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Abstract

Background: Legionella pneumphila is the causative agent of Legionnaires' disease. A major
virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl
cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its
enzymatic function. Insight into the binding process may be used for the design of novel Mip
inhibitors as potential drugs against Legionnaires' disease.

Results: We have solved the solution structure of free Mip77-213 and the Mip77-2!3-rapamycin
complex by NMR spectroscopy. Mip77-2!13 showed the typical FKBP-fold and only minor
rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop,
which is partly stabilized upon binding, the solution structure confirms the crystal structure.
Comparisons to the structures of free FKBP12 and the FKBP|2-rapamycin complex suggested an
identical binding mode for both proteins.

Conclusion: The structural similarity of the Mip-rapamycin and FKBPI2-rapamycin complexes
suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors.
The search for a novel drug against Legionnaires' disease may therefore benefit from the large
variety of known FKBPI2 inhibitors.

Background made water systems, and cause severe and often fatal
The Gram-negative pathogen Legionella pneumophila ~ human pneumonia particularly in immunocompromised
infects phagocytic cells such as various freshwater proto-  patients. One major virulence factor contributing to infec-
zoa and human alveolar macrophages [1]. The bacteria  tion is the macrophage infectivity potentiator (Mip) pro-
enter the human lung via aerosols generated by man-  tein. L. pneumophila strains lacking Mip or expressing a
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mutant of Mip with low PPlase activity were significantly
attenuated in a guinea pig infection model [2]. The pro-
tein contributes to the disintegration of lung tissue and
subsequent dissemination of the bacteria within the body.
Transwell assays support the idea that Mip enables the
bacteria to transmigrate across a barrier of lung epithelial
cells and extracellular matrix [3].

Mip is a basic 22.8 kDa surface protein (pl 9.8) localized
at the outer membrane of the bacteria. Cross-linking
experiments revealed that it forms homodimers [4,5]. Mip
belongs to the FK506 binding protein (FKBP) family
exhibiting peptidyl-prolyl cis/trans isomerase activity
(PPIase, EC 5.2.1.8), and is in this respect a homolog of
human immunophilins like FKBP12. The crystal structure
indicated that each monomer consists of a C-terminal
domain, which resembles FKBP12 in its folding pattern
and is termed the FK506 binding domain (FKBD). The
FKBD is connected via a long (6.5 nm), flexible a-helix to
an N-terminal domain which mediates homodimerisa-
tion by forming an unusual, symmetrical bundle of four
helices with the other monomer [6,7].

Although macrolides like azithromycin and chinolones
are commonly used and represent efficient antibiotics for
treating Legionaires' disease, mortality rates of up to 20%
may occur if older or immunocompromised patients are
infected. Mip is a potential alternative target for novel
antibiotic therapies. The lipophilic macrolides FK506 or
rapamycin (Figure 1) both are efficient inhibitors of the
PPlase activity of FKBPs, including Mip and FKBP12 [8].
However, these drugs are also immunosuppressive [9,10].
They affect signal transduction pathways for T-cell activa-
tion and proliferation by binding to human FKBP12 [11-
14], the predominant cytosolic member of the FKBP fam-

Figure |
Structure of rapamycin. Carbon atoms are numbered.
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ily. Targets of the emerging complexes are the human pro-
teins calcineurin for FK506 and mTOR, the mammalian
target of rapamycin. This in turn affects interleukin-2,
which is required for the proper immune response.
Hence, neither of the drugs is suitable for the treatment of
Legionnaires' disease. A modified ligand blocking specifi-
cally the PPIase activity of Mip but lacking the detrimental
side-effects on human immune system is a putative agent
against Legionnaires' disease. Details of the Mip-rapamy-
cin complex structure would provide insight into the
binding processes and would thus allow for the identifica-
tion of possible modifications of rapamycin to design an
inhibitor without side effects. Apart from L. pneumophila,
FKBP homologues of the Mip sub-family are also present
in other human pathogens like Neisseria gonorrhoeae [15],
Chlamydia trachomatis [16] or Trypanosoma cruzi [17] mak-
ing the search for specific ligands even more rewarding
[18].

In this article we report on the nuclear magnetic resonance
(NMR) investigation of the C-terminal PPlase domain of
Mip, comprising about 100 residues with ~35% sequence
identity to human FKBP12 [6,19]. Since dimerization is
not required for the enzymatic activity we have studied
the deletion mutant Mip?77-213, which only consists of the
FKBD with a molecular weight of 14.7 kDa. The solution
structures of Mip and of the Mip-rapamycin complex are
compared to the FKBP12-rapamycin complex to advance
rational design of drugs against Legionnaires' disease.

Results and discussion

Structure of Mip77-213

Mip77-213 was composed of the C-terminal FKBD and N-
terminal amino acids that formed part of the a-helix con-
necting the two domains in full-length Mip. Statistics for
the structure calculation are listed in table 1. The residues
N-78 to N-95 of the shortened mutant formed a free-
standing a-helix as also observed for the dimer (Figure 2).
The C-terminal FKBD, which includes the active site,
showed the typical fold, which was nearly identical to the
crystal structure of full-length Mip. It consisted of six B-
strands, which formed an antiparallel sheet with the
topology B1-B,-Bs-Bs-Bs-B4. A short helix o, was located
across this sheet. From N-terminus to C-terminus the sec-
ondary structure of Mip77-213 included helix 5 (N-78 to
N-95), strands ; (V-102 to V-103), B, (Q-109 to N-114),
B5 (T-126 to L-135), B, (separated into two segments com-
prised of V-140 to S-143 and of A-151 to Q-154 by a bulge
of seven residues), helix o, (P-160 to L-166) and strands
Bs (T-174 to Y-178) and B4 (L-200 to V-209). The strands
were all connected by short loops except strands 35 and B,
which were connected by a long hairpin loop (V-179 to T-
199). Similar to human FKBP12, a hydrophobic cavity
was formed in the presumed center of PPlase activity. It
was located between the o,-helix and the interior side of
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Table I: Structural statistics for free Mip77-213

number of structures 10/40
number of restraints
unambiguous distance restraints 1737
ambiguous distance restraints 784
total distance restraints 2521
dihedral angle restraints 230
rmsd from idealized covalent geometry
bonds (in nm) (0.2 £ 0.0) 103
angles (in deg) 0.4+0.0
impropers (in deg) 0400
rmsd from experimental restraints
distances (in nm) (2.8+0.3) 103
dihedral angles (in deg) 1.6 £ 0.1
rmsd values from the minimized average structure  in nm
backbone atoms 0.046 £ 0.010
all heavy atoms 0.085 £ 0.010
Ramachandran analysis in %
most favored regions 818+ 1.0
additionally allowed regions 163 % 1.1
generously allowed regions 1.7£0.5
disallowed regions 02+04

the B-sheet and mostly composed of hydrophobic resi-
dues. The side chains of W-162 and F-202 formed the bot-
tom of this pocket and were surrounded by Y-131, F-141,
D-142, F-153, Q-157,V-158, 1-159, P-193, and 1-194. The
crystal structure of the Mip homodimer is only slightly dif-
ferent from the solution structure presented here. The root
mean square deviation (rmsd) between the coordinates of
the backbone without the termini (A-81 to V-209) is 0.24
nm between the two structures.

Structure of the Mip’7-213-rapamycin complex

An analysis of chemical shift perturbation data from the
2D 15N-HSQC experiments of free and complexed Mip77-
213 indicated significant changes in the chemical environ-
ment of residues Y-102, D-142, T-144, F-153 to A-161, A-
165, F-185, F-202, and K-203 upon binding of rapamycin.
These residues were located in the hydrophobic cavity or
in its direct vicinity, clearly indicating that the cleft was
involved in binding rapamycin. This had already been
assumed from the analysis of the structure of the homol-
ogous human FKBP12 in complex with FK506 and
rapamycin. The data suggest that the loop between strand
B, and helix a,, where chemical shift changes were most
pronounced, plays a key role in recognition of the ligand.

http://www.biomedcentral.com/1472-6807/8/17

Figure 2

Overlay of the solution structures of free and
rapamycin-bound Mip77-213, The average structures are
shown in cartoon representation for free Mip’7-2!3in red and
for Mip77-213in the complex in blue. Rapamycin is shown in
black. The bulge interrupting strand 3, (residues T-144 to P-
150) and the hairpin loop (residues V-179 to T-199) are high-
lighted.

The average structure of Mip77-213 in complex with
rapamycin was similar to the free protein with an rmsd
between the backbone coordinates of only 0.26 nm for
residues A-81 to V-209 (Figure 2). Structural statistics are
listed in table 2. While the secondary structure of Mip
remained nearly unchanged, the overlay of the average
structures showed a structural rearrangement of the bulge
interrupting strand f3, (residues T-144 to P-150) as well as
of the hairpin loop (residues V-179 to T-199). Upon bind-
ing, the former was significantly displaced, enlarging the
binding pocket to accommodate the ligand. A distance of
0.60 nm was observed between the positions of G-148 C,
in the free and bound average structures. Within the hair-
pin loop, intrinsic changes were observed. The part of the
hydrophobic cavity that was formed by P-193 and 1-194
in free Mip77-213 became occupied by Y-185, for which a
strong change in chemical shift had been observed. The
stretch from V-190 to P-196 was bent away from the bind-
ing pocket, which was reflected in a lower rmsd of only
0.21 nm between free and complexed protein, if these
seven residues were not considered. The hairpin loop and
the bulge were the two regions that contributed most to
the overall rmsd. Omitting these two regions, the rmsd
between free and bound Mip was 0.17 nm for the back-
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Table 2: Structural statistics for Mip77-2!3-rapamycin-complex
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Number of structures 16/80

Number of restraints

unambiguous intramolecular distance restraints (Mip77-213) 1692

ambiguous intramolecular distance restraints (Mip77-213) 2509
intermolecular distance restraints 179
total distance restraints 4380
dihedral angle restraints 230

rmsd from idealized covalent geometry
bonds (in nm) (0.7 £ 0.0) 103
angles (in deg) 0.9+00
impropers (in deg) 1.0 0.1

rmsd from experimental restraints
intramolecular distances (in nm) (5.6 £0.2) 103
intermolecular distances (in nm) (21.5+1.8) 103
dihedral angles (in deg) 2.0+ 0.0

rmsd values from the minimized average structure in nm
backbone atoms 0.036 + 0.009
all heavy atoms 0.081 + 0.007

Ramachandran analysis (Mip77-2!3) in %
most favored regions 905+ 1.0
additionally allowed regions 80+ 1.0
generously allowed regions 1.3+£0.6
disallowed regions 02+04

bone and 0.15 nm for the secondary structure elements
only. The overlay of an ensemble of 16 refined complex
structures hinted at flexibility in these two sections. The
hairpin loop appeared slightly flexible in the simulations,
with a more stable N-terminal part (Figure 3).

A comparison with the crystal structure revealed that the
orientation of the hairpin loop in the Mip?7-213-rapamy-
cin complex was nearly identical to the orientation in free,
full-length Mip. This similar configuration resulted in a
backbone rmsd value of 0.15 nm between the two struc-
tures for residues A-81 to V-209. In the solution structure
of free Mip77-213, the orientation of the hairpin loop was
different. Y-185, which formed the outer edge of the bind-
ing pocket in the crystal structure and in the complex, was
displaced, and its position occupied by the residues P-193
and [-194 (Figure 4). This structural rearrangement in
Mip77-213 may be an artifact due to the lack of the dimeri-
sation domain. In the crystal structure, the connecting a-
helix was stabilized by the hairpin loop via side chain
hydrogen bonds withdrawing the residues P-193 and I-

194 from the hydrophobic cavity. In the mutant, high
flexibility of the N-terminus may have rendered side chain
interactions in this part of the helix unfavorable and
caused the reorientation of the loop. However, for full-
length Mip in solution high flexibility of the hairpin loop
was observed by NMR relaxation measurements [7]. Apart
from the hairpin loop, all three structures superimposed
very well. Without the loop, the rmsd values between the
crystal structure and either free or bound Mip were similar
(0.17 nm and 0.15 nm, respectively).

To further investigate the stabilization of the hairpin loop,
heteronuclear relaxation rate constants R; and R, and
Nuclear Overhauser Effects (hetNOE) were measured for
rapamycin-bound Mip77-213 and compared to those for
the free protein [7] (Figure 5). As had also been observed
for free Mip, the relaxation data indicated the presence of
a stable secondary structure in the complex. HetNOE val-
ues < 0.65, indicating the presence of fast motion on a
picosecond timescale [20], were observed for most of the
bulge residues (K-146 to K-149) in the complex. This
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Figure 3

Ensemble of Mip77-2!3.rapamycin complex structures.
Superposition of the backbone of Mip (blue) and the heavy
atoms of rapamycin (red) from the 16 lowest energy struc-
tures. The hairpin loop and the bulge are shown in green.
The section of the hairpin loop that is stabilized upon binding
is indicated in grey.

observation provided further evidence for flexibility and
fast motion, in accordance with the results of the structure
calculations. In free Mip77-213, similar values were found
for these residues, indicating that the local dynamics of
the bulge were not restricted by the presence of rapamy-
cin. Small differences (hetNOE values were slightly lower
in the complex) may be due to the structural reorientation
of the bulge. Different observations were made for the
hairpin loop. For residues R-188 to G-192 of the free
enzyme, hetNOEs were smaller than 0.65 and the R;/R,
values were elevated. Upon binding of rapamycin, NOE
values were larger for these residues and R, /R, values were
not elevated. These differences reflect a decreased flexibil-
ity in this part of the hairpin loop in complexed Mip as
compared to the free protein. The overall correlation time
T Was derived from the measured R,/R, ratios assuming
isotropic tumbling. The correlation time was 8.3 ns for
free Mip and 11.6 ns for the Mip-rapamycin complex. In
order to assess whether this large change is in agreement
with the solution structure of the complex, the correlation
time for molecular tumbling was calculated from the
expected hydrodynamic radius using HYDRONMR [21].
1. values of 9.7 ns and 10.8 ns were obtained for free Mip
and the complex, respectively, confirming that molecular
tumbling was considerably slowed down by the increased

http://www.biomedcentral.com/1472-6807/8/17
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Figure 4

Detailed view into the hydrophobic cavity of Mip. W-
162 forms the bottom of the cavity. In the solution structure
of free Mip (red) Y-185 is not part of the binding pocket.
Upon binding (complex structure in blue), the aromatic ring
of Y-185 moves into the hydrophobic patch displacing P-193
and I-194, (highlighted in grey) to form contacts with the lig-
and. In the crystal structure of free Mip (green) Y-185 shows
the same orientation as in the complex.

hydrodynamic radius of the complex. The larger increase
observed experimentally was most likely due to higher
rigidity of the complexed protein, which was not consid-
ered in the theoretical model.

Rapamycin was bound to Mip with the pipecolyl ring
(C2-N7, see Figure 1 for nomenclature) penetrating deep
into the hydrophobic cavity. The ring was surrounded by
the aromatic side chains of Y-131, F-153, W-162, and F-
202 as well as by residues V-158 and I-159. Intermolecular
NOEs were observed for all of these residues except for F-
202. The binding domain of rapamycin is comprised of
the ester linkage, the pipecolyl ring, the dicarbonyl group,
and the pyranosyl ring. The stretch from C14 to C24 was
fully exposed, while the cyclohexyl ring was partly accessi-
ble to the solvent. Rapamycin was not as well-defined as
Mip77-213, due to the lack of intramolecular distance
restraints. This fact was expressed by a higher average
rmsd of the coordinates of all heavy atoms for rapamycin
(0.15 + 0.03 nm) than for the whole complex including
the protein (0.081 + 0.007 nm).

Page 5 of 12

(page number not for citation purposes)



BMC Structural Biology 2008, 8:17

. 7T7-213
Mip

80 100 120 140 160
Residue number

180 200

L

80 100 120 140 160 180 200
Residue number

Figure 5

http://www.biomedcentral.com/1472-6807/8/17

: 77-213

b) Mip

-rapamycin complex

T

80 100 120 140 160
Residue number

180 200

HetNOE

80 100 120 140 160 180 200
Residue number

Relaxation data of free and bound Mip77-2!3 measured at 14.1 T. '5N-relaxation as measured in a) free Mip’7-2!3and b)
rapamycin-bound Mip77-213, HetNOEs are shown in c) for free Mip77-213 and in d) for rapamycin-bound Mip77-2!3, The overall
R,/R, ratio decreased upon binding of rapamycin, reflecting slower motional tumbling of the complex. Residues with HetNOE
values < 0.65 (bold black lines) were not considered for calculation of the correlation time 1. For residues R-188 to G-192
HetNOE values increased and R/R, decreased, suggesting stabilization of these residues in the complex.

Between Y-185 OH and the rapamycin carbonyl group at
C8, an intermolecular hydrogen bond was observed in all
of the calculated ensemble structures. Another hydrogen
bond involved Y-185 OH and N7. However, there were
more possible acceptors for the hydrogen of Y-185 OH at
the inner side of the macrolide ring pointing towards the
protein in the ensemble. Another hydrogen bond was
formed by Y-131 OH and the carbonyl group at C9 of
rapamycin. Intermolecular contacts were also found for
both oxygen atoms of residue D-142 and the OH-group at
C10.

Sequence conservation

It has been demonstrated by Wintermeyer et al. that both
D-142-L and Y-185-A mutations resulted in strongly
reduced PPlase activity of the recombinant Mip proteins

(5.3 and 0.6% activity compared to wild-type Mip, respec-
tively) [22]. In the complex, both amino acids were
observed to be within the hydrophobic cavity and to form
hydrogen bonds stabilizing the Mip-rapamycin complex.
Since binding of rapamycin efficiently inhibits PPlase
activity [8], the hydrophobic cavity of the protein is most
likely the active site of the enzyme.

The importance of the residues involved in binding of
rapamycin is confirmed by their good or strict conserva-
tion in species of different kingdoms (Figure 6). Galat has
investigated FKBPs with a molecular weight of about 12
kDa and 13 kDa from diverse organisms [23]. The resi-
dues corresponding to Y-131, F-141, D-142, F-153, V-158,
and W-162 in Mip are well conserved in all sequences
among the two groups. I-159, Y-185, and F-202 are even
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Figure 6

Multiple sequence alignment of FKBPs and FKBDs from different organisms. The standard colouring pattern of
ClustalX [57] is used. Well and strictly conserved residues that are associated with binding of rapamycin in human FKBP12 and
in Mip77-213 are labelled by black boxes. The functional equivalents F-153 in Mip77-213 and F-46 in human FKBPI2 (black circles)
are neither conserved nor aligned to the same sequence position. Graphical representation of the rate of conservation is indi-
cated at the bottom. Proteins shown: Legionella pneumophila Mip, <Q5ZXEO0>; Homo sapiens FKBP12, <P62942>; Bos Taurus
FKBPIA, <P18203>; baker's yeasts FPR 1, <P2008|>; Corynebacterium glutamicum Cgl0830, <P42458>; Escherichia coli FKPA,

<P45523>; Trypanosoma cruzi Mip, <Q09734>.

strictly conserved. Except for Y-185, which plays a key role
in binding of rapamycin, these residues form the hydro-
phobic cavity of free Mip?77-213, Additional residues of Mip
involved in binding without being conserved are Q-157,
1-194, and especially P-193, which is rarely observed at
this position in other FKBDs. The two amino acids of the
flexible loop P-193 and 1-194 form part of the hydropho-
bic cavity in free Mip77-213, while Q-157 is located on its
edge.

Comparison with human FKBP|2-rapamycin complex

The homology of human FKBP12 and L. pneumophila Mip
is reflected in a high degree of similarity of their hydro-
phobic cavities. This cavity is formed by the residues Y-26,
F-36, D-37, F-46, E-54, V-55, [-56, W-59, Y-82, and F-99 in
FKBP12. All residues occupy identical positions as their
counterparts in Mip, where F-46 is the only exception. The
functional analogue in Mip is F-153, while the corre-
sponding sequence position is occupied by A-151. Inter-
estingly, the sequence position corresponding to F-153 in
Mip is occupied by F-48 in FKBP12, which does not
directly contribute to binding in the FKBP12-drug com-

plexes. This functional substitution forces a rotation in the
side chain of F-153 by about 100° as compared to F-48 in
the crystal structure of the FKBP12-rapamycin-complex
(Figure 7). The orientation of F153 was experimentally
well defined by a total of 73 intramolecular (non-intrare-
sidual) NOEs and 42 intermolecular NOEs to rapamycin.
Apart from FKBP12, there are other FKBDs with a triad -
EXF- at this sequence position, which is either substituted
by -XXF- or -FXX- among other representatives of this
group of proteins (Figure 6). This might represent an
example of a compensatory mutation [24] during the evo-
lution of the FKBDs. Interestingly, the conformation of
the side chain of F-48 in the FKBP12-rapamycin complex
is similar to that of one of F-153 in the solution structure
of free Mip77-213, while the side chain conformation of F-
153 in the Mip77-213-rapamycin complex is similar to the
crystal structure of free Mip (Figure 8). For the secondary
structure of bound Mip this has the consequence that the
C-terminal segment of strand B, is slightly steeper than in
free Mip or in bound FKBP12 (Figure 8). This difference
explains the observed displacement of the bulge of sheet
B,. A further structural difference between the two pro-
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L W-59W-162

Figure 7

Detail from the overlay of Mip?7-2!3 and FKBP12 in
complex with rapamycin. Solution structure of the Mip-
rapamycin complex is shown in blue and the crystal structure
of the FKBPI2-rapamycin complex in magenta. In FKBP|2, F-
48 does not directly contribute to binding of rapamycin. Its
analogue in Mip, F-153, takes over the function of F-46 in
FKBP12, because residue 151 is alanine in Mip.

teins is that Y-82 forms part of the hydrophobic cavity in
both the crystal [25] and the solution structure [26] of free
FKBP12. The respective counterpart in Mip is Y-185,
which is part of the binding pocket only in the crystal
structure, and replaced by P-193 and I-194 in the solution

Table 3: Rmsd values for the hairpin loop between different
average structures

Mip (residues V-179 to T-199) in nm
Solution structure - 0.240
Crystal structure

Solution structure - 0.258

Solution structure of rapamycin complex
Crystal structure - 0.151
Solution structure of rapamycin complex

FKBPI12 (residues I-76 to T-96) in nm
Solution structure - 0.094
Crystal structure

Solution structure - 0.123
Crystal structure of rapamycin complex

Crystal structure - 0.048

Crystal structure of rapamycin complex

http://www.biomedcentral.com/1472-6807/8/17

structure. As a consequence, structural rearrangements
upon binding with rapamycin are less pronounced in
FKBP12 [27,28] than for Mip (Table 3).

Previous NMR investigations of the FKBP12-FK506 [29]
complex revealed that, in contrast to the uncomplexed
FKBP12, the residues Y-82 to H-87 of the hairpin loop (P-
78 to A-95) were rigidly fixed. The flexibility was reduced
due to stabilizing interactions by the side chains of H-87
and 1-91, as well as by a hydrogen bond from Y-82 to the
C8 carbonyl of FK506. The conclusion that Y-82 is a key
residue in FKBP12 was further supported by its substitu-
tion with leucine [30]. The results for the Mip77-213-
rapamycin complex are completely analogous to these
observations. Y-185, the counterpart of Y-82 in FKBP12,
plays the same role in the hairpin loop in Mip. Since this
is a common scheme in both proteins, flexibility of the
loop may be crucial for the recognition of the protein tar-
gets calcineurin and mTOR, respectively, and also for
selectivity of the binding.

Implications for drug design

The high structural similarity between the Mip-rapamycin
and FKBP12-rapamycin complexes suggests that FKBP12
ligands are suitable leads for drug design. Rapamycin itself
appears as a promising starting point for two reasons.
First, rapamycin is an approved and widely used drug,
making undesired side effects of its derivatives less proba-
ble than for totally new agents. Second, substances based
on rapamycin have the potential to be highly active
against Legionnaires' disease, because unmodified
rapamycin is a subnanomolar inhibitor of FKBP12
[31,32] (K;= 0.2 nM) and on the other hand has been
shown to inhibit penetration of a lung epithelial barrier
by L. pneumophila in vitro [3]. The immunosuppresive
properties of novel derivatives may be avoided according
to the dual domain concept, which implies separate FKBP
binding and effector domains in the drug. Immune mod-
ulation is mediated by binding a target protein to the
effector domain. In the Mip-rapamycin complex molecu-
lar contacts are found exclusively to the FKBP binding
domain of rapamycin, suggesting that the removal of the
effector domain would not influence affinity. Inhibitors
composed only of the FKBP binding domain but lacking
the effector domain were suggested to have no influence
on the immune response. Drug molecules such as, for
example, the sub-nanomolar inhibitor V-10,367 (K;= 0.5
nM) [33], or a series of sub-micromolar inhibitors of
FKBP12 [34], do not affect the immune response or cal-
cineurin activity [35], respectively. However, it has been
shown that FK506 (K; = 0.6 nM for FKBP12) [31] as well
as V-10,367 foster nerve regeneration in SH-SY5Y neurob-
lastoma cells [36]. These side effects call for further inves-
tigations and clinical trials before a novel drug may be
approved.
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Figure 8

Topology of the binding pocket in different structures of Mip and FKBP12. a) Crystal structure of Mip (pdb code
IFD9 [6]); b) solution structure of Mip77-213 (pdb code 2UZ5); c) solution structure of the Mip77-2!3-rapamycin complex (pdb
code 2VCD); d) crystal structure of the FKBP12-rapamycin complex (pdb code IFKB [26]). Side chains forming the binding
pocket are shown as sticks. The key residues Y-82 (FKBP12) and Y-185 (Mip) are highlighted in grey in each structure.

Conclusion

Structural similarity between the Mip-rapamycin and the
FKBP12-rapamycin complexes suggest an identical bind-
ing mode of inhibitors in both proteins. The vast number
of FKBP12 inhibitors may therefore be used to find a

novel agent against Legionnaires' disease. Strategies to
avoid unwanted immune modulation caused by interfer-
ence with calcineurin presumably pertain to Mip as well.
Rational drug design starting from known derivatives of
rapamycin may take advantage of the presented solution
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structure of the Mip77-213-rapamycin complex. Compared
to strategies relying solely on the dual domain concept or
bottom-up design this approach potentially offers a better
chance to avoid unwanted side effects.

Methods

Sample preparation

Escherichia coli harboring a plasmid encoding the PPlase
domain of Mip and part of the connecting a-helix were
used to overproduce Mip?7-213 in 13C- and 15N-labeled
medium (Martek M9). The enzyme was purified from
these bacteria as described previously [2]. The NMR sam-
ple contained 2.5 mM of double labeled (98% 3C, 98%
15N) Mip77-213 dissolved in 20 mM potassium phosphate
buffer in 90% H,O and 10% D, O at pH 6.5. For the exper-
iments with the complex, unlabeled, dry rapamycin (LC
Laboratories, Woburn, USA) was added to the protein
solution until the non soluble drug precipitated. The solu-
tion containinga 1:1 complex of rapamycin and Mip77-213
was then centrifuged.

NMR Experiments

The NMR experiments were performed on Bruker Avance
600, 700, and 800 MHz spectrometers at a temperature of
298 K. X-filtered spectra of the complex were acquired on
a Bruker Avance 700 with CryoProbe. The data were proc-
essed using NMRPipe [37]. Sequence-specific backbone
and side chain resonance assignments of free Mip77-213
were obtained as described previously [38]. Assignments
for the backbone resonances of rapamycin-bound Mip77-
213 were analyzed using 3D HNCO, HNCA, HNCACB, and
CBCA(CO)NH  spectra. HNHA, HBHA(CO)NH,
C(CO)NH and HCCH-TOCSY were used for aliphatic side
chain 'H and 13C assignments. Assignments for the amino
groups were obtained by 3D CBCA(CO)NH, 2D HSQC
and 3D 15N-NOESY spectra. The aromatic 13C resonances
were assigned from 15N-edited NOESY, 13C 2D HSQC and
3D NOESY centered at the aromatic frequency. For the
assignments of intermolecular distance restraints !3C-fil-
tered, 13C-edited 3D NOESY spectra were recorded sepa-
rately for aliphatic and aromatic !3C resonances. Both
peak picking and visualization of the spectra were per-
formed using NMRView [39].

The 'H-15N relaxation experiments were performed at 600
MHz, using pulse sequences from Dayie and Wagner
[40,41]. The R, values were determined by performing 11
experiments with eight different delays [5.38 (two times),
32.20, 64.38, 128.73 (two times), 300.35, 697.21 (two
times), 1297.87, and 1995.06 ms]|. To determine the R,
values, 11 experiments with five different delays [16.96
(two times, 50.84 (two times), 101.65 (three times),
152.47 (two times), and 203.28 ms (two times)]| were per-
formed. For the measurement of the heteronuclear 'H-15N
NOE, the relaxation delay was set to 4 seconds. Proton sat-

http://www.biomedcentral.com/1472-6807/8/17

uration was achieved by applying 600 high-power pulses
with an interpulse delay of 5 ms for the final 3 s of the
relaxation delay in the saturation experiment. Correlation
times (t.) averaged over different regions of the protein
were calculated using the TENSOR2 software package
[42,43] assuming isotropic tumbling. Only relaxation
rates of residues showing a HetNOE of > 0.65 were used.
HYDRONMR [21] was used to estimate the correlation
times (t.) from the atomic coordinates files.

Structure Calculation

Structure calculations were performed on Opteron based
multi-core compute servers with 16 GB RAM under Linux.
The structure of free Mip77-213 was calculated with ARIA/
CNS [44,45] using 1737 unambiguous and 784 ambigu-
ous NOE distance restraints (Table 1). The backbone dihe-
dral angle restraints for the structures of Mip77-213 were
determined with TALOS [46]. Calculation of the complex
structure was carried out in two steps. First, the structure
of rapamycin-bound Mip was calculated with both ARIA/
CNS and Xplor-NIH 2.16 [47,48], using 1692 unambigu-
ous and 2509 ambiguous NOE distance restraints (Table
2), which corresponded to 6720 ambiguous atom-to-
atom distances in the Xplor-NIH calculations. The back-
bone rmsd between the average structures obtained with
ARIA/CNS and Xplor-NIH was 0.070 nm (0.055 nm for
the binding pocket), showing that the different programs
introduced only minor deviations compared to the struc-
tural differences originating from binding of rapamycin
(Table 3).

In the second step, the final average structure of rapamy-
cin-bound Mip was used as input for the calculation of the
complex with rapamycin. This significantly decreased the
required computing time compared to random structure
starting coordinates. Parameters for rapamycin were cre-
ated by PRODRG2.5 [49] from the crystal structure of its
complex with human FKBP12 [27]. To facilitate first
assignments of intermolecular NOEs rapamycin was
placed manually in the putative binding pocket of Mip.
This system was solvated in a periodic box with 10774
SPC water molecules [50] and a 3 ns molecular dynamics
run was executed using GROMACS 3.3 [51-53] as
described previously [7]. The resulting model was solely
used in the first assignment round and not for any further
structure calculations.

Complex structures were calculated with Xplor-NIH 2.16
using intra- and intermolecular distance restraints starting
with molecules separated by more than 7 nm. The result-
ing complex structures were compared to the NOEs in the
spectra. Reassignment and new calculations were per-
formed in an iterative fashion. In each step, new intermo-
lecular distances were taken into account and the
distances violated the most were reassigned or removed.
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After 14 iterations, 179 intermolecular NOEs were
assigned. Refinement of the energetically lowest complex
structure after the final run was performed using the mod-
ified example script for protein G of Xplor-NIH. Out of
the 80 calculated structures, the 16 lowest energy struc-
tures were selected for analysis with PyMOL [54] and
PROCHECK [55]. All graphical representations of struc-
tures were generated using PyMOL.

Hydrogen bonds

A distance of less than 0.36 nm between donor and accep-
tor was assumed to be sufficient for an intermolecular
hydrogen bond in the Mip77-213-rapamycin structures.
Thermal noise in the ensemble and the flexibility of resi-
dues T-144 to P-150 and A-179 to E-199 caused slight dif-
ferences in the 16 refined structures. Hydrogen bonds
were therefore only accepted if they occurred in at least
half of the individual structures.

Muttiple sequence alignment
The sequences were aligned with the ClustalW [56] pro-
gram and arranged with ClustalX [57].

Coordinates and chemical shifts

The coordinates of the structures of free Mip77-213 and the
Mip77-213-rapamycin complex have been deposited at the
protein data bank (accession codes 2uz5 and 2vcd, respec-
tively) [58]. Chemical shifts are available at BMRB data-
base (accession code 6334 and 15507, respectively).
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