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Abstract

Background: The snake venom group IIA secreted phospholipases A, (SVPLA,), present in the
Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their
different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water
interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular
receptors; (ii) natural PLA,-inhibitors from snake serum; and (jii) coagulation factors present in
human blood.

Results: Using surface plasmon resonance (SPR) protein-protein interaction measurements and an
in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae
venom SVPLA,s that inhibit blood coagulation through direct binding to human blood coagulation
factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA,s in four
groups, depending on the strength of their binding.

Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show
a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations
between SVPLA, and FXa guided by the experimental data identify the potential FXa binding site
on the SVPLA,s. This site is composed of the following regions: helices A and B, the Ca2* loop, the
helix C-B-wing loop, and the C-terminal fragment. Some of the SVPLA, binding site residues belong
also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy
chains.

Conclusion: We have experimentally identified several strong FXa-binding SVPLA,s that disrupt
the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent
mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA,s and
FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.

Background to prevent the loss of blood after injury to the transporting
Haemostasis (vasoconstriction, platelet plug formation  vessels [1]. The intrinsic and the extrinsic alternate path-
and blood clotting) is a defense mechanism that evolved ~ ways initiate the blood clotting process. One of the com-
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mon steps in both pathways of coagulation is the
activation of coagulation factor X (FX) to factor Xa (FXa).

FXa circulates in plasma as the light and the heavy chains
connected by a single disulfide linkage. The N-terminal
region of the light chain (residues 1-39) is the Gla
domain, rich in post-translationaly modified y-carboxy-
glutamic acid, which interacts with the phospholipid (PL)
membrane[2]. The Gla domain is followed by a short
stack of hydrophobic residues (residues 40-45), and two
epidermal growth factor-like repeats - the EGF-like 1
domain (residues 46-84) and the EGF-like 2 domain (res-
idues 85-128). The heavy chain of FXa contains the cata-
lytically active serine proteinase domain (254 amino
acids, residues 16-269 in chymotrypsinogen numbering
system). As a serine proteinase of the chymotrypsin family
[3], FXa consists of two subdomains of antiparallel 3-bar-
rel structure each comprising a sheet of six strands and
four helices. Residues His57, Asp102, and Ser195 (chy-
motrypsinogen numbering) form a catalytic triad at the
active site cleft between the two subdomains|4]. The fold
contains a number of solvent-exposed loops, which deter-
mine S1 and subsite preferences in structurally homolo-
gous enzymes of the family. To the north of the active site
cleft in the canonical view are the 60- and 99-loops; to the
west are the 174 - and the 217-225 loops, restricting
access to the active site. The autolysis loop 149-151 occu-
pies the southern boundary of the active site cleft. Adja-
cent to it is the 70-loop. To the east is the 37-loop. Loop
185-188 is associated with S1 preference[5,6]. Upon
binding to FVa in the presence of Ca2*ions on negatively
charged membrane PL at the cellular surface, the pro-
thrombinase complex is formed, resulting in the acceler-
ated conversion of FII (prothrombin) to Flla (thrombin)
by FXa [7,8]. Afterwards, thrombin converts fibrinogen
into fibrin, consolidating the primary plug.

Secreted phospholipases A, (sPLA,, EC 3. 1. 1. 4) are
water-soluble interfacial enzymes that catalyze the hydrol-
ysis of the 2-acyl groups in 3-sn-phosphoglycerides. The
His48/Asp99 pair, the 26-34 calcium-binding loop and
the 69-loop of residues 59-74 constitute the catalytic site.
The calcium metal is a cofactor and its pocket is composed
of Asp49 and the calcium-binding loop [9]. The Interfa-
cial Binding Site (IBS) of several PLA,s has been located
and is species- and enzyme class-specific [10-12]. In
human non-pancreatic secreted group IIA phospholipase
A, (hsPLA,), the IBS is located in the "front" face of the
enzyme [13,14]. It consists of a highly hydrophobic sur-
face (Val3, Ala18, Leul9, Phe24, Phe70 and Tyr119) that
surrounds the active site, and of hydrophilic residues
(Arg7, Lys10, Glul6, and His6) (PDB code 1BBC; num-
bering system throughout as in Renetseder et al. [15]).
Two other residues (Lys74 and Lys115) lie in the periph-
ery of the IBS[13].
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In addition to the esterase activities, SPLA,s are also spe-
cific ligands that interact with different targets, such as
membrane-bound PLA, receptors [16,17], anionic
heparan sulfate proteoglycans (HSPG)[18,19], and with a
cytoskeleton protein (vimentin)[20]. On the other hand,
the soluble receptors of PLA,s, such as the natural inhibi-
tors in the blood of snakes, the coagulation factors, and
the PLA, binding protein have been also well character-
ized[21,22]. Hence, it has become clear that PLA,s exert
physiological and patho-physiological effects through
protein-protein interaction and/or protein-PL interac-
tions[22,23]. These protein-protein mechanisms are
sometimes dependent on, and other times independent
of their enzymatic activity, playing important roles in
determining the specific function of sPLA,s [24-26].
Viperidae snake venoms contain several toxic group IIA
PLA,s (SVPLA,), which may act as presynaptic neurotox-
ins[27] and may interfere with blood coagulation by pos-
sessing strong anticoagulant properties [28-40]. Viperidae
SVPLA,s have high primary sequence identity with human
group IIA PLA, (hsPLA,; 30-60%) and overall structural
homology[41,42]. Almost all anticoagulant snake venom
PLA, are basic proteins and may inhibit coagulation by
several mechanisms. A first mechanism involves the
hydrolysis and destruction of procoagulant PL [43-47].
CM-T and CM-I, illustrate this mechanism in which the
group I PLA, inhibits the extrinsic tenase complex [22,43],
and does not bind to FXa. A second mechanism is based
on the competition with clotting proteins for binding to
the lipid surface due to the high affinity of PLA, toward PL
the "antagonist effect" [28,48][49]. A third mechanism is
a non-enzymatic, PL-independent mechanism in which
the PLA, interacts with FXa, inhibits the prothrombinase
complex by preventing formation of the FXa/FVa complex
and introduces a lag time in the generation of
thrombin[22,32,34,35,39,50,51]. In addition, some
snake venom PLA,s show a combination of enzymatic
and non-enzymatic mechanisms, like the basic sPLA, iso-
form CM-IV  from Naja  nigricollis  (Elapidae)
venom|[22,29].

The non-enzymatic inhibition mechanism of the pro-
thrombinase complex was first demonstrated for CM-
IV[32,34] and then for hsPLA, [50]. The catalytically inac-
tive His48GIn mutant of hsPLA, possesses an identical
anticoagulant effect and binds to FXa with the same
kinetic constant as the wild-type enzyme, showing that in
this mechanism the anticoagulant process is independent
of the catalytic activity of the PLA, [51].

Kini and Evans first proposed that a "pharmacological
site," in addition to the catalytic site, could explain the
specific biological anticoagulant activity of snake venom
group I PLA,s[33]. This anticoagulant region consists of
the basic exposed loop located in the region 55-70, and
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the beginning of the B-sheet on Elapidae group I PLA,s
[52,53]. The proposed region is positively charged in
strong anticoagulant enzymes, but negatively charged in
weak and non-anticoagulant enzymes [33]. More recently,
Kini proposed that weakly anticoagulant enzymes, which
lack the anticoagulant region, fail to bind specifically to
FXa in the coagulation cascade [22].

In spite of all the studies, the corresponding site in Viperi-
dae SVPLA,s is not yet clearly established. In addition, no
distinction is usually made between the mechanisms by
which the anticoagulant potency is exerted by the PLA,s.
It seems that only the mechanisms that imply participa-
tion of PL have been taken into account in the past.

Anticoagulant snake venom PLA, represent a novel family
of agents useful in identifying the sites of interaction of
anticoagulants at the level of specific amino acid residues
and thus have a potential in identifying new drug leads
[54]. In order to characterize the FXa-binding site of
SVPLA, from the Viperidae family, we have focused on the
non-enzymatic, PL-independent, anticoagulant mode of
action. Previous work from the Unité des Venins (Institut
Pasteur, Paris) had shown the involvement of basic resi-
dues located around the IBS of hsPLA, [51], on one hand,
and the possible involvement of the C-terminal and B-
wing regions of AtxA[39] in binding to FXa, on the other.
We were henceforth interested in determining whether
similar or different amino acid patterns were present in
Viperidae SVPLA,s. Using SPR and a physiological test of
inhibition of prothrombinase activity, we identified
SVPLA,s that formed complexes with FXa and determined
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the apparent affinity constants of the complexes. With this
experimental information at hand, we applied sequence
analysis, molecular bioinformatics and docking proce-
dures in order to define the anticoagulant region of the
PLA, and the nature of the residues involved in the inter-
action with FXa.

The SVPLA,s tested in this study are: CBc and CBa,, two
isoforms of the basic subunit of crotoxin (CTX), a non
covalent, heterodimeric toxin from Crotalus durissus terrifi-
cus formed by the basic CB and the acidic CA subunits
[55]; CA,, an isoform of the acidic subunit of CTX[56]; the
acidic and basic subunits of the B-neurotoxin from Pseu-
docerastes fieldi| 57] (CbI and Cbll); isoform A of ammody-
toxin from Vipera ammodytes ammodytes|58] (AtxA); the
PLA, from Vipera berus berus[59] (Vbb); Myotoxin II (inac-
tive Asp49Lys mutant) [60] from Bothrops asper[61]
(MtxII); PLA, from Daboia russelli pulchella [62] (VRV-
PLVIII); the basic PLA, from Agkistrodon halys pallas [63]
(bAhp); agkistrodotoxin from Agkistrodon halys pallas[64]
(AGTX); PLA, from Crotalus atrox [65] (Catx). We also
tested human group IIA PLA,[66] (hsPLA,; Uniprot
P14555; PDB 1BBC). The crystal structures of MtxII, VRV-
PLVIII, bAhp, AGTX, Catx and hsPLA, are available in the
PDB, whereas we structure-modeled CBc, CBa,, Cbl, CblI,
AtxA and Vbb.

Results

Identification of SYPLA,s that bind to FXa and inhibit
prothrombinase activity

As shown in Table 1, the SVPLA,s from Viperidae snake
CBc and MtII interact with FXa with very high affinity

Table I: FXa binding kinetic parameters and effect on prothrombinase activity of Viperidae SVPLA,

PLA, <kon>(M-'s!) ko> (s) <KgPP>[nM] 1C;[nM] pI*
CBc (32+02) % 105 (1.6 £0.4) x 104 0.6 £0.3 0.7+0.3 8.74
MexIl (104 £ 0.3) x 10¢ (1.78 £ 0.4) x 102 1.8+0.9 31 9.10
Cbll (42 +£25) x 105 (85+2)x 103 20+ 3 20+ 4 8.96
AtxA (22 +£0.3) x 105 (7x1)x103 30£2 25+5 8.35
CBa, (29 £ 0.4) x 105 (1.5 £0.2) x 102 52+4 41 £5 8.74
VRV-PLVIII (4.5+0.4) x 104 (2.6 £ 0.4) x 102 578 £ 15 130 £ 20 8.35
bAhp (4% 1.5)x 10 (1.6 £0.3) x 102 400 £ 20 90+ 10 8.71
Vbb (3 £0.5) x 10 (2.5 £ 0.4) x 102 830+ 15 90 + 30 8.64
AGTX NB NB NB >10 000 543
CA NB NB NB >10 000 -
Catx NB NB NB >10 000 4.64
Cbl NB NB NB >10 000 4.86
Reduced and NB NB NB nd nd
carboxymethylated

CBc

hsPLA, (2.0 £ 0.8) x 10 29+ 1)x 102 14+2 9+2 9.38
*: estimated

NB: non-binding
Nd: not determined

<K epp> = <koff>/<kon>

The ICs, value corresponds to 50% inhibition of thrombin generation in the absence of PL for the different SVPLA,.
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and constitute group VS (<K4PP> 0.6 - 2 nM). These
enzymes strongly inhibit the formation of the prothrom-
binase complex (ICs, 1-3 nM). Under identical condi-
tions, the <K, aPP> value determined for hsPLA, is 14 nM.
CBa,, AtxA and CblI have high affinity values and antico-
agulant potency, and form group S (20-50 nM). A third
group of SVPLA,, group M, is formed by Vbb VRV-PLVIII,
and bAhp. In this group, the affinity with FXa is smaller
(<K42PP> 400 - 830 nM) and the IC, ranges from 90 to
130 nM. AGTX (the neutral PLA, from A. halys pallas
(blomhoffii)), reported previously as weakly anticoagulant
in the presence of PL[38], does not interact with FXa and
does not inhibit prothrombinase activity in the absence of
PL. Neither CbI nor Catx inhibit prothrombinase activity
in the absence of PL. These three SVPLA,s constitute group
NB. Last, reduced and carboxymethylated CBc does not
interact with FXa. Furthermore, we found a positive linear
correlation between <K, 2PP> and ICs, (R = 0.995) for the
three groups of SVPLA, that interact with FXa. Thus, the
strongly anticoagulant SVPLA,s bind with high affinity to
FXa, whereas the less efficient anticoagulant SVPLA, pos-
sess low affinity for FXa. Also, basic SVPLA,s
(8.35<pI<9.10) bound to FXa and inhibited prothrombi-
nase activity, whereas those with acidic pls (4.60-5.43)
did not (Table 1).

It is interesting to note that the isoenzymes CBc and CBa,,
which differ by 8 amino acids (His1Ser, Ile18Val,
Arg34Gln, Pro74Arg, Glu92Lys, Tyr115Asn, Gly116Gluy,
Gly128Glu) and associate with the acidic subunit CA to
form two pharmacologically distinct classes of crotoxin
complexes, present differences in toxicity, enzymatic
activities and stability[67,68]. These two isoforms bind to
FXa with different kinetics (Table 1). The average rate of
dissociation constant <k > for the FXa-CBa, complex is
about two orders of magnitude greater than that of the
FXa-CBc complex, implying a more stable FXa-CBc com-
plex (<K42PP> 0.6 nM). Consequently, CBc strongly inhib-
its the prothrombinase complex (IC;, 0.7 nM), whereas
the inhibition by CBa, is much weaker (IC;, 41 nM).
Indeed, we had observed in the past that the difference in
stability between crotoxin isoforms was due only to the
CB subunit [55,68].

We also investigated by SPR the possibility of the forma-
tion of a ternary CA-CB-FXa complex. On one hand, CA
binds to immobilized CB [69], whereas FXa does not
interact with immobilized CB[23]. An anti-CA mono-
clonal antibody (mAb) A-73.13 [70] was covalently
attached to the chip, as previously described [71]; CTX
was then captured via this mAb before the injection of FXa
(Fig. 1). FXa bound to CTX, as seen in the rise of the reso-
nance signal. Fig. 1 also shows that after the injection of a
specific anti-CB mAb (B32.13), the signal increased fur-
ther, indicating the presence of CB on the chip and show-
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The interaction between an isoform of CTX and
FXa, as measured by SPR. The anti-CA monoclonal anti-
body mAb A-73.13 [70] was covalently attached to the chip
[71]. CTX (the CA,-CBc complex) was then captured via
this mAb before injection of FXa (25 pug/ml). FXa bound to
CTX, as seen in the rise of the resonance signal, showing that
the CTX-FXa complex remained attached to the anti-CA
mAb. After injection of a specific anti-CB MAb (B-32.13, 10
pg/ml), the signal increased further, confirming the presence
of CB in the ternary CA-CB-FXa complex.

ing that the CB-FXa complex is stable and remained
attached to CA.

Sequence analysis, comparisons and consensus residues of
the anticoagulant SVPLA,s

In order to identify those residues or sequence patterns
that differ between members of the SVPLA,s, we obtained
Weblogo plots of the four groups VS (CBc, MtxII), S (CblI],
AtxA, CBa,), M (VRV-PLVIII, bAhp, Vbb) and NB (AGTX,
Catx, Cbl). Thereafter, we performed comparisons of all
the sequences among themselves and of the four groups
against each other.

Considering only segments of three or more residues, we
observed three conserved regions for AGTX, Catx and Cbl
of the NB group (Tyr25-Gly30, Thr41-Gly53 and Cys96-
Asp99; Fig. 2A), and six for the CBc-MtxII pair of the VS
group (Tyr25-Cys27, Gly33-Gly35, Pro37-Cys45, Cys50-
Tyr52, Cys96-Asp99 and Cys105-Arg107; Fig. 2B). A strik-
ing difference between the two groups is the presence of
the acidic residue Glu at position 128 in the C-terminal
region of all SVPLA,s of the NB group, as opposed to a Lys
or a Gly residue in the VS group. For the other groups,
only CBa, and Vbb contain a Glu at this position. With
respect to the S group, the M group contains a conserved
basic residue at position 115. Interestingly, the M group
contains a conserved Lys in position 132 that is absent in
the VS and NB groups. Group NB contains acidic side
chains in the first strand of the B-wing and the adjacent B-
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Figure 2

S —

Weblogo representation of the multiple sequence alignment of the SVPLA,s. A. Group NB (AGTX, Catx and Cbl).
Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates
the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each
amino acid at that position. The symbols in each stack are arranged by alphabetical order from top to bottom and do not fol-
low the order in which the sequences were fed. Arg, His and Lys residues are in blue; Asp and Glu in red; Ala, lle, Leu, Met,
Phe, Pro, Trp, and Val in black; Gly, Cys, Ser, Thr, and Tyr, in green; Asn, GIn in purple. Renetseder numbering system for all
PLA,s throughout this work [15]. B. Group VS (CBc and Mtxll).

turn (residues 75-82). For the VS and S groups, the ten-
dency is towards a net balance of positive charges in the p-
wing.

The NB group Catx presents three Glu and one Asp residue
in the B-wing (residues 74-90); Cbl presents two Asp res-
idues. The B-wing of CBc of group VS contains two Lys res-
idues; that of MtxIl two Lys, one Asp and one Glu

residues. For the S and M groups the tendency is towards
net positive charges, except for bAhp, for which the total
charge is neutral.

Tertiary structures and molecular electrostatic potentials
of SVPLA,s

We obtained 3D homology models of CBc, CBa,, Cb],
CblII, AtxA and Vbb. The models show the canonical struc-
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tural features of the PLA, template molecules: a N-termi-
nal a-helix (helix A), a short helix (helix B), a Ca2*-
binding loop, along a-helix (C), aloop preceding an anti-
parallel two-stranded sheet (B-wing), a long a-helix (D),
anti-parallel to helix C, and a C-terminal extended frag-
ment. All seven disulfide-bridges are at their expected
positions. Fig. 3 shows the molecular model of AtxA in the
canonical ("front") face orientation, i.e., presenting the
catalytic hydrophobic channel.

Fig. 4A shows the MEP calculated at the molecular surface
of the modeled SVPLA,s in the canonical view. Fig. 4B
shows the MEP on the "back" face. Qualitatively, we
observe that the MEP is positive in the front face of strong
and mild anticoagulants (CBc, CBa,, Cbll, and AtxA);
approximately neutral for the weak anticoagulant Vbb,
and negative for Cbl (Fig. 4A). The back face is largely
devoid of positive potential, except for Vbb (Fig. 4B). This
difference in MEP leads to an electrostatic asymmetry. We
observe the same trend for the crystallized SVPLA, (MtxII,
VRV-PLVIII, bAhp, AGTX, Catx and hsPLA,; not shown).

Molecular docking and intermolecular interfaces: mapping
of the anticoagulant site and of the binding site on FXa

The output generated by the docking program PatchDock
showed many complexes in contact with one of the bind-
ing site regions. Only the AtxA-FXa candidate complex
(rank number 7) showed the best compatibility with the
binding site derived from the mutagenesis data[39] (in
this complex, position 150, which shows a Glu -> Arg
sequence difference between the purchased FXa and the
crystal structure (PDB entry 2BOH) is neither at the light/
heavy chains interface nor at the AtxA/FXa interface). Sev-

Helix C - b-wing loop

p-wing

Figure 3

Ribbon diagram of the molecular model of AtxA. o-
helices A, B, C and D, and the B-wing are labeled. The seven-
disulfide bridges are in yellow sticks and the His48/Asp99
pair in cyan sticks.

http://www.biomedcentral.com/1472-6807/7/82

eral residues belonging to the two regions identified by
the mutagenesis of AtxA and defining part of the binding
site (the "front" strand of the B-wing and the C-terminal
fragment) are at the interface in this complex. In it, the rel-
ative orientation of FXa positions the N-terminus of the
EGF-like 2 domain of the light chain of FXa towards the p-
wing of AtxA, allowing the 1-domain (not visible in the X-
ray structure) to enter in interaction with the p-wing and
thus contact the remaining residues of the front edge of
the B-wing. Fig. 5 shows the ribbon representation of the
final complex between AtxA and the light and heavy
chains of FXa. Fig. 6 shows the same complex in the form
of a solvent-accessible surface. In both representations,
the SVPLA, is in the "classical" orientation, i.e. that of Fig.
4A. Overall, we observe just small conformational
changes after complex formation.

For the FXa strong-binding SVPLA,s CBc, MtxIl, CbllI and
CBa,, the complexes that ranked 18, 10, 20 and 17,
respectively, showed the same binding mode as the AtxA-
FXa complex, i.e., the same relative orientation of FXa
with respect to the SVPLA,. As measured by the FIT func-
tion of Pymol, these complexes showed Co RMSD's with
respect to the reference AtxA-FXa complex of 3.4, 2.2, 5.1
and 4.8 A, respectively.

The percentage of surface residues at the interface of the
complexes is of 24-36% for the five SVPLA,s and of
20-32% for FXa. The interface area for the five SVPLA,s is
in the 860-1700 A2 range and 915-1470 A2 for FXa. The
interface area of the complexes varies from 1610 to 1930
A2. The values obtained for the solvent accessible area bur-
ied in the five characterized complexes fall between the
small and the large interfaces categories in a study of 362
protein-protein interfaces [72]. Fig. 7 shows the mapping
of the SVPLA,-FXa interaction surface of the complexes
between the five SVPLA,s and FXa. The shadowed residues
in that figure are those at the interface of the AtxA-FXa
complex satisfying the mutagenesis data, and at the inter-
face of the complexes of the other four SVPLA,s that show
the same complexation mode as the AtxA-FXa complex.
The consensus residues that participate to FXa binding
are: solvent-exposed parts of helix A (positions 2, 3, 7)
and helix B (positions 18, 19); positions 16, 23 and 24; a
part of the Ca2+loop (positions 31-34); a part of the 69-
loop (between helix C and the B-wing; positions 53, 59,
60, 69 and 70); and the C-terminal segment (positions
118, 119, 121-124, 129-131, 133). By taking into
account the type of atom-atom contacts as defined by
Sobolev et al.[73], 36.5% of the contacts are hydrophobic
at the AtxA-FXa light chain interface, as compared to
26.4% at the AtxA-FXa heavy chain interface. Overall,
29.7% of the contacts are hydrophobic at the AtxA-FXa
interface. These interface regions are identified separately
by the protein-protein interface prediction server PPI-
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Figure 4

MEP at the solvent accessible surface of the 3D molecular models of the Viperidae SVPLA,s. A. The models cor-
respond to CBc, CBa,, AtxA, Cbl, Cbll, and Vbb. Color codes correspond to MEP in kT/e units: blue, +5; red, -5; white, 0.
Front view. B. Back view.
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Figure 5

Ribbon representation of the 3D molecular model of
the complex between AtxA and the light and heavy
chains of FXa. Crossed-eye stereo ribbon representation,
with AtxA in green, the light and heavy chains of FXa in blue
and purple, respectively. Catalytic site residues are red sticks
for both AtxA (His48, Asp99) and FXa (His57, Ser102,
Asp195). The metal Ca2* ion of FXa is depicted as an orange
sphere. The N- and C-ter of the AtxA, FXa's heavy chain and
FXa's light chain are indicated.

Pred. For example, for AtxA, the highest score PPI-Pred
patch, which represents the most probable protein-pro-
tein binding site, includes helices A and B, the Ca2+-loop,
part of the 69-loop, two residues from the front strand of
the B-wing, and the four C-terminal residues (results not

Figure 6

Solvent-accessible surface representation of the 3D
molecular model of the complex between AtxA and
the light and heavy chains of FXa. Color coding as in Fig.
5.

http://www.biomedcentral.com/1472-6807/7/82

shown). Fig. 8 shows the regions mapped by docking sim-
ulations in the modeled structure of complexed AtxA.

The first line of Fig. 9A and 9B show the amino acid
sequences of the parts of the heavy and light chains of the
crystal structure of FXa (PDB 2BOH), detected at the sur-
face respectively. The heavy chain (Fig. 9A) includes the
serine proteinase catalytic domain of FXa (catalytic-site
residues in bold), and the light chain (Fig. 9B) includes
the EGF-like 2 domain. The following lines in Fig. 9A and
9B show the FXa residues at the interface of the docked
FXa-SVPLA, complexes (residues appearing three or more
times). The regions of FXa at the interface with CBc, MtxII,
Cbll, AtxA and CBa, in the resulting docked complexes
include, in the light chain (Fig. 9B), the N-terminal region
of the EGF-like 2 domain: Arg86-Ser90 and Cys100-
Glu102, GIn104, Asn105. In the heavy chain (Fig. 9A),
they include the following regions. Region I: Arg93;
Phel01 (from the 99-loop). Region II: Argl125; Asp126;
Glu129-Ser130; Thr134. Region III: Tyr162; Aspl64-
Asn166; Lys169; Leul70. Region IV: GIn178 and Asn179
(from the 174-loop). Region V: Lys230, Thr232, Ala233,
Phe234 and Lys236 (all residues from the C-terminal
helix). Fig. 10 shows these regions in the 3D model of
complexed FXa. Some of these residues belong to loops
surrounding the catalytic-site cleft.

We show in Fig. 11A and 11B the intermolecular residue
contacts for the AtxA-FXa interface for which the contact
area is equal to or greater than 10 A2, We observe from this
map that the heavy chain of FXa interacts with the follow-
ing regions of the PLA,: a portion of the Ca?* loop, the
helix C-B-wing loop, and the C-terminal segment (includ-
ing Lys127, which has an effect in the binding to FXa)
(Fig. 11A). The light chain of FXa establishes intermolecu-
lar contacts with the remaining regions: helices A and B,
and the B-wing (Arg77) of AtxA (Fig. 11B). From the CSU
analysis of interfaces, it follows that the contacts between
SVPLA, and FXa are of diverse nature -aromatic-aromatic,
hydrophobic-hydrophobic, salt bridges and H-bonds.
There are also destabilizing hydrophobic-hydrophilic
interactions. Few of the contacts take place between same-
nature residues, like Lys127 from AtxA and Arg93 from
FXa's heavy chain (Fig. 11A). These contacts are between
non-polar atoms or between non-polar and polar atoms
of side chains at the surface of the molecules, where the
presence of the aqueous solvent can buffer the electro-
static interactions.

Discussion

Existence of different anticoagulant mechanisms

The classification of the anticoagulant potency (strong,
weak, non-anticoagulant) of a SVPLA, depends on the
anticoagulant assay used and on whether this assay leads
to establishing the mechanism of action. Usually, the
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. . . . . . 50
CBc M18 HLLQFNKMIKFETRKNAIPF-YAFYGCYCGWGGRGRPKDATDRCCFVHDC
MtxII mMio0 SLFELGKMILQETGKNPAKS - YGAYGCNCGVLGRGKPKDATDRCCYVHKC
CbII M20 NLFQFTKMINGKLGAFAVLN-YISTGCYCGWGGQGTPKDATDRCCFVHDC
AtxA M7 SLLEFGMMILGETGKNPLTS - YSFYGCYCGVGGKGTPKDATDRCCFVHDC
CBa2 M17 SLLQFNKMIKFETRKNAVPF-YAFYGCYCGWGGQGRPKDATDRCCFVHDC
hsPLA2 NLVNFHRMIKLTTGKEAALS - YGFYGCHCGVGGRGSPKDATDRCCVTHDC
. . . . . 100
CBc M18 CYG---KLAKC----- NTKWDIYPYSLKSGYITC-GKGTWCEEQICECDR
MEXII wmio CYK---KLTGC----- NPKKDRYSYSWKDKTIVC-GENNSCLKELCECDK
CbII M20 CYG---RVKGC----- NPKLATYSYSFQKGNIVC-GKNNGCLRDICECDR
AtxA M7 CYG---NLPDC----- SPKTDRYKYHRENGAIVC-GKGTSCENRICECDR
CBa2 M17 CYG---KLAKC----- NTKWDIYRYSLKSGYITC-GKGTWCKEQICECDR
hsPLA2 CYKRLEKRG-C----- GTKFLSYKFSNSGSRITCAK-QDSCRSQLCECDK
. . . 133
CBc M18 VAAECLRRSLSTYKYGYMFYPDSRC-RGPSETC
MEXII wmio AVAICLRENLNTYNKKYRYYLKPLC- - KKADAC
CbII M20 VAANCFHONKNTYNRNYRFLSSSRC-RQTSEQC
AtxA M7 AAAICFRKNLKTYNYIYRNYPDFLC-KKESEKC
CBa2 M17 VAAECLRRSLSTYKNEYMFYPDSRC-REPSETC
hsPLA2 AAATCFARNKTTYNKKYQYYSNKHCRGSTPRC

Figure 7

Viperidae SYPLA, interface amino acid residues. Interface amino acid residues of the SVPLA, complexes with FXa (CBc,
Mtxll, Cbll, AtxA and CBa,). Underlined characters denote residues identified by mutagenesis to be critical for binding to FXa
and inhibition of prothrombinase activity [39, 51]. Bold characters denote residues defining the IBS of hsPLA, [13, 14]. Cyan-
shadowed characters denote residues found at the interface of the selected complexes. The alignment reflects Renetseder's

numbering system.

/ -
C-ter segment \

Y

C-ter -

/
5 \ ,
Ca-loop %/7‘; }\’L ;

&

HelixC- p-wing loop

Figure 8

Ribbon diagram of the molecular model of AtxA
showing the identified interface regions. The identified
interface regions in SVPLA,s from Fig. 7 and made up of con-
sensus positions 2, 3, 7 (helix A); 16; 18, 19 (helix B); 23, 24;
31-34 (CaZ* loop); 53, 59, 60, 69, 70 (helix C-B-wing loop);
and 118, 119, 121-124, 129-131, 133 (C-terminal segment),
are in red (see Results section).

recalcification time assay, one of the simplest assays, is
used. This method is very sensitive to the lipid levels in the
plasma but does not show whether the mechanism is PL-
independent or not. Our results deal with the interaction
of anticoagulant PLA,s with FXa through the non-cata-
lytic, PL-independent mechanism of action and are to be
compared to studies performed under the same condi-
tions. As mentioned before, only three PLA,s -CM-IV of N.
nigricolis, AtxA of V. ammodytes ammodytes, and hsPLA,-
have been studied under these conditions. In this work,
we complete these studies by testing several other SVPLA,
from Viperidae venom. Our results clearly show that CBc
and MtxII interact with FXa with very high affinity and
strongly inhibit the formation of the prothrombinase
complex. CbIl, AtxA and CBa, possess good affinity for
FXa and good anticoagulant potency. VRV-PLVIII, bAhp
and Vbb possess weak affinity for FXa and show weaker
inhibition of prothrombinase activity. Some of these
enzymes (CB, AtxA) also inhibit prothrombinase activity
in the presence of PL (not shown). AGTX, the CA subunit
of CTX, Catx and CbI do not interact with FXa and do not
inhibit prothrombinase activity in the absence of PL.
Therefore, AGTX, described previously as a weakly antico-
agulant PLA, [38], and VRV-PLVIII, described previously
as strongly anticoagulant [74], appear to inhibit blood
coagulation through different mechanisms.
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Figure 9

FXa interface amino acid residues. A. Amino acid residues of the heavy chain of FXa at the interface of the selected
docked complexes for each SVPLA,. The sequence of FXa shows only residues detected in the X-ray experiment. The last line
shows the experimentally reported residues of FXa involved in the binding to FVa [2, 78, 79, 83]. We use Renetseder's nota-
tion for the SVPLA,s and chymotrypsinogen notation for FXa. The sequences of CBc, AtxA, Cbll and CBa, were aligned with
respect to Mtxll. B. Amino acid residues of the light chain of FXa at the interface of the selected docked complexes for each

SVPLA,.

Search for an anticoagulant site

Possible location of an anticoagulant site common to Viperidae
SVPLA,s that interact directly with FXa

Reduced and carboxymethylated CBc did not interact with
FXa (Table 1), suggesting that the SVPLA, needs to adopt
the proper conformation for the interaction to take place.
In agreement and in the context of the PL-independent
anticoagulant mechanism, our combined theoretical and
experimental approach highlights the presence of an anti-
coagulant region composed of amino acid residues that
come together in space to constitute a conformational
epitope situated in the "front" face of the SVPLA,s. These
are the solvent-exposed parts of helix A, helix B, the Ca2+

loop, the helix C-B-wing loop, the front strand of the B-
wing, and the C-terminal segment of the PLA, (Fig. 8). Of
course, the detailed distribution and composition of those
residues varies for each of the SVPLA,s.

Carredano et al.[52] determined the 3D structure of group
I A monomeric PLA, RVV-VD from Vipera r. russelli (PDB
1VIP), described as a strongly anticoagulant SVPLA,. The
authors proposed a site responsible for the strong antico-
agulant properties of the toxin, consisting of Glu53,
together with a positively charged ridge of non H-bonded
lysine residues free for intermolecular interactions in the
53-70 region (Lys60 in RVV-VD and in CBa,). On
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Figure 10

Ribbon diagram of the crystal structure of FXa (PDB
2BOH) showing the identified interface regions. The
figure highlights in red the regions corresponding to the iden-
tified interface residues from Fig. 9A and B. In the light chain:
Arg86-Ser90 and Cys|100-Asn105. In the heavy chain: Region
I: Arg93; PhelOl (from the 99-loop). Region II: Argl25;
Asp126; Glul129-Ser|130; Thr134. Region lll: Tyr162; Asp164-
Asn166; Lys169; Leul70. Region IV: GIn178 and Asnl179
(from the 174-loop). Region V: Lys230, Thr232, Ala233,
Phe234 and Lys236 (residues from the C-terminal helix).
Only residues present three or more times in the same col-
umn in the sequences are included. Light chain is in blue,
heavy chain in purple. FXa is rotated 90° in a clockwise sense
about its vertical axes with respect to Fig. 5. The terminal
ends of FXa's chains are labeled. The catalytic triad is repre-
sented as cyan sticks.

another hand, Zhao et al.[75] suggested that residues
Trp70 and Glu53 in bAhp might play an important role in
the anticoagulant activity of the basic SVPLA,s. The study
of Zhong et al.[76], who tested the anticoagulant potency
of bAhp mutants, revealed that the Glu53Gly and
Trp70Met mutants lost their effects on blood clotting,
while Thr56Lys and Asp67Lys had enhanced activity. The
reported residues fall in the 53-70 interface region
detected in our docked complexes of the strong FXa bind-
ers CBc, Mtxll, Cbll, AtxA and CBa, (Fig. 8). The possible
contribution of Trp70 to the strong anticoagulant activity
of PLA,s has also been proposed elsewhere [48]. Never-
theless, the anticoagulant region cannot be localized
solely to the 53-70 segment, since enzymes that bind
weakly or not at all to FXa contain also basic residues in
this region.

The natural mutants CBc and CBa, present two Gly -> Glu
mutations in the C-terminal region (Gly116Glu,
Gly128Glu) leading to increases in the ICs, values for
inhibition of prothrombinase activity of CBa, with respect
to CBc. This is consistent with the results of our sequence
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Contact map for the AtxA-FXa complex. A. Heavy-
chain FXa residues. Only residues for which the contact area
is equal or greater than 10 A2 are shown.B. Light-chain FXa
residues.

comparison analysis, in which we detect the acidic residue
at position 128 as characteristic of the NB group, and with
the docking results that point to this region as being at the
interface of the complexes.

On the other hand, we localized in the crystal structure of
hsPLA, (PDB 1BBC) the mutations that showed the major
effects in the inhibition of prothrombinase activity and
FXa-binding kinetic parameters [51]. Residues Arg?,
Lys10 and Lys16 (helix A) are exposed to the solvent and
form a cluster. Residue Lys38 (loop on N-terminus of
helix B), and residues Lys123 and Arg126 form another
cluster (underlined residues Fig. 7). As expected, the two
clusters are situated on the front face and are oriented
180° about this convex surface. They act cooperatively in
the binding to FXa. Lys86 carries with it an effect on 1Cs,
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but is in the end of the second strand of the B-wing
("back" face) of hsPLA,, indicating that its effect on ICs, is
not due to the residue being at the interface. No effects are
reported dealing with the Ca2*loop and the front strand
of the B-wing does not appear in hsPLA, (Fig. 7); however,
to our knowledge, these regions have not yet been probed.

Lastly, our experimental data suggest that the CB-FXa
interaction site is different from the CB-CA interface and
show that the interaction between FXa and CTX proceeds
through a transient ternary (CA, CB, FXa) complex (Fig.

1).

The FXa binding region of PLA, involves also hydrophobic
residues

hsPLA, contains an unusually large number of prominent
cationic patches on its molecular surface, some of which
lie on the putative IBS [14], in contrast to bovine pancre-
atic PLA, and the SVPLA, from Agkistrodon p. piscivorus,
which display only a limited number of such patches [10].
Given the charged nature of the residues critical for bind-
ing hsPLA, and AtxA to FXa, it is clear that electrostatic
interactions play a role in the binding. Indeed, the electro-
static asymmetry showed by the MEP calculations must be
enhanced by the presence of the essential Ca?+ cofactor
ion [77] and may be at the origin of the increased affinity
of hsPLA, for FXa in the presence of Ca2+[50]. Thus, long
distance electrostatic forces operating at the molecular
surface are important and may optimally orient the mole-
cules before binding to FXa. However, electrostatic inter-
actions might not exclusively drive binding to FXa by the
Viperidae SVPLA,s, as in hsPLA,. Indeed, in addition to
basic residues, hydrophobic and aromatic residues play
also key roles in optimizing the interaction between
SVPLA,s and FXa, given that a ring of hydrophobic resi-
dues surrounds the opening to the catalytic site cavity.
Thus, for AtxA, many hydrophobic residues (Leu2, 3, 10,
18 and 58; Pro17, 59, 68 and 121; Val31), most of which
are located in the N-terminal region, and several aromatic
residues (Phe24 and 123; Tyr52) are part of the surface
presented to FXa (Fig. 7). Lastly, even though a Phe24Ala
mutation in AtxA was not found to change the FXa-bind-
ing kinetic parameters [39], we emphasize the need to
probe other residues belonging to the hydrophobic ring.

The PLA, binding region of FXa involves both, the light and
heavy chains but not the catalytic site

On our results, the catalytic site of FXa is free and not
involved in the interface, in agreement with the conserva-
tion of the serine-proteinase catalytic activity after binding
by SVPLA, [51]. Our AtxA-FXa complex shows that one
region of the light chain of FXa is involved in the binding
to the SVPLA, and that the N-terminus of the EGF-like 2-
domain is pointing south (Fig. 5). Therefore, the EGF-like
1-domain, not visible in the crystal structure of FXa, can
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interact with the front edge of the $-wing of the PLA,. The
Gla domain of FXa (bound to the N-terminus of the EGF-
like 1-domain), is well beyond reach in space and not in
contact with the PLA,. These two features are in agreement
with experimental and biochemical data which support
the conclusion that the Gla domain is needed rather for
insertion into the PL membrane [51], and with a model of
the entire FXa. Indeed, based on the crystal structure of the
Gla domain of bovine prothrombin and the NMR coordi-
nates of the bovine FX EGF1 domain, Bajaj and coworkers
[2] proposed a model structure for the entire FXa mole-
cule, based upon the crystal structure of porcine FIXa. The
EGF domains in the model are oriented south and thus
capable of establishing contacts with the B-wing of the
PLA,.

Based on the ability of synthetic peptides from FXa to
inhibit FXa-induced clotting, a number of authors have
reported the FVa binding sites on FXa. The last line of Fig.
9A shows the experimentally reported residues of the
heavy chain of FXa incontrovertibly involved in the bind-
ing to FVa. These residues are: FXa(His83-Lys96) [78];
FXa(Argl65, Lys169) [79-81]; the 185-189 loop, i.e.,
FXa(Lys186) [82]; FXa(Val231-Thr244) [83]; and
FXa(Arg240) [81]. Three of four of the segments of the cat-
alytic domain of FXa identified to interact with FVa over-
lap with those identified by us to interact with the
Viperidae SVPLA,s, namely the segment about Lys90, the
162-loop, and the C-terminal part, about Lys237 (Fig.
9A). This suggests that several residues are shared by both,
the SVPLA,-FXa and the FVa-FXa binding interfaces. More-
over, the experimentally identified FXa heavy chain resi-
dues involved in binding to FVa are located on the same
3D face of FXa, as in our SVPLA,-FXa complexes.

Arni and coworkers have recently reported the crystal
structures of human Gla domainless FXa complexed with
two small anticoagulant proteins from a hematophagous
nematode [84,85]. The determined exosite from those
complexes involves residues from one of the strands of the
N-terminal seven-stranded B-barrel (strand p6, residues
80-93) and from the short C-terminal a-helix (residues
233-243) of the catalytic subunit of FXa. Several of these
residues fall in regions I and V mapped in our complexes
with the SVPLA,s (Fig. 9A and 10).

Several IBS residues are part of the PL-independent
anticoagulant site of SVPLA,

By combining the residues defining the IBS [13,14] with
the site-directed mutagenesis experiments for probing the
basic residues of hsPLA, involved in binding to FXa[51],
we deduce that IBS residues Arg7 and Lys10 bind to FXa.

By homology with hsPLA,, the presumed IBS amino acid
residues for AtxA are Leu3, Leul8, Phe24, Lys74 and

Page 12 of 19

(page number not for citation purposes)



BMC Structural Biology 2007, 7:82

Tyr113. On one hand, Lys74, experimentally found to be
critical for binding of AtxA to FXa [39], belongs to the IBS.
On the other hand, our simulations indicate that IBS resi-
dues Leu3, Leul8 and Phe24 are in contact with FXa. In
conclusion, several IBS residues are part of the PL-inde-
pendent anticoagulant site and participate in formation of
the complex with FXa.

SVPLA, are multifunctional proteins with multiple
pharmacological sites

The Viperidae SVPLA,s studied here are multifunctional
proteins, raising the possibility of overlapping or multiple
pharmacological sites distinct from the catalytic site[86].
One team[52] has suggested that the neurotoxic site of
group II neurotoxic enzymes overlaps with the anticoagu-
lant region. Thus, from the mutants used to test the anti-
coagulant potency [39] and the neurotoxic function [87]
of AtxA, it appears that several residues in the C-terminus
are clearly shared by both functions. The overlapping of
pharmacological sites is most easily understood in terms
of the small size of this family of proteins.

Conclusion

In this paper, we concentrated our efforts on identifying
the anticoagulant Viperidae SVPLA,s that inhibit blood
coagulation via a non-enzymatic, PL-independent mecha-
nism through direct binding to human FXa. Using SPR
technology, we showed that CBc and MtxII bind to FXa
with the highest affinity and inhibit strongly the pro-
thrombinase complex, whereas Cbll, AtxA and CBa, bind
with good, but lesser affinity.

Of the eight mutations that differentiate CBc from CBa,,
Arg34Gln in the Ca2+loop and Gly128Glu in the C-termi-
nal segment fall in our identified interface regions;
Gly116Glu is just borderline to the C-terminal fragment.
Thus, the disappearance of a positive charge and the
appearance of two negative charges in this region account
for the loss of affinity of CBa, for FXa with respect to CBc.
This is consistent with our consensus sequence analysis,
which had associated the presence of Glu at position 128
to a decrease in affinity.

The molecular electrostatic potential we calculate at the
surface of the 3D molecular models shows a correlation
with the anticoagulant potency of the SVPLA,s. However,
since not all basic PLA, are strong anticoagulants [44], the
basic character of the PLA, seems to be a necessary but not
sufficient condition for its anticoagulant potency.

Mapping of the FXa-interface zone in the 3D structures of
the SVPLA,s by binding-site directed docking simulations,
allowed us to detect several FXa-binding regions that
come together to form a conformational epitope on the
"front" surface of the SVPLA,s. One of the regions maps to
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the 53-70 segment, proposed in the past to be the antico-
agulant region. According to our findings, this region is to
be extended, on one hand, to helices A and B and to the
"front" strand of the B-wing, and to the Ca?+loop and the
C-terminal direction, on the other. The FXa interface
forms a novel exosite that involves both, the light and
heavy chains.

Our work epitomizes the use of binding affinity and
mutational experimental data in guiding molecular dock-
ing simulations by indicating which species associate and
then outlining the possible interacting surface patches.

Finally, there has been intense interest in the development
of FXa inhibitors for the treatment of thrombotic diseases.
Anticoagulant Viperidae SVPLA,s, which interact with FXa
via a non-catalytic, PL-independent mechanism, represent
a novel family of selective FXa inhibitors. Structural infor-
mation on the binding of these PLA, to FXa should be use-
ful in the 3D structure-based design of therapeutic agents.
The synthesis of peptides or peptidomimetics derived
from our mapped regions could lead to the development
of new antithrombotic molecules capable of delaying in
vivo the activation stage of the prothrombinase complex
and to their use as supplementary agents in antithrom-
botic therapy.

Methods

Reagents including Sensor Chips CM5, surfactant P20, the
amine coupling kit containing N-hydroxysuccinimide
(NHS), N-ethyl-N'-(3-diethylaminopropyl)carbodiimide
(EDC) and ethanolamine hydrochloride were supplied by
Biacore (Biacore AB, Uppsala, Sweden). All other chemi-
cals and solvents of the highest available purity were
obtained from either Merck A.G. (Darmstad, Germany),
Prolabo (Paris, France) or Sigma Co (St. Louis, MO, USA).
CbI and CbII from Pseudocerastes fieldi venom were sup-
plied by Dr. A. Bdolah (Dept. of Zoology, Tel Aviv Univer-
sity, Israel) [88]. AtxA from Vipera ammodytes ammodytes
was purchased from Latoxan. Recombinant hsPLA, was
produced in our laboratory as described previously[89].
Isoforms of the CB subunit of crotoxin (CBa, and CBc),
isoform CA, of the acidic subunit of crotoxin, and the
VRV-PLVIII from Daboia russelli pulchella venom were puri-
fied in our laboratory as described previously
[55,56,62,67]. CBc was reduced by dithiothreitol and
alkylated with iodoacetic acid according to the procedure
described by Faure et al.[56]. Drs. 1. Krizaj (Institute Jozef
Stefan, Ljubliana), E. Myatt (Argon Institute), Y. C. Chen
(Institut of Biochemistry, Shanghai, China), and J. Perales
(Fundagao Oswaldo Cruz, Rio de Janeiro, Brazil) pro-
vided PLA, from Vipera berus berus, PLA, from Crotalus
atrox, AGTX and the basic PLA, from Agkistrodon hallys pal-
las, and MtxII from Bothrops asper, respectively. We pur-
chased human activated blood coagulation factor (FXa)
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from Enzyme Res. Laboratories, USA (MW 46 kDa). The
corresponding amino acid sequence shows a Glu residue
at position 150 of the heavy chain, whereas UniProt's
entry P00742 (FA10_HUMAN) shows an Arg. This residue
is at the surface of the molecule. For the simulations, we
chose the 2.2 A resolution crystallographic structure of
Gla-domainless FXa from entry 2BOH [90] of the PDB,
which corresponds to sequence FA10_HUMAN and is
made up of the heavy chain and of the EGF-like 1 and 2
domains of the light chain. Only light chain residues
Arg86-Glu138, which represent the EGF-like 2 domain,
and heavy chain residues Ile16-Thr244 are located in the
X-ray diffraction experiment -the entire EGF-like 1
domain and its hydrophobic peptide preceding it being
disordered. In this structure, FXa is co-crystallized with a
2-carboxyindole inhibitor and a Ca2* ion chelated by
Asp70, Asn72, GIn75 and Glu80 of the catalytic (heavy)
chain. We removed the inhibitor and the water molecules
for the calculations.

We performed computer graphics using PyYMOL (DeLano
Scientific LLC, San Francisco, CA, USA), and the insightll
and DS Visualizer softwares (Accelrys Inc, San Diego, CA,
USA). Computer calculations were performed with the
insightll software package on SGI graphic stations and
using programs available in servers in the World Wide
Web with PC workstations.

Determination of prothrombinase activity

We determined the anticoagulant potency of the SVPLA,s
by measuring in vitro the inhibition of prothrombinase
activity (ICs,). We used an in vitro biological test in which
the prothrombinase complex was reconstituted at 37°C
from purified human factors FVa and FXa in the presence
of Ca?+, but without the addition of PL[39]. The purified
prothrombinase components (FVa 10 nM, FXa 10 nM,
and different concentrations of SVPLA,: 0, 10, 20, 50, 100,
200, 500 nM) were incubated 5 min at 37°C in Tris-buff-
ered saline (0.05 M Tris/HCl, 0.1 M NacCl, 0.5% BSA, 5
mM CaCl,, pH 7.4). The reaction was then started with
110 nM prothrombin. We measured activated pro-
thrombin activity every 20 min, as described previously
[50], with small modifications. We determined the ICs,
value, which corresponds to 50% inhibition of thrombin
generation for the different SVPLA,s in the absence of PL.

Surface Plasmon Resonance studies

We analyzed of the interaction between the SVPLA,s from
the Viperidae family, and FXa by SPR using a BIACORE®
2000 system (Biacore AB, Uppsala, Sweden). The running
and dilution buffer in all experiments was Hepes (HBS; 10
mM Hepes, 150 mM NaCl, 5 mM CaCl,, 0.005% sur-
factant P20, pH 7.4). The experiments were conducted at
37°C. Human FXa was covalently coupled via primary
amino groups on a CM5 sensor chip surface according to
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Prijatelj et al.[39]. One independent flow cell of the same
sensor chip was used as a control flow cell and was sub-
jected to a "blank immobilization," i.e.,, with no FXa
added. We found the SPR signal for immobilized FXa on
three different flow cells to be 1500 RU, 3000 RU and
5840 RU (1 RU corresponds to 1 pg/mm?2 of immobilized
protein). We injected PLA, samples (0, 0.25, 0.5, 1, 2, 4,
and 8 pg/ml) at 37°C with a flow rate of 20 pl/min on
independent runs on the control and assay flow cells and
their binding was monitored. Between each injection, we
regenerated surfaces with twice 5 pL of 1 M NaCl. The
apparent equilibrium constant, <K; P> = <k g>/<k, >,
the average dissociation rate constant <k g> and the aver-
age association rate constant <k > were calculated using
Biacore's BlAevaluation 3 software. The kinetic models
used to fit the data included the Langmuir association,
heterogeneous analyte and conformational change. Only
the first one showed the lowest closeness-of-fit value (y2).
In addition, the other models resulted in affinities much
lower (uM) than expected (nM).

Sequence homologies and alignments

The sequence databases and identifiers are the following:
CBc (also known as CB1), Uniprot P62022; CBa, (also
known as CB2), P24027; AGTX, P14421; AtxA, P00626;
MtxII, P24605; Vbb, P31854; Cbl, gi 1345182 [57]; CblI,
gi 1345181 [57]; CA, isoform CA, [56](obtained by post-
translational modification of ProCA, P08878).

For sequence alignments, we used the LALIGN program
[91,92], which finds multiple matching sub-segments in
two sequences and shows the local sequence alignments.
For representing sequences and their alignments, we used
Weblogo, a web-based application designed to generate
sequence logos [93,94].

Molecular modeling

Given the high sequence homology between the SVPLA s
and diverse PLA,s whose crystal structures are available,
we applied homology modeling to generate 3D model
structures of the SVPLA,s using the Biopolymer and
Homology modules of the insightll software package
(Accelrys Inc. San Diego, CA, USA). We retrieved the
PLA,s of the template proteins of known 3D structure
from the Protein Data Bank[95]. The template proteins
are: AGTX, the neutral PLA, from Agkistrodon halys pal-
las|96] (PDB 1A2A); VRV-PLVII], the PLA, from Daboia
russelli pulchella[97] (PDB 1FB2); MtxIl, myotoxin II, a
K49-PLA, from Bothrops asper. [98] (PDB 1CLP); the PLA,
from Crotalus atrox[99] (PDB 1PP2); the PLA, from Vipera
russelli russelli{52] (PDB 1VIP) and bAhp, the basic PLA,
from Agkistrodon halys pallas [100] (PDB 1JIA).

After building the structurally conserved regions (SCR)

and the structurally variable regions (SVR), we replaced
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the side chains of the template protein by the target pro-
tein's side chains in a predetermined library conforma-
tion. We then performed a rotamer search assignment in
order to avoid atomic steric clashes and optimize the
inter-residue energies. We included a structurally con-
served catalytic water molecule during the modeling. We
did not model the Ca2+ion at the Ca2+ binding site, since
it is absent in several X-ray structures. We subjected the
obtained models to an overall internal energy minimiza-
tion using the CFF91 force field. The protonation state of
ionizable side chains and of the N- and C-termini was set
for pH 7. Atomic partial charges were those of the CFF91
field. We used a distance-dependent dielectric function of
4r. We applied the cell multipole summation method for
van der Waals and coulomb interactions. We used none of
the cross terms of the force field. We applied the same
conditions to the amino acid residues in the crystal struc-
tures used. We checked the stereo chemical quality of the
models with the Struct_Check program, and the correct-
ness of the folding with the Profiles3D Verify functional-
ity (self-compatibility scores, insightII). The amino acid
residue numbering is based on that of Renetseder et
al.[15].

Molecular Electrostatic Potential

The MEP is generated by the combined presence of all par-
tial charges residing on the atoms as a function of their
positions. The potential was calculated with the DelPhi
2.5 program in insightll. The grid resolution was of 0.833
A/grid point. The interior and exterior dielectric constants
were 2 and 80, respectively. The value of the ionic strength
was 0.145; the probe radius was 1.4 A and the ionic radius
2.00 A. The treatment of the grid points at the boundary
used a full Coulomb approximation. The values of the
potential are given in kT/e units at T =298 K.

Molecular docking. Protein interfaces and interface
contacts

We generated the molecular complexes with the Patch-
Dock rigid body molecular docking procedure[101].
Given two molecules, the surfaces of the molecules to
dock are divided by PatchDock into patches according to
the surface shape. These patches correspond to patterns
that visually distinguish between puzzle pieces. We used a
clustering RMSD criterion of 4.0 A. The output lists the
rank of the complex and its approximate interface area.
We selected PatchDock for the docking simulations since
it allows a priori focusing on the vicinity of potential bind-
ing sites. In other words, it is possible to upload a recep-
tor-binding site and a ligand-binding site. We took the
SVPLA,s as the "receptor" molecules and FXa as the "lig-
and" molecule.

Thus, we generated molecular complexes only for those
SVPLA,s for which we find experimental evidence of bio-
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physical interaction, i.e., in which the binding affinity
between the PLA, and FXa, as measured by SPR, was high.
In addition, we used the available mutagenesis data for
AtxA[39] to filter the docked complexes so that AtxA resi-
dues that show a decrease in the binding affinity for FXa
are at the interface of the complex and define a binding
site. The residues defining the binding site on AtxA are
Arg72, Lys74, His76 and Arg77 (front edge of the B-wing),
and Arg118, Lys127, Lys128 and Lys132 (C-terminal frag-
ment)[39]. We defined no ligand-binding site for FXa.

From the candidate complexes generated by PatchDock
for AtxA, only one showed a binding mode compatible
with the ensemble of the mutagenesis data -many com-
plexes showed binding to either the B-wing or the C-ter-
minal fragment of the SVPLA, or other regions of the AtxA.
Thereafter, we selected those complexes for the other
SVPLA,s that showed the same binding mode as AtxA and
whose Ca RMSDs with respect to the AtxA-FXa complex
were minimal. After generation of the complexes, we used
the "move apart" option of PatchDock, which separates
(by 1.6 A) the receptor and ligand subunits in order to
eliminate steric hindrances at the interface. We further
improved the fitting of the complex by applying firstly the
SCWRLS3 side chain modeling procedure [102], in which
we froze all disulfide bonds, as well as the side chains of
heavy chain residues Asp70 and Glu80, which chelate the
Ca?+ion in FXa. After the rotamer search, we applied addi-
tional energy minimizations in order to reach a minimal
internal energy conformation. The entire approach
assumes that no drastic conformational changes occur
during complexation.

On another hand, we submitted the SVPLA, models to the
Protein-Protein Interface Prediction (PPI-Pred) server
[26,103] to predict their binding sites. PPI-Pred predicts
protein-protein binding sites using a combination of sur-
face patch analysis and a support vector machine trained
on 180 proteins involved in both obligate and non-obli-
gate interactions.

The interface between the two polypeptide chains of each
of the complexes was characterized with the Protein inter-
faces, surfaces and assemblies service PISA [104,105]. The
interface contacts were obtained through a contact map
analysis and characterized with the SPACE bioinformatics
tools CMA (Contact Map Analysis) and CSU (Contacts of
Structural Units) [106,107]. We show only interface con-
tacts for which the contact area is equal to or greater than
10 A2,

Abbreviations
AGTX: agkistrodotoxin, the neurotoxic, neutral PLA, from
Agkistrodon halys pallas venom
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bAhp: the basic PLA, from Gloydious (Agkistrodon) halys pal-
las venom

AtxA: isoform A of ammodytoxin from Vipera ammodytes
ammodytes venom

CA,: one of the isoforms of the acidic subunit of crotoxin
CBa,, CBc: isoforms of the basic subunit of crotoxin

CbI: the a isoform of the acidic subunit of the CbI-CblII
complex from Pseudocerastes fieldi venom

CbII: the basic subunit of the CbI-CbIl complex from
Pseudocerastes fieldi venom

CTX: crotoxin, B-neurotoxin from Crotalus durissus terrifi-
cus venom, made of acidic CA and basic CB subunits

CbI-CbII: B-neurotoxin from Pseudocerastes fieldii venom,
composed of Cbl and CbII subunits

FVa: Activated human coagulation factor V

FXa: Activated human coagulation factor X, also known as
Stuart factor or Stuart-Prower factor

hsPLA,: Non-pancreatic secreted human group IIA phos-
pholipase A,

IBS: Interfacial Binding Site
<k,,>: average association rate constant
<k ¢:>: average dissociation rate constant

<K, 2PP>: average apparent dissociation constant = <k >/
<kyn>

MtII: Myotoxin II from Bothrops asper venom
PL: Phospholipids

Vbb: the PLA, from Vipera berus berus venom
Catx: the PLA, from Crotalus atrox venom

RU: Resonance units

sPLA,: Secreted phospholipase A,

SPR: Surface plasmon resonance

SVPLA,: Group IIA snake venom secreted phospholipase
A2
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VRV-PLVIII the PLA, from Daboia russelli pulchella venom
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