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Abstract

Background: The tumor suppressor DLC2 (Deleted in Liver Cancer -2) participates in cell
signaling at the mitochondrial membrane. DLC2 is characterized by a SAM (sterile alpha motif)
domain, a Rho GTPase activating protein (GAP) domain, and a START lipid transfer domain.

Results: Towards understanding the function of DLC2, we have solved the NMR solution
structure of the SAM domain. The DLC2-SAM domain structure reveals an atypical four-helix
composition that is distinct from the five-helix SAM domain structures that have been determined
to date. From structural alignments, helix 3 of the canonical SAM domain appears to be replaced
by shorter, extended secondary structure that follows a similar path. Another difference is
demonstrated by helices | and 2 that form a helical hairpin that is situated approximately parallel
to the canonical helix 5.

Conclusion: The DLC2-SAM domain adopts a structure that is topologically more similar to an
anti-parallel four-helix bundle than a canonical SAM domain. This alternate topology may allow the

DLC2-SAM domain to interact with a novel set of ligands.

Background

Many tumors demonstrate a characteristic, non-random
deletion of chromosomal material, termed loss of hetero-
zygosity (LOH). From molecular genetics studies, Deleted
in liver cancer-1 (DLC1) [1] and a closely related gene,
DLC2 [2] were discovered at two distinct chromosomal
loci known to be sensitive to LOH. The DLC1 and DLC2
proteins share 51 % amino acid identity. Several studies
suggest that DLC1 and DLC2 are tumor suppressors
involved in the progression of a wide range of cancers [3].
For example, reintroduction of DLC1 suppresses prolifer-
ation of breast carcinoma [4] and hepatoma cells [5] and
prevents the formation of tumors in nude mice. Expres-
sion of DLC2 prevents the formation of Ras induced foci
in NTH3T3 cells [2]. From examinations of several cancers,

point mutations leading to the inactivation of DLC1 are
rare. Rather, DLC1 appears to be downregulated by pro-
moter methylation [6].

At 1113 residues, murine DLC?2 is a large protein with rel-
atively few identifiable domains. Based upon sequence
homology and a recent deletion study [2], the amino ter-
minus of DLC2 contains a Sterile Alpha Motif (SAM)
domain [7]. Following an expanse of unknown function,
a GTPase activating domain (GAP) capable of inactivating
Rho and Cdc42 is situated near the carboxyl terminus [2].
A steroidogenic acute regulatory protein (StAR)-related
lipid transfer (START) domain completes the protein and
localizes DLC2 to mitochondria that are proximal to lipid
droplets [8]. All of these domains are likely to be regulated

Page 1 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17519008
http://www.biomedcentral.com/1472-6807/7/34
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Structural Biology 2007, 7:34

by an array of intra- and intermolecular protein partner-
ships. The SAM domain, which has a rich history as a pro-
tein-ligand binding motif [9], represents an excellent focal
point for exploring DLC2 partnerships in detail.

Towards determining its functional role, we present the
structure of the murine DLC2-SAM domain solved using
nuclear magnetic resonance (NMR) methods. Consistent
with secondary structure predictions, the DLC2-SAM
domain lacks what would be the third helix of a canoni-
cal, five helix SAM domain. Furthermore, the first two hel-
ices occur in a unique orientation. Combined, these
differences result in a structure that resembles an anti-par-
allel four-helix bundle as much as it resembles a SAM
domain. Upon closer inspection of the structure, a hydro-
phobic cleft lined with aromatic residues may offer a
binding site for a unique class of ligands.

Results

By sequence similarity, the murine DLC2-SAM domain is
located near the N-terminus of the protein with bounda-
ries conspicuously defined by exons 2-4 (aa. 58-129).
The first exon has no obvious similarity to any short pro-
tein domains (Figure 1a). Using sequence similarity and
exon boundaries as a guide, we expressed four hexahisti-
dine-tagged protein fragments spanning the DLC2-SAM
domain. Highly purified preparations of the largest frag-
ment, DLC2 (1-137), were aggregated at uM concentra-
tions precluding further analysis. Fortunately, the
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Figure |

Delineation of the minimal DLC2-SAM domain. (a) By
sequence homology, the DLC2-SAM domain is defined by
exons 2—4. Of four protein fragments expressed, three were
suitable for further biophysical analyses. (b) Far UV CD spec-
tra. (¢) Thermal stability was determined by monitoring ellip-
ticity at 220 nm, a wavelength characteristic of a-helical
secondary structure.
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remaining three DLC2 protein fragments were suitable for
biophysical characterization.

Far UV CD spectra indicate that DLC2 (22-137), DLC2
(50-120) and DLC2 (50-137) were all folded with a
majority of a-helical content as shown by two characteris-
tic minima at 208 and 222 nm (Figure 1b). In exon 1 (aa.
1-57), the PHD secondary structure algorithm [10] pre-
dicts the presence of one a-helix spanning residues 22-36
immediately preceding the start of the SAM domain.
Assuming an o-helix is present in exon 1, the predicted
mean residue ellipticities (MRE) at 222 nm for DLC2 (50~
120), DLC2 (22-137) and DLC2 (50-137), are 15100,
12700, and 13700 deg- cm? - dmol-}, respectively. Alterna-
tively, if no o-helix is present in exon 1 of DLC2 (22-
137), the predicted ellipticity decreases to 10100.
Together, the three spectra presented in Figure 1a appear
to underestimate the predicted MREs by ~10%, which
may be due in part to a systematic error in the estimation
of protein concentration. Regardless, at a qualitative level,
the similarity in the absolute MREs between DLC2 (22-
137) and DLC2 (50-137) suggest that an a-helix may be
present in exon 1.

The shortest fragment, DLC2 (50-120) demonstrated a
thermal denaturation midpoint (or melting point) that
was approximately 5°C lower than DLC2 (22-137) and
DLC2 (50-137) suggesting that residues beyond Arg120
contribute stabilizing contacts. Since DLC2 (22-137) and
DLC2 (50-137) demonstrated similar melting points, it
suggests that the N-terminal sequence immediately flank-
ing the DLC2-SAM domain does not provide any addi-
tional stabilizing contacts.

Following the CD study, the three DLC2-SAM protein
fragments were 15N-labeled for NMR analysis. Amide
HSQC spectra of DLC2 (22-137) and DLC2 (50-137)
were nearly identical both in terms of the number of
amide resonances and their absolute chemical shifts (data
not presented). The similarity between the two spectra
suggests that residues 22-49 occur in intermediate
exchange and therefore do not interact with the SAM
domain. A comparison of the DLC2 (50-137) and DLC2
(50-120) HSQC spectra revealed several sharp resonances
that were not present in DLC2 (50-120). In the absence
of chemical shift assignments, these sharp resonances
would be attributed to a disordered stretch extending
from the C-terminal end of the SAM domain. Taken
together, these CD spectra and NMR HSQC spectra indi-
cate that the minimal protein fragment of DLC2 encom-
passing the SAM domain is consistent with the
boundaries (aa. 58-129) predicted by exons and
sequence similarity.
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While the spectra of DLC2 (50-120) were qualitatively
easier to interpret due to the absence of sharp resonances
and the reduced 'H chemical shift degeneracy, this pro-
tein fragment could only be concentrated to 0.3 mM
thereby precluding any structural studies. Furthermore,
preparations of DLC2 (50-120) precipitated when mixed
with Pf1 bacteriophage for NMR orientational studies. In
contrast, preparations of DLC2 (50-137) were stable up
to a concentration of 1 mM and could be mixed with Pf1
bacteriophage. Based upon greater solubility and thermal
stability, DLC2 (50-137) was selected for structural stud-
ies.

The NMR structure of the murine DLC2-SAM domain
(50-137) was solved using a combination of experimen-
tally derived NOE distance restraints, amide residual
dipolar couplings, and dihedral angles derived from
chemical shifts (Table 1). The NMR structure of DLC2
(50-137) indicates that the last ordered residue is Ala117.
In contrast, the CD study suggested there were additional
stabilizing determinants beyond Argl20. However, we
did not observe any contributions to the hydrophobic
core from the nearby hydrophobes Leul21, Val123, or
Phel125. The ensemble of lowest energy structures span-

Table |: Statistics for the ensemble of structures of the murine
DLC2 SAM domain®

Distance restraints

Intraresidue 377

Sequential (Ji-j| = 1) 172

Medium range (2 < |i-j| < 4 76

Long range (4 < [i-j|) 95

Hydrogen bond pairs (HN-O, N-O) 42
Residual Dipolar Couplings

H-NH 23
NOE violations

>05A 0.0+0.0

>03A 18.0 +3.2
Dihedral angle restraintsb

¢o/y angles for each amino acid 57
Deviations from standard geometry (XPLOR-NIH)

Bonds 0.0125 + 0.0004

Angles 1.4838 + 0.0399

Impropers 1.9898 + 0.2513
Pairwise RMSD (Secondary structurec)

Backbone 0.64+0.11 A

All heavy atoms 1.47 £0.16 A
Ramachandran Statisticsd

Most favored regions 86.6 %

Additional allowed regions 12.0 %

Generously allowed regions 1.4 %
Disallowed regions 0.0 %

9Ensemble of the top 20 structures with lowest overall energy and
number of restraint violations.

bPredicted from chemical shifts using the PREDITOR web server.
RMSD values for residues 58—69, 73-81, 88-94, 103—117.
dDetermined with PROCHECK-NMR for 10 lowest-energy
structures.
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ning residues 58-117 has a global backbone atom preci-
sion of 1.10 A. Restricted to the regular secondary
structure, the backbone atom precision is 0.64 A (Figure
1a).

Previously, we solved the NMR structure of the S. cerevisiae
Ste50-SAM domain [11]. Based upon sequence similarity,
number of helices and the position of the helices, the
Ste50-SAM domain demonstrates a typical fold and there-
fore, is a good basis for comparison with the DLC2-SAM
domain structure. As well, Ste50, like other SAM domains
including Drosophila Ph, Scm, Yan and Mae [9] presents
two complementary surfaces for high-affinity SAM-SAM
interactions. Overall, the SAM domains of DLC2 and
Ste50 [PDB: 1Z1V] superimposed with a Co root-mean-
square deviation (RMSD) of 3.1 A over 42 residues (Z-
score = 2.5). As illustrated in Figure 2b, the DLC2-SAM
domain differs from a canonical, five-helix SAM domain
fold of Ste50 in two distinct ways.

The first immediate distinction between the DLC2 and
Ste50-SAM domains is demonstrated by the difference in
the number of helices present. Helix H3, which is typically
short, is replaced in the DLC2-SAM domain by an
extended structure occupying the same location. To facili-
tate the comparison with Ste50, we will refer to the DLC2-
SAM domain as a four-helix fold comprised of helices H1,
H2, H4 and H5. In the Ste50-SAM domain, Leu59 and Ile
61 anchor helix H3 and contribute to the compact, hydro-
phobic core. As shown in Figure 2b, two regularly spaced,
conserved hydrophobic residues also anchor helix H3 of
the S. cerevisiae Ste11-SAM domain [12] and the Dro-
sophila Polyhomeotic (Ph) and Sex-Comb-on-Midleg
(Scm) SAM domains [13]. In lieu of helix H3, 1le84 and
11e88 supply the requisite hydrophobic contacts from
nearby positions in the DLC2-SAM domain (Figure 2c).

The relative orientation of a hairpin defined by helices H1
and H2 represents a second major distinction between the
Ste50 and DLC2-SAM domains. In a typical SAM domain,
the hairpin is approximately perpendicular to helix H5. In
contrast, the helical hairpin of DLC2-SAM occurs in an
anti-parallel orientation to helix H5. Key unambiguous
experimental NOE observations defining this orientation
are derived from Tyr69 in helix H2 (H8 = 6.40 ppm, He =
6.65 ppm) and Leul03 in helix H5 (H31 = -0.18 ppm,
H&2 = 0.30 ppm). Both of these residues are distinguished
by their upfield chemical shifts. Interestingly, the side
chain of Trp66, a bulky residue conserved throughout all
SAM domains in helix H1, is similarly positioned near
helix H5 in both DLC2-SAM and Ste50-SAM domain
structures. Thus, Trp66 may be considered a pivot point
through which the helical hairpin has been rotated.
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Figure 2

A comparison of DLC2-SAM domain and other SAM
domains. (a) A representative structure of the DLC2-SAM
domain in ribbon form and as ensemble of the 10 lowest
energy solutions. A short helix H3 (cyan) typically observed
in SAM domains such as (b) S. cerevisiae Ste50 [PDB: 1Z1V] is
absent in the DLC2-SAM domain. (c) Sequence alignment of
murine DLC2 with SAM domains known to participate in
protein-protein interactions. Listed below DLC2 are SAM
domains from Drosophila Polyhomeotic (Ph), Drosophila Sex-
Comb-on-Midleg (Scm), S. cerevisiae Stel | and Ste50. Hydro-
phobic amino acids that contribute to the hydrophobic core
are highlighted.

Pairwise comparisons between the DLC2-SAM domain
and the entire PDB were performed using the SSM (Sec-
ondary Structure Matching) server at the European Bioin-
formatics Institute [14]. The SSM method assigns a quality
score to each match that is a function of overall protein
length, the number of aligned residues between the two
proteins, the number of gaps introduced and the Ca
RMSD. From this survey, no SAM domains were identified
among the top 100 hits presumably due to the alternate
placement of the helices H1/H2 and the absence of helix
H3. The top hit with a RMSD of 2.40 A over 51 aligned res-
idues was FELIX [PDB: 1FLX], a theoretical model of an
anti-parallel, or up-down-up-down, four-helix bundle
[15]. A superimposition of FELIX and DLC2-SAM demon-
strating the structural similarity is shown in Figures 3a and
3b. Although only six residues are identical between
FELIX and DLC2-SAM, the amphipathic character of the
four helices is retained and consequently, the positions of
nonpolar residues that contribute to the hydrophobic
core of the respective proteins (Figure 3c). On the basis of
RMSD (2.53 A) and most aligned residues (53), the best
experimentally determined structure that was similar to
the DLC2-SAM domain is also a four-helix bundle termed
$-824 (PDB: 1P68) [16].

Interhelical angles present a straightforward means of
comparing the DLC2-SAM domain with representatives of

http://www.biomedcentral.com/1472-6807/7/34
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Figure 3

A comparison of the DLC2-SAM domain (in teal) and FELIX
(in magenta), a model of a engineered four-helix bundle
[PDB: IFLX]. (a, b) Two views of a best-fit superimposition
of the DLC2 and FELIX structures. While helix H4 of DLC2
is much shorter than its analogous helix (H3) in FELIX, its
observed length is consistent with other SAM domains. (c) A
sequence alignment highlighting identical (black) and homolo-
gous (grey) residues.

four-helix bundle and five-helix SAM domain classes. As
shown in Table 2, the DLC2-SAM domain presents its four
helices in a nearly parallel manner, although there is vari-
ation in the direction at which the helices cross as com-
pared to the FELIX model and the S-824 protein structure.
There appears to be no similarity between the interhelical
angles of DLC2-SAM and nine five-helix SAM domains
presented. However, within the five-helix SAM domain
class itself, there is considerable similarity, the only excep-
tion being the angle at which helices H3 and H4 cross
each other.

A dynamics study was performed to supplement the
DLC2-SAM domain structure determination. Amide >N
T, and T, relaxation times and heteronuclear NOE
enhancements were measured at 23°C. In general terms,
T, relaxation rates and heteronuclear NOE enhancements
tend to be sensitive to fast motions at the ns timescale. On
the other hand, T, relaxation rates are sensitive to slower
processes. A global molecular tumbling time, or correla-
tion time, can be determined from the ensemble of T, and
T, rates. As larger molecules tumble slower, the correla-
tion time provides insight into the oligomeric state of a
given protein. From gel filtration studies performed at uM
concentrations, the DLC2-SAM domain elutes as a single
peak with a retention time that is consistent with a mon-
omeric protein (data not presented).

At 1.3 mM, the concentration used for the NMR structural
study, the average T, /T, ratio was 10.96 + 1.35 reflecting a
correlation time (t.) of 10.3 ns. When the sample was
diluted in half to 0.65 mM and then in half again to 0.33
mM, the T,/T, ratios dropped slightly to 9.88 + 1.22 and
9.85 + 1.26 with respective correlation times of 9.44 ns
and 9.46 ns. At a similar protein concentration and ionic
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Table 2: Interhelical angles of selected four-helix bundles and SAM domains®

http://www.biomedcentral.com/1472-6807/7/34

PDBP Name Helix Pair<
HI-H2 H2-H3 H3-H4 H4-H5 H5-HI H2-H4

2JMT DLC2 -163 NA NA 156 147 -150

IP68 5-824 177 NA NA -156 -174 -159

IFLX FELIX -164 NA NA -165 -166 -160

ISVO Mae 138 75 109 141 124 NA

ISV4 Yan 138 95 108 138 124 NA

IFOM EphB2 153 95 108 138 124 NA

IDXS p73 154 9% 12 129 124 NA

IPK3 Secm 162 102 112 135 75 NA

1KW4 Ph 161 112 -87 155 118 NA

1BOX EphA4 149 97 -113 127 118 NA

1OW5 Stel | 145 100 -114 112 132 NA

1ZIV Ste50 158 101 116 121 15 NA

Averaged 151 97 13 132 117
SDe 9 10 115 12 17

aCalculated with the program INTERHLX

bProtein Data Bank accession number

To facilitate a comparison with five-helix SAM domains, the helix order of 2JMT, IFLX and 1P68 is defined as HI-H2-H4-H5

dAverage angles are calculated only for the five-helix SAM domains

eStandard deviations are calculated only for the five-helix SAM domains
strength, the S. cerevisiae Stel1 kinase SAM domain dem-
onstrates a comparable correlation time of 9.3 ns [17]. 1y I || B —————
The observed reduction in correlation times suggests that - ™, 1" " P - .
the DLC2-SAM domain has a slight concentration £ T . " O e LU TN
dependent propensity to self-associate. Supporting this = aool." . ] 'J". 4
conclusion, DLC2-SAM domain preparations for NMR - v T L W S SO o T SO A
spectroscopy were observed to polymerize into a gel over BT A T a0 RS R e I Ser i WIS
a period of months, even at 4°C and in the presence of I S S S S TR Y
reducing agents to prevent oxidization of the three solvent 2 70f ® ] . .
exposed cysteines. Weak self-association has been docu- E 60LM I e - -
mented previously for the Stel1 [17] and human Ephrin z sof i ™ =", g R |
kinase B2 SAM domains [18]. However, unlike these two | Y O T (WUNE, N W el
SAM domains, no concentration dependent chemical Ok G, TR SIS0 BRI RS SRl S0l SRR TR O T e
shift changes were observed suggesting that DLC2-SAM 1.0
self-association is much weaker. At low concentrations = H

(0.3 mM), the minimal DLC2-SAM protein fragment (50- Z 08 H{}H H

120) had sufficient solubility for a relaxation study to be i -l }EE |
performed. From a similar T, and T, relaxation rate analy- &
sis, the loss of 17 C-terminal residues reduced the global 58570 75 80 85 80 86 100 105 110 115 120
correlation time from 9.46 to 7.83 ns. — I — T

Figure 4

On a per residue basis, the helix H4-H5 loop demon-
strated higher T, and T, relaxation times and lower heter-
onuclear NOE values (Figure 4) indicating the
contribution of additional motions in the ps-ms range.
Consistent with the greater relative conformational sam-

A NMR relaxation study of the DLC2-SAM domain. (a) Per
residue 5N T, longitudinal relaxation times. (b) Per residue
I5N T, transverse relaxation times. (c) Per residue heteronu-
clear NOE ratios.
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pling occurring in this region, fewer NOE observations
were made thereby leading to a higher backbone RMSD in
the ensemble.

An examination of the DLC2-SAM domain surface reveals
a narrow hydrophobic cleft that extends from the helix
H2-H4 loop towards helix H5 (Figure 5). This surface fol-
lows a tract of aromatic residues that include Phe72,
Tyr75, Tyr79, Phe84 and Phe97. Of these aromatics,
Phe72 and Phe75 are partially exposed and Phe97 is
entirely solvent exposed thereby providing a shallow
pocket for a hydrophobic ligand. The position of this
potential ligand binding cleft has not been observed in
protein-protein [9] and protein-nucleic acid complexes
[19] of other SAM domains.

Discussion
Convergence and divergence of signals through Ras and
Rho represent some of the most studied cases in the liter-

x/F97

Figure 5

A molecular surface representation of the DLC2 SAM
domain was colored according to charge (Asp/Glu, red; Lys/
Arg, blue; aromatics, yellow; all others, white). With helices
H2 and H4 immediately towards the viewer, a shallow cleft
lined with aromatic residues is apparent.

http://www.biomedcentral.com/1472-6807/7/34

ature [20]. By targeting Rho, Cdc42, and possibly other
GTPases, the GAP activity of DLC2 exerts a repressive
effect on cell proliferation and regulates the formation of
actin stress fibers and focal adhesions [21]. Combined,
these abilities have earned DLC2 the designation as a
tumor suppressor. Since RhoGAP signaling proteins such
as DLC2 outnumber their potential GTPase targets by over
a factor of 2:1, a considerable level of crosstalk is expected
[22]. While the GAP domain of DLC2 possesses all of the
necessary determinants to interact with Rho, additional
sequences are likely necessary to couple DLC2 to multi-
protein signaling complexes. A yeast two-hybrid study
using full length DLC2 as bait identified a number of
interacting proteins that shared no singular functional
class [23]. The SAM domain of DLC2, owing to its estab-
lished role in protein-protein interactions, is an obvious
choice for beginning a refined study of DLC2 partners.

As previously demonstrated by the homo-oligomeric
forms of the Stell [24], Tel [25], Ephrin A4 [26] and
Ephrin B2 [18] structures, SAM domains are capable of
displaying a variety of protein interaction surfaces despite
their relatively small size. Over the last five years, the rep-
ertoire of SAM domain/ligand interactions has been
extended to include nucleic acids and lipids. Reinforcing
the versatility of the fold, the surfaces employed by this
emerging class of SAM domains are distinct from their
protein-binding counterparts. For example, the Vts1 and
Smaug SAM domains bind specific pentaloop hairpin
RNAs at a shallow site that draws upon contributions
from helices H1 and H5 [19]. The p73 SAM domain has
been demonstrated to partially embed in both anionic
and zwitterionic lipid membranes accompanied by pre-
dicted conformational changes in helices H1 and H3 [27].

Four isoforms of human DLC2 (DLC2a-8) have been
reported [21]. DLC2a and DLC2P exhibit only minor
amino terminal deletions before the SAM domain. DLC2
lacks the SAM domain while DLC23 is a very short dele-
tion (1-135) only possessing a SAM domain. At present,
no information is available regarding cells overexpressing
the DLCS isoform. Does the overexpression of the SAM
domain bind and suppress other signaling protein part-
ners leading to a phenotypic change? Of note, only the
DLC2¥ isoform could be stably expressed in HepG2
hepatoma cells suggesting the SAM domain may increase
the suppressive strength of signals through Rho.

In yeast, the Ste50-SAM domain acts as a high-affinity bea-
con that recruits the Ste11 MAP kinase to Cdc42 GTPase-
associated complexes involved in filamentous growth and
the response to high osmolarity environment [28]. With
its unique four-helix bundle fold and hydrophobic sur-
face lined with aromatic residues, the DLC2-SAM domain
may serve an analogous role by coupling receiver and
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effector proteins to inactive Rho- and Cdc42-associated
complexes.

Conclusion

The DLC2-SAM domain structure appears to be a hybrid
of a SAM domain and an anti-parallel four-helix bundle.
As a result, DLC2 may interact with a new class of biomo-
lecular ligands, including peptides and lipids.

Note Added in Proof

During revision of this manuscript, a structural study of
the human DLC2-SAM domain was published [29]. Since
coordinates of human DLC2 [PDB: 2H80] were unavaila-
ble, we could not perform a detailed comparison with the
murine DLC2-SAM domain fragment presented in this
study. In general terms, the number and position of the
secondary structures of the human DLC2-SAM domain, as
well as its topology, are in agreement with our murine
DLC2-SAM data. Furthermore, we obtained a comparable
correlation time indicating that both the human and
murine DLC2-SAM domains occur in a predominantly
monomeric form over a wide range of concentrations.

Methods

Cloning and Expression

Gene fragments encoding residues 1-137, 22-137, 50-
120, and 50-137 of murine DLC2 were PCR amplified
from the ATCC (Rockville, MD) cDNA clone 8437456
(GenBank: BC027830) and inserted into pET15b (Nova-
gen). The expressed proteins have a 19 residue hexahisti-
dine affinity tag and thrombin protease site appended to
the amino terminus. Milligram quantities of isotopically
labeled DLC2 SAM domain [50-137] were produced
from a 1 L fermentation of E. coli BL21:DE3 in M9 mini-
mal media supplemented with 15N-ammonium chloride
and !3C-glucose as the sole nitrogen and carbon sources.
The remaining fragments were isotopically labeled with
15N for screening purposes. All affinity tagged protein
were purified using chelating nickel affinity chromatogra-
phy and gel filtration chromatography (Sephadex S-100
16/60 column; GE Biosciences). Buffer conditions for all
DLC SAM protein fragments were standardized to 20 mM
sodium phosphate, pH 7.8, 175 mM NaCl, 0.05 %
sodium azide, 5 mM dithiothreitol-d,,,.

NMR spectroscopy and structure determination

Protein preparations of DLC SAM (50-137) for NMR
structure determination were concentrated to 0.8 mM in
the aforementioned standard buffer supplemented with
10% D,0. All NMR experiments were performed on a 600
MHz Varian NMRS instrument equipped with a room
temperature, single axis, pulsed field gradient, triple axis
probe. Standard Varian BioPack pulse sequences were
employed. Backbone assignments were determined from
2D IN-HSQC, 2D 13C-HSQC, 3D HNCACB, 3D

http://www.biomedcentral.com/1472-6807/7/34

CBCA(CO)NH, and 3D HNCO spectra. Side chain assign-
ments were achieved from 3D H(CCO)NH, 3D
C(CO)NH, and 3D HCCH-TOCSY spectra. Aromatic rings
were assigned from 2D (HB)CB(CGCD)HD, 2D
(HB)CB(CGCDCE)HE, and 3D HCCH-TOCSY spectra.
NOE distance restraints were obtained from 3D 15N
HSQC-NOESY (100 ms mixing time), 3D 13C HSQC-
NOESY (100 ms) and 3D aromatic 13C HSQC-NOESY (80
ms) spectra. Amide residual dipolar couplings were
obtained as J differences from 2D IPAP-HSQC spectra
[30] of the original (isotropic) sample and an aligned
sample containing 10 mg/mL Pf1 bacteriophage (Profos).
Data were processed and interpreted using nmrPipe [31]
and NMRView software [32]. No stereospecific assign-
ments were made. NOE distance restraints were calibrated
from 2.4-5.5 A using CYANA 2.1 [33]. Hydrogen bond
restraints (O-HN, 1.8-2.1 A; O-N, 2.7-3.0 A) were deter-
mined by assessing the initial ensemble for backbone O-
HN distances < 2.4 A and a bond angles < 25°. Backbone
dihedral angles (¢/y) were predicted from chemical shift
information using the PREDITOR method [34]. Initial
ensembles of structures were calculated with CYANA 2.1
and further refined in explicit solvent [35] with XPLOR-
NIH 2.17.0 [36].

NMR dynamics

15N T, relaxation spectra were acquired with delays of 10,
30, 50,110, 210, 310 and 510 ms. 15N T, relaxation spec-
tra were acquired with delays of 10, 30, 50, 70, 90 and 110
ms. Amide heteronuclear NOE spectra were acquired with
and without saturation and a total interscan delay of 5 s.
Resonances were integrated and normalized with the
nLinLS module of the NMRDraw software suite. Amide T,
and T, relaxation times were calculated from least squares
fitting to a monoexponential function. Heteronuclear
NOE enhancements were calculated as a ratio between
resonance intensities of the two spectra. A molecular rota-
tional correlation time was calculated using a Mathemat-
ica notebook written by Dr. Pascal Mercier (Chenomx;
Edmonton, AB) employing a subset of the relaxation data
whose T, /T, ratios were all within one standard deviation
and whose heteronuclear NOE enhancements were >
0.65.

Circular Dichroism Spectropolarimetry

Far UV spectra of DLC2 SAM domain fragments at a con-
centration of 50 uM in the standard buffer were acquired
with aJasco J-810 instrument. A rectangular cell with a 0.1
cm path length was used for all measurements. Spectra
were recorded from 260 - 200 nm with a scan rate of 100
nm/min and a 1.0 nm bandwidth. A midpoint denatura-
tion temperature (T,,) was determined by heating samples
from 20-80°C at 2°C/min and monitoring ellipticity at
220 nm, a wavelength that is diagnostic for a-helical con-
tent. Mean residue ellipticity at 222 nm for various DLC2-
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SAM protein fragments were predicted according to a pre-
viously described method [37].

Bioinformatics

Ramachandran analysis of the ensemble was performed
using PROCHECK-NMR [38]. Ensemble RMSDs were cal-
culated with MOLMOL [39]. The EBI SSM server [14] was
used to identify structurally similar proteins in the PDB
and to perform 3D pairwise comparisons. Interhelical
angles were calculated with INTERHLX [40]. Molecular
graphics were produced with MOLMOL and PyMOL
http://pymol.sourceforge.net.

Data Deposition

Coordinates and restraint lists were deposited in the Pro-
tein Data Bank under accession code 2JMT. Chemical
shifts were deposited in the BioMagResBank (BMRB)
under accession number 15060.
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