the predominant technique for structurally characterizing
this class of peptides[17]. Samples for 1H NMR measure-
ments contained ~1 mM peptide in 95% H2O/5% D2O
(v/v) at pH 3, 4 and 5.5. Spectra on ribbon BuIA were
recorded at 282 or 290 K on Bruker AVANCE-500, 600
and 900 spectrometers whereas a range of temperatures
between 280 and 310 K were used for globular BuIA to
determine if temperature influenced the multiple confor-
mations present. 2D NMR spectra were recorded in phase-
sensitive mode using time-proportional phase incremen-
tation for quadrature detection in the t1 dimension. The
2D experiments consisted of a TOCSY using a MLEV-17
spin lock sequence with a mixing time of 80 ms, DQF-
COSY, ECOSY and NOESY with mixing times of 100–250
ms. Solvent suppression was achieved using a modified
WATERGATE sequence. Spectra were acquired over 6024
Hz with 4096 complex data points in F2 and 512 incre-
ments in the F1 dimension. Identification of slowly
exchanging amide protons was achieved by acquisition of
one-dimensional and TOCSY spectra immediately follow-

Proline geometries of the BuIA isomers and the sunflower trypsin inhibitor SFTI-1 [26]Figure 5
Proline geometries of the BuIA isomers and the sunflower trypsin inhibitor SFTI-1 [26]. The proline residues with trans geom-
etry are marked as t and those with cis as c. The three-dimensional structures of a classic α-conotoxin, ribbon BuIA and SFTI-
1 are shown to highlight the structural differences between the various peptides.
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ing dissolution of a fully protonated peptide in
2H2O·3JHN-Hα coupling constants were measured from a
one-dimensional spectrum or from the DQF-COSY spec-
trum.

Spectra were processed on a Silicon Graphics Indigo work-
station using XWINNMR (Bruker) software. The t1 dimen-
sion was zero-filled to 1024 real data points, and 90°
phase-shifted sine bell window functions were applied
prior to Fourier transformation. Chemical shifts were ref-
erenced to internal 2, 2-dimethyl-2-silapentane-5-sul-
fonate.

Structure calculations
Preliminary structures of ribbon BuIA were calculated
using a torsion angle simulated annealing protocol within
the program DYANA [36]. Final structures were calculated
using simulated annealing and energy minimization pro-
tocols within CNS version 1.1 [37]. The starting structures
were generated using random (ϕ,ψ) dihedral angles and
energy-minimized to produce structures with the correct
local geometry. A set of 50 structures was generated by a
torsion angle simulated annealing protocol [38]. This pro-
tocol involved a high-temperature phase comprising 4000
steps of 0.015 ps of torsion angle dynamics, a cooling
phase with 4000 steps of 0.015 ps of torsion angle dynam-
ics during which the temperature was lowered to 0 K, and
finally an energy minimization phase comprising 500
steps of Powell minimization. Structures consistent with
restraints were subjected to further molecular dynamics
and energy minimization in a water shell, as described by
Linge and Nilges [39]. The refinement in explicit water
involved the following steps. First, heating to 500 K via
steps of 100 K, each comprising 50 steps of 0.005 ps of

Cartesian dynamics. Second, 2500 steps of 0.005 ps of
Cartesian dynamics at 500 K before a cooling phase where
the temperature was lowered in steps of 100 K, each com-
prising 2500 steps of 0.005 ps of Cartesian dynamics.
Finally, the structures were minimized with 2000 steps of
Powell minimization. Structures were analyzed using
PROMOTIF [22] and PROCHECK-NMR [40].

Electrophysiology
RNA was prepared from linearized cDNA encoding the rat
α3,β2 and β4 nAChR subunits (provided by Dr. J. Patrick,
Baylor College of Medicine, Houston, TX) and transcribed
using a mMESSAGE mMACHINE™ high yield capped
RNA transcription kit. Xenopus laevis were anesthetized
with oocytes surgically removed and placed in OR2 buffer
(82 mM NaCl, 2 mM KCl, 1 mM MgCl2 and 5 mM HEPES
at pH 7.4) with 3 mg/ml collagenase (Sigma) for 1–2 hrs
at room temperature then stored in ND96 buffer (96 mM
NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM
HEPES at pH 7.4) supplemented with 50 mg/l gentamy-
cin and 5 mM pyruvic acid. Oocytes were injected with 5
ng of cRNA and kept at 18°C in ND96 buffer for 2–5 days
before recording.

Membrane currents were recorded from Xenopus oocytes
using the two electrode (virtual ground circuit) voltage
clamp technique with an automated workstation with
eight channels in parallel, and an on-line analysis
(OpusXpress™ 6000A workstation, Molecular Devices,
Union City, CA). Both the voltage recording and current
injecting electrodes were pulled from borosilicate glass
(GC150T-15; Harvard Apparatus, Edenbridge, UK) and
filled with 3 M KCl with resistances between 0.2 – 1.5 MΩ.
All recordings were conducted at room temperature (20 –

Backbone trace of the structures of ribbon BuIA (A), globular AuIB (B), ribbon AuIB (C), and ribbon MrIA (D)Figure 6
Backbone trace of the structures of ribbon BuIA (A), globular AuIB (B), ribbon AuIB (C), and ribbon MrIA (D). Disulfide bonds 
are shown as balls and sticks. The helices are shown with thickened ribbons and β-strands are indicated with arrows.
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23°C) using a bath solution of ND96 as described above.
During recordings, the oocytes were perfused continu-
ously at a rate of 1.5 ml/min. Acetylcholine (100 μM) was
applied for 2 s at 5 ml/min with 10 min washout periods
between successive applications with 5 min incubations
of the BuIA analogues. Cells were voltage clamped at a
holding potential of -80 mV. Data were sampled at 500
Hz and low pass filtered at 200 Hz. Peak current ampli-
tude was measured before and after the incubation of
BuIA analogues, using the empirical Hill equation to cal-
culate the IC50 and Hill coefficient (nH) of the concentra-
tion-response curves. The data were fitted by a non-linear
least squares algorithm (SPSS inc. Chicago, IL) with
pooled data represented as mean ± SEM.

Abbreviations
HPLC, high performance liquid chromatography; NMR,
nuclear magnetic resonance; ACh, acetylcholine; nAChRs,
nicotinic acetylcholine receptors.
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