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Abstract

Background: The prevalence of tuberculosis, the prolonged and expensive treatment that this
disease requires and an increase in drug resistance indicate an urgent need for new treatments. The
|-deoxy-D-xylulose 5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive
chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis,
and is absent from humans. To underpin future drug development it is important to assess which
enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them.

Results: The fifth enzyme of this pathway, encoded by ispF, is 2C-methyl-D-erythritol-2,4-
cyclodiphosphate synthase (IspF). A two-step recombination strategy was used to construct ispF
deletion mutants in M. tuberculosis but only wild-type double crossover strains were isolated. The
chromosomal copy could be deleted when a second functional copy was provided on an integrating
plasmid, demonstrating that ispF is an essential gene under the conditions tested thereby confirming
its potential as a drug target. We attempted structure determination of the M. tuberculosis enzyme
(MtlspF), but failed to obtain crystals. We instead analyzed the orthologue M. smegmatis IspF
(MslspF), sharing 73% amino acid sequence identity, at 2.2 A resolution. The high level of sequence
conservation is particularly pronounced in and around the active site. MslspF is a trimer with a
hydrophobic cavity at its center that contains density consistent with diphosphate-containing
isoprenoids. The active site, created by two subunits, comprises a rigid CDP-Zn2* binding pocket
with a flexible loop to position the 2C-methyl-D-erythritol moiety of substrate. Sequence-structure
comparisons indicate that the active site and interactions with ligands are highly conserved.

Conclusion: Our study genetically validates MtlspF as a therapeutic target and provides a model
system for structure-based ligand design.

Background agent of tuberculosis and 2005, almost 9 million cases of
Approximately one-third of the world's population is  tuberculosis emerged, resulting in an estimated 1.6 mil-
infected with Mycobacterium tuberculosis, the causative  lion deaths [1]. Typical treatments require combination
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drug therapies taken over a period of 6-9 months. The
global economic burden of tuberculosis amounts to
approximately $12 billion annually. The need for novel
chemotherapeutics in the treatment of infection by M.
tuberculosis is clearly demonstrated by its high infectivity
rate and prolonged and extensive therapy requirements.

The isoprenoid biosynthesis pathways are attractive,
established targets for chemotherapeutic treatment [2,3].
Isoprenoids are building blocks for several biologically or
commercially important compounds, including steroids,
flavoring compounds like limonene, and natural medici-
nal products like taxol [4]. Cells are dependent on isopre-
noid derivatives for critical functions like growth,
hormone-based signaling, differentiation, maintenance
of homeostasis, and electron transport in respiration and
photosynthesis [4]. In Mycobacteria species, isoprenoid
biosynthesis is particularly important for the synthesis of
the cell wall, including mycolic acids and lipoarabi-
nomannan [5]. The universal precursors of isoprenoids
are the isomers isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP). Synthesis of
these precursors occurs via two distinct biochemical path-
ways. In mammals, fungi, the cytoplasm of plants, and
archaebacteria, synthesis occurs via the mevalonate path-
way [6], and, in chloroplasts, algae, cyanobacteria, api-
complexa and most eubacteria (including M. tuberculosis),
via the 1-deoxy-D-xylulose 5-phosphate (DOXP) or non-
mevalonate pathway [7-11]. Fosmidomycin is an inhibi-
tor of the third enzyme in the DOXP pathway, 1-deoxy-D-
xylulose 5-phosphate reductoisomerase, and has been
used against infections by Plasmodium species [3,12].
Since the compound is a clinically approved antibacterial
agent then there is chemical validation of this stage of the
pathway for drug development. Recently, the crystal struc-
ture of the M. tuberculosis reductoisomerase has been
determined opening up routes to structure-based inhibi-
tor discovery methods targeting that particular stage of the
pathway [13].

Eight enzymes are involved in the synthesis of IPP and
DMAPP via the DOXP pathway [8,14]. IspF, or 2C-
methyl-D-erythritol-2,4-cylodiphosphate (MECDP) syn-
thase, is the fifth enzyme of the pathway. Structural and
biochemical studies, in particular on the Escherichia coli
enzyme (EcIspF), demonstrate that IspF directs an
intramolecular attack of the 2-phosphate on the internal
B-phosphate of the substrate, 4-diphosphocytidyl-2C-
methyl-D-erythritol-2-phosphate (CDP-ME2P), to form
MECDP and CMP (Figure 1). IspF depends on two diva-
lent cations to orient and polarize the substrate during
catalysis [15-18] In Gram-negative bacteria and Mycobac-
teria species, ispF is found in a putative operon with ispD,
which encodes the third enzyme in the DOXP pathway
[14]. Genetic studies indicate that ispF is essential in E. coli
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as well as Bacillus subtilis [8,19,20] and partial depletion of
ispF in these bacteria increases sensitivity to cell wall-
active antibiotics [19]. In larger genomic scale hybridiza-
tion studies, failure to insert a transposon into the ispF
gene also suggests it is essential in Haemophilus influenzae
[21] and M. tuberculosis [22].

These observations, in conjunction with the absence of
this enzyme from humans, demonstrate the importance
of IspF as a novel target for drug discovery. The structure
of EcIspF has provided a model for rational ligand design
[23] and a high throughput screen has been developed to
enable ligand discovery [24]. Little information is availa-
ble for M. tuberculosis I1spF (MtIspF) and earlier genetic
studies only suggest that ispF is essential in this organism.
Here, we prove that ispF is essential in M. tuberculosis. Fur-
thermore, for use as a model in structure-based ligand
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The IspF reaction. IspF catalyzes the formation of 2C-methyl-
D-erythritol 2,4-cyclodiphosphate (MECDP) and CMP by an
internal direct attack of the 2-phosphate group on the 3-
phosphate of the substrate, 4-diphosphocytidyl-2C-methyl-D-
erythritol-2-phosphate (CDP-ME2P). The reaction is depend-
ent on divalent cations (Zn2* and under physiological condi-
tions Mg?*).
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design, we present a structure of the orthologue, Mycobac-
terium smegmatis IspF (MsIspF), bound to CDP.

Results and discussion

IspF essentiality in M. tuberculosis

We exploited our previously described methods [25-29]
to determine whether ispF was essential in M. tuberculosis.
Initially, we attempted to construct a knockout mutant
using a two-step homologous recombination procedure.
The two-step method employed the use of a suicide (non-
replicating) construct containing an in-frame deletion of
the ispF gene (Figures 2, 3). The construct (p2NIL-A ispF)
was introduced into wild-type M. tuberculosis and single
crossover (SCO) recombinant strains obtained. One SCO
strain was used to isolate double crossover (DCO) recom-
binants; in the absence of antibiotic selection, DCO
recombinants could have either the wild type or the dele-
tion alleles. We screened 24 DCO recombinants; all had
the wild-type gene.

The failure to isolate a deletion strain suggested that ispF
is essential in axenic culture. To verify this hypothesis, we
made a merodiploid strain in which an additional func-
tional copy of ispD and ispF were introduced into the SCO
strain on an L5-derived integrating vector under the con-
trol of the mycobacterial antigen 85A promoter (pAPA3-
ispDF). The resulting strain had one deleted and two func-
tional copies of ispF. Double crossovers generated from
the merodiploid strain were isolated as before. Screening
by PCR demonstrated that 19/24 DCOs had the wild-type
gene and 5/24 had the deletion allele (p = 0.04, Fisher's
exact t-test). The genotypes of the transformants with the
deletion allele were confirmed by Southern hybridization
(Figure 3). Since the chromosomal copy of ispF could only
be deleted when a second functional copy was provided,
this proved the essentiality of ispF in M. tuberculosis.
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Figure 2

M. tuberculosis ispF is essential. Map of the ispF genomic
region in the wild type and the deletion allele. Regions ampli-
fied for the delivery and complementing vectors, restriction
sites (intragenic and introduced) and probe location are indi-
cated.
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Figure 3

Southern blot of DispF complemented with pAPA3-ispDF
(lanes 2-5) and WT (lane I)- DNA was digested with BamHI
and probed with an upstream region of ispF. Expected size of
WT band was 7.3 kb; DispF mutants were shown to only to
possess the deletion band (3.1 kb), thus confirming the dele-
tion of ispF.

A Mycobacteria model for structure-based studies

That ispF is essential in M. tuberculosis validates the
encoded enzyme as a chemotherapeutic target. We tried to
determine the structure of MtIspF to aid in rational ligand
design, but the protein, though efficiently produced in
recombinant form, was recalcitrant to crystallization.
MtlIspF has 73% amino acid identity to MslIspF, so we
chose to study the orthologue on the basis that it would
provide a suitable model of the pathogen enzyme. The
recombinant MslspF is produced in high yield (approxi-
mately 30 mg L! of bacterial culture), can be purified
readily and provided well-ordered single crystals. A sur-
face model of MslspF, which is colored by shared identity
with MtIspF, highlights the strong resemblance between
these sequences, particularly at the active site (Figures 4, 5,
6). Generally, an accurate homology model is attainable
in high sequence identity (>60%) cases [30,31] and the
use of such models has been successful in structure-based
ligand design. In certain cases, even with <60% sequence
identity, homology models have been found useful.
Examples being human carbonic anhydrase [32] and Rho
kinase [33] where models were constructed from
sequences that shared only 38% and 37% identity, respec-
tively.
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Figure 4

IspF homology. Amino acid sequence alignment of MslspF,
MtlspF, and EclspF. Secondary structure elements of MslspF
are shown above the sequence. -strands are blue, a-helices
red, and 3,,-helical segments aquamarine. MslspF and EclspF
are aligned based on a structural overlay. Residues boxed in
black are strictly conserved and those in grey are identical in
two of the three sequences; similar residues from the Myco-
bacteria sequences are outlined in a purple box. A identifies
residues that interact with Zn2*, t with Mg2*, H with CDP,
and ¥ with the 2C-methyl-D-erythritol moiety of substrate;
A denotes residues that line the hydrophobic cavity. The res-
idues that bind Mg2* and the ME2P fragment of substrate are
based on observations in EclspF.

Overall structure

The structure of MsIspF bound to CDP was determined to
a resolution of 2.2 A. There are three subunits (chains A,
B, and C) in the asymmetric unit, forming a homotrimer
about a non-crystallographic axis. The model comprises
residues 3-157 for each subunit, with residues 36-37
absent in chains A and B. Structures of several ligand-
bound and native forms of IspF from Campylobacter jejuni,
E. coli,H. influenzae, Shewanella oneidensis, and Thermus
thermophilus are available in the Protein Data Bank [PDB,
[15,34-37]]. EclspF [PDB code 1GX1, [16]] was chosen as
the model for the structural comparisons to follow
because it was built using high-resolution data (1.8 A) and
contains the ligand CDP. The two sequences share 38%
identity, and the r.m.s.d. values for the superposition of
the MsIspF onto the EcIspF trimer range from 1.10-1.16
A, depending upon which chains are aligned.

MslIspF closely resembles EclspF [16-18]. Each subunit
displays an o/p fold which contains six B-strands, five a-
helices, and two 3, helices (Figures 4, 7, 8). Four of the
strands (B1, p4-6) comprise a central B-sheet that packs
against the a- and 3, helices. The other two strands form
a short sheet at the end of a loop that extends into the
space between al, a3, and a4. One 3, helix (62) of

http://www.biomedcentral.com/1472-6807/7/68

Figure 5

The van der Waals surface of the active site colored accord-
ing to shared sequence identity with MtlspF. Identical resi-
dues are colored slate-blue and similar residues are purple.
The active site Zn2* is a grey sphere, and CDP is shown as a
stick model with C atoms in black, N blue, O red, and P yel-
low. An asterisk indicates contributions from an adjacent
subunit.

MslspF overlays with that of EcIspF (designated 61 by
[16]), but the second (01) occurs between o2 and a3
rather than following 4.

Trimer formation arises from edge-to-face packing of the
B-sheets, with the largest section of the interface occurring
between B1 and B5 of adjacent subunits (Figures 7, 8).
Thus, the interior shape of the trimer resembles a trigonal
prism whose faces are comprised of B-sheets from the
individual subunits. The MsIspF trimer has the same over-
all dimensions as EcIspF, measuring approximately 40 A
in height along the three-fold symmetry axis and 60 A in
diameter at the widest point perpendicular to this axis. In
addition, like the E. coli enzyme, most of the hydrogen
bonds between the subunits involve side chain interac-
tions. The trimer interface interactions also resemble
those of E. coli in that they are primarily hydrophobic;
approximately 65% of atoms comprising both of these
enzyme interfaces are non-polar. E. coli and M. smegmatis
are mesophiles. In contrast, only 58% of atoms in the
interface of IspF from the thermophile T. thermophilus are
non-polar [35].
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H45%

H13%

Stereo-view of the active site overlay of MslspF and EclspF. Residues from MslspF are labeled and CDP-B is the depicted con-
former. Protein atoms are colored: C of MslspF green, C of EclspF wheat, all N atoms blue, O atoms red, and Se atoms
magenta. The marine sphere depicts the water molecule that contributes to solvent-mediated interactions between IspF and

the ribose hydroxyls of CDP.

Hydrophobic cavity

At the center of the trimer is a hydrophobic cavity that
opens toward the C-terminal ends of $1, p4 and B5. Side
chains of residues Thr10, Val12, 1le102, Thr134, Leu139
and Thr140 from each subunit line the interior of the cav-
ity while two arginines (Arg142 from subunits A and B)
and the main chain of Gly138 and Leu139 of subunit C
shape the aperture (data not shown). Argl42 is held in
place through an electrostatic attraction to Glul44. In
EcIspF, a salt-bridge between Argl42-Glul44 from all
three subunits forms the aperture. Here, subunit C is less
ordered and this contributes to the observed asymmetry.
The density is poorly defined between residues 137-144
in subunit C and the average thermal parameter for this
region (58.4 A?) is much higher than in subunits A (34.6
A2) and B (18.1 A2).

The distance from the base of the cavity to the opening
(16 A) and the diameter of the aperture (6 A) are compa-
rable to those observed in EcIspF. The volume of the cavity
of MsIspF (1940 A3), however, is significantly larger than
that of EcIspF (1540 A3). In EclspF the cavity is ellipsoidal
and the floor parabolic; the major axis of the ellipsoid

runs from the aperture to the floor of the cavity [15]. In
MsIspF the cavity is trigonal pyramidal, with the aperture
corresponding to the tip of the pyramid and the floor to
the base. Residue differences in the lining of the cavity
contribute to shape and diameter variation. In E. coli, the
cavity is lined with the side chains of six large hydropho-
bic residues, Phe7 and Phel39 from each subunit,
whereas the corresponding residues in MsIspF are Thr10
and Leu139. In EcIspF, the floor of the cavity is sealed by
three His5-Glu149 salt bridges [15]. Hydrophobic interac-
tions seal the floor of MsIspF. Here, residues Leu8 and
Ile149 replace the EcIspF salt-bridge. The cavity in M¢IpsF
should bear a strong resemblance to that in MsIspF since
the residues that contribute to the lining (discussed
above) are strictly identical in the two sequences (Figure
4).

In common with crystal structures of other IspF trimers,
non-protein electron density was observed in the hydro-
phobic cavity of MslspF. In EclspF, phosphate, farnesyl
pyrophosphate, GPP, and IPP have been shown to bind
within this cavity [15]. There is as yet no evidence to prove
that ligand binding here regulates enzyme activity. The
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Flexible
Loop

Figure 7

Ribbon diagram of the trimer. The MslspF trimer viewed
down the molecular three-fold axis. The individual subunits
are shown in slate, wheat, and purple. Selected secondary
structure elements of the wheat subunit, CDP and Zn?* are
depicted as in Figure 5.

cavity is distant from the three catalytic sites but since, as
will be explained, oligomerisation is required to generate
the functional enzyme then occupancy of the hydropho-
bic cleft may contribute to the stability of the IspF trimer.

In MsIspF the density observed in the cavity is diffuse and
we presume that a similar mixture of ligands may be
present. IPP was modeled into this density at 50% occu-
pancy based on fit and ligand identification in the EcIspF
cavity. Although a methodical and thorough approach
was used in fitting the ligand, the thermal parameters of
IPP (47.5 A2) exceed the average of the protein (27.5 A2?).
The ligand-protein interactions, though not clearly
defined, do resemble those observed in EcIspF [PDB code
1H47, [15]]. The guanidino groups of Argl42 from two
subunits bind to the B-phosphate; in EclspF, the side
chain from the corresponding residue (Argl42) of all
three subunits contributes to this interaction. In MsIspF,
the bridging phosphodiester oxygen of IPP binds to the
amide of Leu139 in subunit C and one of the a-phosphate
oxygens binds to the main chain amide of Leu139 in sub-
unit B. In EcIspF, these ligand atoms interact with the
main chain amide of the corresponding residue (Phe139)
of all three subunits.

http://www.biomedcentral.com/1472-6807/7/68

Hydrophobic Cavity

Figure 8
Ribbon diagram of the trimer. Orthogonal view compared to
Figure 7.

Active site

There are three active sites in the trimer, each located at
the interface between two adjacent subunits. The active
site (Figures 5, 6) comprises a rigid nucleotide and cation
(Zn2+ and Mg?+) binding pocket and a flexible loop for
binding the ME2P moiety of substrate [16-18,36]. Only
one of the two cation-binding sites, the Zn2+ site, is occu-
pied here [8,15,16]. This cation is approximately 75%
occupied in two subunits and 50% occupied in the third.
The Zn2+ displays tetrahedral coordination, in similar
fashion to that observed in other IspF structures, by
Asp11, His13, His45, and the B-phosphate of CDP. In the
higher resolution model of EcIspF, the second cation
(Mg2+ or Mn2+[16,18]) is coordinated by the side chain of
Glu135 and two oxygens from the diphosphate of CDP.
In MsIspF and MtlspF, the glutamate is replaced with
aspartate. This residue is strictly conserved as an aspartate
or glutamate across 450 IspF sequences (data not shown),
suggesting that a negative charge is required to coordinate
the second cation and that either negatively charged
amino acid will suffice. In the structure of MslspF, the
lower resolution data or CDP disorder may preclude iden-
tification of the second cation (see below).

Two conformers of CDP, each at approximately half occu-
pancy, are present in each of the three active sites of the
trimer. We only show one conformer in Figures 5 and 6
for the purpose of clarity. In the conformers, the ligand-
protein interactions are maintained for the pyrimidine
and the ribose but diverge at the diphosphate. The average
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thermal parameters of the conformers, hereby referred to
as CDP-A and CDP-B, are 20.8 and 29.2 A2, respectively.
The presence of CDP disorder is likely linked to the
incompletely occupied Zn2+binding site. The mode of lig-
and binding of CDP-B more closely resembles that
observed in EclspF (Figure 6). In this mode, three interac-
tions are present between the protein and ligand diphos-
phate. Two of these are hydrogen bonds formed between
the a-phosphate and the side chain hydroxyl and main
chain amide of the strictly conserved Thr133. The third is
ligand-metal ion coordination between the B-phosphate
and the active site Zn2+. The interaction between the Zn2+
and the B-phosphate is preserved in CDP-A, but an addi-
tional hydrogen bond occurs between the B-phosphate
and the hydroxyl group of Thr132. In CDP-A, the a-phos-
phate also forms a hydrogen bond with the side chain
hydroxyl of Thr133, but the bridging diphosphate oxygen
interacts with the main chain amide of this residue and
the side chain of Thr132 instead.

The architecture of the active site at the cytosine and Zn2+
binding sites and the interactions formed with CDP by
MsIspF are similar to that observed in EclspF. Further-
more, MsIspF residues that contribute to this binding site
are all identical or conserved in MtIspF (Figure 4). The
cytosine is bound in an aliphatic pocket created by side
chains of residues from B5 and the loop between 34 and
02 from a single subunit. The cytidine is stacked between
the side chains of Ala131 and Lys107, which are strictly
conserved in E. coli and M. tuberculosis. Both binding sites
in EclspF and MslspF are characterized by four hydrogen
bonds between the pyrimidine and main chain atoms of
the protein. In MsIspF, these backbone atoms are from
residues Gly103, Pro106, Val108 and Gly109, and, in
EclspF, Ala100, Pro103, Met105, and Leul06. These resi-
dues are strictly conserved in MsIspF and MtIspF with the
exception that MtIspF Ile109 replaces MsIspF Val108 (Fig-
ure 4).

Because the interactions involve backbone atoms, high
conservation of these residues is not necessarily required.
The critical elements required to maintain similar protein-
ligand interactions are the shape and size of the cytosine
pocket. Two pairs of hydrophobic interactions contribute
to this function in MsIspF. One pair of hydrophobic inter-
actions occurs between the side chains of Pro106 and
Leu146 and the second between the side chains of Val101
and Val108. Both sets of residues are highly conserved
(>85%) in 450 IspF sequences, including both E. coli and
M. tuberculosis. The first is conserved as a proline-leucine/
isoleucine pair and the second as two aliphatic residues,
where the identities of the residues are leucine, methio-
nine, valine, isoleucine, or phenylalanine.

http://www.biomedcentral.com/1472-6807/7/68

The ribose hydroxyls are oriented by several hydrophilic
interactions involving strictly conserved residues in
MslIspF, EclspF and MtlIspF. The ribose hydroxyls form
hydrogen bonds with the side chain of Asp59* (the aster-
isk denotes contributions from another subunit) and the
amide of Gly61*, and solvent-mediated interactions are
observed with the side chain of Asp49* and the carbonyl
of Ala131 (residues Asp56*, Gly58*, Asp46* and Ala131
in EclspF, respectively). Moreover, in MsIspF and EclspF,
the side chain orientation of Asp59* is maintained
through hydrophilic interactions. Here, this aspartate
accepts hydrogen bonds donated by amides of Gly61*,
Thr62*, and Ala131 and the side chain of Thr62*, and, in
EclspF, with the amides of Gly58*, Lys59*, and Alal31.
The MsIspF residues that contribute to the orientation of
Asp59* are strictly conserved in the sequence of MtIspF
except for Thr62*, which is a glutamate in the latter. Main
chain atoms are the primary contributors to stabilization
of Asp59*, so this amino acid replacement is unlikely to
affect conformation or function.

The nucleotide-binding pocket is only part of the active
site. In EcIspF the remaining fragment of substrate, ME2P,
is bound by contributions from a2, a3, and residues 33—
37, and a flexible loop, which comprises residues 61-71
[16-18]. The largest Co r.m.s.d. differences between
EclIspF and MslspF occur in this loop. In EclspF, the loop
is stabilized by hydrogen bonds between the side chain of
His34* and the carbonyl atoms of Asp63* and Asp65*.
His34* is conserved in MslspF (His37*), but the aspar-
tates are not. Here, no well-defined density is observed for
His37* in two of the trimer subunits. In the third, the side
chain of this residue forms hydrogen bonds to the main
chain carbonyl of Arg68* and the side chain of Asp67*.
The former resembles the EcIspF His34 *-Asp65* interac-
tion, but the latter reflects the different conformations of
this loop present in the two orthologues. This loop is fur-
ther stabilized in MsIspF by a hydrophilic interaction
between the carbonyl of Ile63* and the side chain of
Arg68*, a residue which is not conserved in EcIspF. The
stabilization of the loop through hydrogen bonding to the
side chain of an aspartate as observed in MsIspF can be
maintained in MtIspF as this residue is identical, but the
arginine is replaced by a second aspartate. Although the
main chain interactions might be preserved by an aspar-
tate, the side chain interactions could not.

ME2P is oriented by several hydrophobic and hydrophilic
interactions with EcIspF [18]. The amides of Ser35* and
His34* and the hydroxyl of Ser35* form hydrogen bonds
with oxygens of the attacking 2-phosphate group. The
identities of these residues and the positions of the resi-
dues that bind and orient the attacking 2-phosphate
group are maintained in MsIspF (Figure 4). In EcIspF, the
side chains of Ile57* and Leu76* make van der Waals con-
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tacts with the methyl group of ME2P. These residues are
replaced by another hydrophobic pair, Leu60* and
Met78*, in MsIspF. When a model of EcIspF containing
substrate [PDB code 1U43, [18]] is superimposed onto
MslspF, these residues are able to maintain contact with
the methyl group of ME2P. The 3-hydroxyl group of the
ligand interacts with the carbonyl of Phe61 in EcIspF. This
residue is part of the flexible loop, and the equivalent res-
idue in MsIspF (Phe64*) does not maintain this interac-
tion in the superposition. Phe64 * is preceded by a glycine
in MsIspF and a proline in EclspF. Glycine flexibility
would permit a conformational change to accommodate
interactions between Phe64* and the ligand. Alterna-
tively, there is a hydrogen bond present between the carb-
onyl of Gly65* and the 3-hydroxyl group of the
superimposed substrate. The aforementioned residues
corresponding to those observed in MslspF are all identi-
cal in MtIspF except for Leu60*, which is an isoleucine
instead. The binding component of this residue, the side
chain hydrophobicity, is maintained in MtIspF, as this res-
idue is also an isoleucine in E. coli and is strictly conserved
as isoleucine, leucine, or valine in 450 IspF sequences.

Conclusion

There is an urgent need to identify new targets and to
develop new treatments for tuberculosis. Our work dem-
onstrates that ispF is essential in M. tuberculosis, thus estab-
lishing it as a potentially valuable target for
chemotherapeutic intervention. In addition, we have
determined the crystal structure of the closely related
orthologue MsIspF bound to CDP. The protein is a homo-
trimer with three equivalent active sites formed at the sub-
unit interfaces. Each active site bears a strong resemblance
to those observed in other IspF structures, presenting a
rigid CDP-Zn2+ binding-pocket and a flexible substrate-
binding loop. MtlIspF and MslspF share 73% sequence
identity, and, of the eleven residues in the active site that
bind CDP, ten are identical and the eleventh highly con-
served. Based on the high degree of similarity between the
orthologues, particularly in the active site, the structure of
MsIspF provides a suitable template for structure-based
inhibitor design targeting the pathogenic organism M.
tuberculosis.

Methods

Culture and manipulation of M. tuberculosis and M.
smegmatis

M. tuberculosis (H37Rv) was grown on Middlebrook 7H10
agar or Middlebrook 7H9 broth (with 0.05% Tween 80),
with 10% OADC (oleic acid, bovine serum albumin, dex-
trose, catalase) supplement (Becton Dickinson). M. smeg-
matis (ATCC 700084) was grown on Lemco medium (5 g
-1 Lemco powder, 5 gl'! NaCl, 10 g1-! Bacto peptone) with
0.05% Tween 80 (liquid) or 15 g 1! agar (solid).

http://www.biomedcentral.com/1472-6807/7/68

Plasmids for M. tuberculosis ispF knockouts

The deletion delivery vector was constructed as follows:
PCR was used to amplify the regions either side of ispF
using the primer pairs IspFNFor/IspFNRev and IspFCFor/
IspFCRev (Table 1) and the resulting products were sub-
cloned with the Zero Blunt®* TOPO® PCR Cloning Kit (Inv-
itrogen). The DNA fragments were gel purified (Qiagen
Qiaquick Gel Extraction Kit) and then cloned into p2NIL
[29] to generate a deletion of ispF in which 379 bp of the
gene was absent. The marker gene cassette from pGOAL19
[29] was then cloned into the unique Pacl site to generate
the final delivery vector, p2NIL-A ispF.

To make the complement vector (pAPA3-ispDF) used to
generate the merodiploid strain, part of the operon, which
includes both the ispD and ispF genes, was amplified by
PCR using the primer pair IspDFSh/IspDFRev (Table 1)
and subcloned as Pacl fragments into the integrating vec-
tor pAPA3 [28]. The integrity and directionality of all con-
structs were confirmed by DNA sequencing.

Isolation and genotyping of recombinant strains

A single crossover strain was generated by electroporating
M. tuberculosis with 1 pg plasmid DNA and recombinants
selected on 100 pg/ml hygromycin, 20 pg/ml kanamycin
and 50 pg/ml X-gal as previously described [26]. A single
strain was streaked out in the absence of any antibiotics to
allow the second crossover to occur. Double crossovers
were selected and screened for using 2% w/v sucrose and
50 pg/ml X-gal; white colonies were patch tested for kan-
amycin and hygromycin sensitivity to ensure that they
had lost the plasmid during homologous recombination.
PCR was used to determine the presence of the wild type
or deletion allele using primers IspFintA and IspFintB
(Table 1), which amplify 1.4 kbp and 1 kbp fragments
from the wild type and deletion alleles respectively.

Table I: Primers used in this study

Primer 5' Sequence*

IspFNFor AAGCTTgtacgagttcccgetgaaaacge
IspFNRev GGATCCgagagtctgcccgtcgagetg
IspFCFor GGATCCgcaatcgctacggcattggtggt
IspFCRev GGTACCaccaccaccgacgggctgggc)
IspDFSh TTAATTAAgacgccaaagccgagaccatectt
IspDFRev TTAATTAAgccagcttacctgeccaattgetg
IspFIntA ggtcgaatcgeactgacac

IspFIntB cgatcatctgggtgatatgc

MslspFNter CATATGatgttgcctcgegtaggge
MslspFCter GGATCCtactttgcatcaccgaccggtt
IspDUSFor gacgagaatcaatgagacct

IspDUSRev agtgatatcggctcggtgac

*Upper case letters indicate inserted restriction sites.
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To generate the merodiploid strain, the pAPA3-ispDF plas-
mid was electroporated into the single crossover strain
and recombinants isolated on 10 pg/ml gentamicin, 100
pg/ml hygromycin, 20 pg/ml kanamycin and 50 pg/ml X-
gal. A single recombinant was streaked out without anti-
biotics to allow a second crossover to occur, and double
crossovers were isolated as before, except that gentamicin
was included at all stages. PCR and Southern blot analysis
were used to confirm the double crossover deletion allele
(delinquent mutant) generated from the merodiploid
strain.

Southern analysis

To generate a probe for Southern analysis, the region
upstream of the ispD was PCR-amplified using primers
IspDUSFor and IspDUSRev (Table 1) and the isolated
fragment labeled with AlkPhos Direct system (GE Health-
care). Genomic M. tuberculosis DNA (2 pg) was digested
with BamHI; the digestion products were separated on an
agarose gel and transferred by vacuum blotter onto a
Hybond N+ membrane (GE Healthcare). The membrane
was hybridized for 16 h in Alk Phos Direct hybridization
buffer (GE Healthcare) at 65°C with the labeled probe.
Primary and secondary post hybridization washes were
carried out (two primary washes for 10 min each at 55°C
and two secondary for 5 min each at RT, as per manufac-
turers' instructions), and the probe detected by CDP-Star
(GE Healthcare).

Cloning and expression of M. smegmatis ispF

The ispF gene was amplified by PCR from genomic DNA,
previously obtained with an established protocol [38],
using the primers MsIspFNter and MsIspFCter (Table 1)
and cloned into Ndel/BamHI-digested pET15b_TEV, a
modified pET15b (Novagen) expression vector that
includes an N-terminal tobacco etch virus (TEV) protease
cleavage site in place of the thrombin cleavage site. The
integrity of the pET15b_TEV-ispF construct was confirmed
by sequencing.

This construct was chemically transformed into
BL21(DE3) Gold cells (Stratagene) and selected for on
Luria-Bertani (LB) agar plates containing carbenicillin (50
pg/ml). A single colony was cultured at 37°C to an A4y, of
~0.6 in 1 L of LB containing carbenicillin (50 pg/ml) and
transferred to an ice water bath for 20 minutes. Subse-
quently, 1 mM isopropyl B-D-1-thiogalactopyranoside
was added to induce expression and the culture was incu-
bated at 22 °C overnight. Cells were harvested by centrifu-
gation and stored at -20°C.

Purification of MsispF

The cell pellet was resuspended in 30 mL of binding buffer
(500 mM NaCl, 20 mM Tris-HCI, pH 8, 15 mM imida-
zole) containing lysozyme and DNAse I [16] and lysed
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using a One-shot cell disruptor (Constant Cell Disruption
Systems). The soluble fraction was isolated by centrifuga-
tion (48,400 g, 30 minutes at 4°C), passed through a 0.2
p filter, and loaded onto a 5 mL HisTrap HP column (GE
Healthcare) loaded with Ni2+ and equilibrated in binding
buffer. The protein was eluted using a combination of step
and linear gradients from 0 to 500 mM imidazole and
concentrated to 873 uM (theoretical g, = 6990 M1 cm!
including the His-tag). The His-tag was cleaved with TEV
protease (2 mg at 22°C for 12 hours). The sample was
subsequently dialyzed into 50 mM NaCl, 20 mM Tris-
HCI, pH 8 and 1 mM dithiothreitol, passed over a 5 mL
HisTrap HP column to remove TEV protease and
uncleaved protein, and further purified by anion exchange
chromatography (5 mL Q HP, GE Healthcare). The sam-
ple was then dialyzed into 50 mM NaCl, 10 mM Tris-HC],
pH 8, 2 mM MgCl, and concentrated to 405 puM (theoret-
ical g, of 5500 M'! cm'! excluding the His-tag). This pro-
tein solution was used for crystallization. The high degree
of sample purity was confirmed by SDS-PAGE and matrix-
assisted laser desorption ionization-time-of-flight mass
spectrometry.

Crystallization and data collection

Prior to crystallization, the protein was incubated with 5
mM CDP at 4°C for 12 hours. Crystals were grown in
three days by sitting drop vapor diffusion at 20°C using
0.8 pL of protein solution and 0.8 pL of reservoir (18%
PEG 8000, 0.1 M sodium cacodylate pH 6.5, 0.2 M cal-
cium acetate). A single crystal (50 x 50 x 50 um) was cryo-
protected in reservoir adjusted to include 18% glycerol
and flash-cooled at -173°C. Diffraction data were col-
lected (Table 2) at the European Synchrotron Radiation
Facility (ESRF), station ID 23-2, on a MarMosaic 225 CCD
detector at a wavelength of 0.8730 A. The data were inte-
grated, merged, and scaled using MOSFLM [39] and
SCALA [40] from the CCP4 suite of programs [41].

Structure determination and refinement

The crystal belongs to space group I4 and has three subu-
nits in the asymmetric unit. The structure was solved by
molecular replacement with AMORE [42] using an EcIspF
trimer as the search model [PDB code 1GX1, [16]]. EcIspF
shares 38% amino acid identity with MslspF. Search
model bias was removed/reduced with prime-and-switch
phasing and a partial MsIspF model was built using
RESOLVE [43]. Restrained maximum likelihood refine-
ment was done using REFMACS5 [44] and PRODRG [45]
to provide ligand dictionaries. Non-crystallographic sym-
metry restraints were imposed early on but removed at
later stages of refinement. The R, calculation was per-
formed on 5% of the data. COOT [46] was used to inspect
Fourier syntheses and manipulate the model during
refinement. The occupancies for CDP and Zn2+ were based
on consideration of refined thermal parameters and the
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Table 2: Crystallographic statistics

Structure

M. smegmatis |spF

Unit cell, g, b, ¢ (A) 159.1, 159.1, 54.2
Resolution range (A) 513-22A
No. of observations 117,125
No. of unique reflections 33,193
Completeness (%) 95.4 (76.3)t
<l a(l)> 6.0(1.7)
Reym (%) 8.1(34.6)
Multiplicity 3.52.1)
Wilson B (A2)/DPI (A 28.1/0.16
Protein residues 461
Water molecules 272
CDP/Zn2* molecules (occupancy) 3(1)/3(0.75/0.5/0.75)
IPP molecules (occupancy) 1(0.5)
PEG/Glycerol/Ethylene glycol/Acetate 2/3/2/1
molecules
Rori/Riree (%) 16.3/20.6
Average B (A2)
Subunit A/B/C overall 30.7/19.7/31.8
All main/side chain 25.9/29.3
Waters 358
CDP/Zn2* 25.0/36.0
IPP 47.5
PEG/Glycerol/Ethylene glycol/Acetate 45.3/58.4/28.5/38.9
RMS bond lengths (A) 0.013
RMS bond angles (°) 1.570
PDB Code 2UZH

T Values in parentheses pertain to the highest resolution shell (width

=0.11 A). Bis the isotropic thermal parameter.

# DPI = diffraction-component precision index [53].

appearance of electron and difference density maps. Sta-

tistics for the model are presented in Table 2.

Model analysis

Root-mean-square deviation (r.m.s.d.) values for super-
positions were calculated using LSQMAN [47]. The values
for the superpositions of chain A onto B, A onto C, and B
onto G, respectively, were 0.54 A, 0.59 A, and 0.67 A over
153 Co atoms. Analysis of model geometry with PRO-
CHECK [48] demonstrated that all residues are within
allowed regions of the Ramachandran plot. Secondary
structure assignments were made using DSSP [49], COOT,
and by visual inspection. The trimer interface was ana-
lyzed using the Protein-Protein Interaction Server [50].
The volumes of the hydrophobic cavities at the trimer
centers were calculated and refined with VOIDOO [51]
using a rolling probe with a radius of 1.4 A. Figure 1 was
created with ChemDraw, Figure 2 with Adobe Illustrator
and Photoshop, 4 with Aline (C. S. Bond and A. W. Schiit-
telkopf, personal communication), and 5-8 with PyMOL
[52].
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