
BioMed CentralBMC Structural Biology

ss
Open AcceMethodology article
Fast dynamics perturbation analysis for prediction of protein 
functional sites
Dengming Ming1,2, Judith D Cohn1,3 and Michael E Wall*1,3,4

Address: 1Computer, Computational, and Statistical Scienes Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2School 
of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China, 3Bioscience Division, Los Alamos National Laboratory, Los Alamos, New 
Mexico, USA and 4Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Email: Dengming Ming - dming@nju.edu.cn; Judith D Cohn - jcohn@lanl.gov; Michael E Wall* - mewall@lanl.gov

* Corresponding author    

Abstract
Background: We present a fast version of the dynamics perturbation analysis (DPA) algorithm to
predict functional sites in protein structures. The original DPA algorithm finds regions in proteins
where interactions cause a large change in the protein conformational distribution, as measured
using the relative entropy Dx. Such regions are associated with functional sites.

Results: The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical
observation that Dx in a normal-modes model is highly correlated with an entropic term that only
depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using
first-order perturbation theory, resulting in a N-fold reduction in the overall computational
requirements of the algorithm, where N is the number of residues in the protein. The performance
of the original and Fast DPA algorithms was compared using protein structures from a standard
small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast
DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time
for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are
among predicted residues) were slightly better for Fast DPA. On the other hand, per-protein
precision statistics (fraction of predicted residues that are among binding-site residues) were
slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-
binding-site residues was comparable to that of the original DPA algorithm.

Conclusion: Compared to the original DPA algorithm, the decreased run time with comparable
performance makes Fast DPA well-suited for implementation on a web server and for high-
throughput analysis.

Background
Prediction of protein functional sites is a key aspect of
protein function prediction [1], and can be an important
step in identifying small-molecule interactions for drug
discovery [2]. It can also potentially be used as a pre-
processing step to reduce the search space in computa-

tional docking algorithms. There are many methods to
predict functional sites–here we emphasize those that
make use of analysis of protein structure and dynamics.
Existing protein structure analysis methods are based on
diverse principles, including: association of functional
sites with surface clefts that have extreme values of volume
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[3-6] or other shape descriptors [7-11]; identifying spatial
clusters of methyl probes that exhibit energetically favora-
ble interactions with the protein [12]; association of func-
tional sites with charged surface residues either in
unfavorable electrostatic environments [13] or with
anomalous predicted pH titration curves [14]; identifying
spatial clusters of residues whose diversity appears to be
correlated with changes in protein function [15,16];
defining structural features (e.g. motifs) associated with
functional sites [17-22]; identifying residues that are on
average close to other residues in the protein (closeness
centrality) [23-25]; and machine-learning prediction of
functional sites/residues using sequence, structure, and
chemical features from training sets [26-28]. Principles of
methods that consider protein dynamics include associa-
tion of functional sites with: hinge regions [29,30];
regions where the harmonic vibrations are largely deter-
mined by high-frequency modes [31]; intrinsically disor-
dered regions that are highly mobile in the absence of a
molecular interaction partner [32]; and residues where
mutations cause a large change in the couplings of local
perturbations to remote, local changes in the distribution
of folded vs. unfolded states of the protein [33]. Informa-
tion from complementary methods may be integrated for
functional site prediction [34,35].

We recently developed an additional approach to predic-
tion of protein functional sites that is based on analysis of
protein dynamics [36-39]. To help motivate the approach,
we note that cellular functions are regulated by molecular
interactions that alter protein activity. To enable such con-
trol, protein activity, and therefore protein conforma-
tional distributions, must be susceptible to alteration by
molecular interactions at functional sites. In other words,
protein activity should be controllable by allosteric effects
(allostery).

Weber [40] recognized the importance of considering
changes in the full conformational distribution to under-
stand allostery, as opposed to considering mechanistic
changes among discrete, well-defined structural states in ear-
lier models due to Monod, Wyman, and Changeux [41];
and Koshland, Nemethy, and Filmer [42]. Weber's per-
spective is well-aligned with more recent emphases on the
need to consider allostery from a global thermodynamic/
statistical perspective [43,44,36-39,33,45]. It is also well-
aligned with modern rate theories based on the control of
protein activity by dynamical transitions among confor-
mational substates [46], as originally suggested by spec-
troscopic assays of ligand-binding at low-temperature
[47,48].

Given the above considerations, we hypothesized that
protein functional sites might tend to evolve at control
points where interactions cause a large change in the pro-

tein conformational distribution [36]. To test this hypoth-
esis, we developed a method called dynamics
perturbation analysis (DPA) to quantify changes in pro-
tein conformational distributions due to molecular inter-
actions [36,37], examined 305 protein structures from the
GOLD [49] docking test set [38], and found that interac-
tions at small-molecule binding sites cause a relatively
large change in protein vibrations.

Motivated by these results, we developed a DPA-based
algorithm that successfully predicts small-molecule bind-
ing sites at locations where interactions cause a large
change in protein vibrations [38]. This method was evalu-
ated in Ref. [38] using 305 proteins in the GOLD [49]
docking test set of protein-ligand structures. For the test,
only the top-ranked functional site was selected and was
used to predict the location of the ligand-binding site.
This is a relatively strict requirement; in other published
methods for predicting functional sites [11], performance
often is evaluated by allowing for any of several predicted
functional sites to overlap a known ligand-binding site.
The method produced at least one predicted functional
site for 287 of the 305 proteins in the test set. In 87% of
cases (250 proteins), at least one predicted residue was in
the ligand-binding site. The recall of binding-site residues
(percentage of binding-site residues found among the pre-
dicted residues) was at least 30% for 80% of cases, and
was at least 50% for 76% of the cases. The precision of the
predicted residues (percentage of predicted residues
found among the binding-site residues) was at least 30%
for 68% of the cases, and was at least 50% for 44% of the
cases. The statistical significance of the overlaps was
assessed using a null model in which surface residues were
randomly selected. Using the null model, a P-value was
calculated to evaluate predictions for the 250 proteins in
which at least one predicted residue was in the ligand-
binding site. The P-value estimated the probability of
obtaining a precision at least as high as the observed pre-
cision by randomly selecting surface residues [38]. For
87% of the cases, the P-value was 10-3 or smaller, indicat-
ing a statistically significant overlap. The performance of
the DPA method compared favorably to that of a cleft
analysis method for predicting ligand-binding residues.

The original DPA algorithm is a highly innovative
approach that performs well. However, the computa-
tional requirements limit the utility of the original
method. For example, it takes about an hour to analyze a
150-residue protein domain using DPA, and the method
doesn't scale well to larger systems. Here, we report an
improved algorithm based on use of first-order perturba-
tion theory that will facilitate the use of DPA in high-
throughput scenarios and increase its utility, e.g., for web
server applications. The algorithm, called Fast DPA, ena-
bles a dramatic decrease in the time required to predict
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protein functional sites, with performance that is compa-
rable to the original DPA algorithm.

Methods
Dynamics perturbation analysis

Our overall approach for predicting functional sites is
based on a method called dynamics perturbation analysis
(DPA) [36,38,37]. In DPA, a protein is decorated with M
surface points that interact with neighboring protein
atoms, as illustrated for Protein Data Bank entry 1JEF [50]
in Fig. 1. The protein conformational distribution P(x) is
calculated in the absence of any surface points, and M pro-
tein conformational distributions P(m)(x) are calculated
for the protein interacting with each point m. The confor-
mational distributions are calculated using a coarse-
grained model of molecular vibrations, and the distribu-
tions P(m)(x) are calculated from models of the protein in

complex with each surface point. The relative entropy, or

Kullback-Leibler divergence [51],  between P(x) and

P(m)(x) is calculated for each point m, and is used as a
measure of the change in the protein conformational dis-
tribution upon interacting with point m:

In the present case (unlike in other useful biological appli-
cations [52-56]), the relative entropy is not just an ad hoc
measure; rather, it has real biophysical significance

[39,57]: , where T is the temperature and kB is

Boltzmann's constant, is the free energy required to
change the protein conformational distribution from an
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Application of Dynamics Perturbation Analysis (DPA) to predict protein functional sitesFigure 1
Application of Dynamics Perturbation Analysis (DPA) to predict protein functional sites. Left. In this example, the surface of lys-
ozyme (PDB entry 1JEF [50], yellow cartoon) is decorated with test points (533 spheres at a density of 1 point per Å2), and the 
degree to which the test points individually perturb the protein conformational distribution is calculated (temperature-coded 
coloring of the spheres). A tri-NAG molecule (purple wireframe) binds in the active site. Warm-colored spheres indicate 
where the perturbation is large. Center. Points where the perturbation is largest are selected and clustered (green spheres). 
Right. Cα atoms within 6 Å of the DPA cluster are selected, and the associated residues define the predicted functional site (16 
residues). For comparison, Cα atoms within 6 Å of the tri-NAG are selected; we use the associated residues to define the 
actual functional site (7 residues). The overlapping residues (6 residues) are shown in orange; there are 10 predicted residues 
that do not exactly match the functional site (green), and there is 1 functional site residue that is not among the predicted res-
idues (purple, in the helix on the right hand side).
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equilibrium distribution P(x) to a non-equilibrium distri-
bution P(m)(x).

Thus far, DPA calculations have most often been per-
formed using a simple model of protein vibrations–the
elastic network model (ENM) [58-61]. In the ENM, Cα

atoms are extracted from an atomic model of a protein,
and an interaction network is generated by connecting
springs between all atom pairs (i, j) separated by a dis-
tance less than or equal to a cutoff distance rc. Each spring

has the same force constant γ, is aligned with the separa-
tion between the connected atoms, and has an equilib-
rium length equal to the distance dij between the atoms in

the initial model. Thus, the potential energy is given by

, where εij = 1 if

atoms i and j are connected, and εij = 0 otherwise. The

interaction between the protein and a surface point m is

modeled by connecting springs of force constant γs

between the surface point and all protein atoms within a
cutoff distance rs of the surface point. The protein coordi-

nates are not modified in modeling the interaction. The
dynamics are defined using normal mode analysis of the
model. In this model, the reference distribution P(x) is
given by

In Eq. (2), N is the number of atoms in the protein; x0 is

the equilibrium structure; and λi and vi are the ith eigen-

value and eigenvector of the Hessian

. The perturbed distribution P(m)(x)

is similar to Eq. (2), but substituting the eigenvalues and

eigenvectors  and  of the pseudo-Hessian 

for λi and vi.  is derived from the full Hessian H(m) for

the protein model in the presence of the surface point m:

The sub-matrix  couples the protein coordinates, the

sub-matrix  couples the test-point coordinates, and

the submatrix G(m) couples the protein to the test point. In

terms of these matrices,  is given by [37]

Using expressions for P(x) and P(m)(x), Eq. (1) becomes
[36,37]

The first six modes involve zero eigenvalues and are
ignored in the sums. Equation (5) is the central equation
that enables DPA.

To use DPA to predict functional sites, we make use of the

fact that, empirically, the distribution of y =  values

on the surface of a protein calculated using Eq. (5) is
observed to obey an extreme value distribution (Fig. 2),

First, DPA is performed on a protein and the distribution

of  values is modeled using Eq. (6). Points with

 values in the upper 96% of the modeled distribu-

tion are selected and are spatially clustered. The clusters

are ranked according to the mean value of  within

the cluster, and all clusters are considered to be potentially
associated with a functional site. Finally, residues in the
neighborhood of the clusters are selected and form the
basis for functional site predictions.

Fast dynamics perturbation analysis
Fast DPA is based on a simple empirical observation: for
dynamics defined by normal modes, the total value of Dx
in Eq. (5) is highly correlated with just the first (entropic)
term,
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Hereafter we refer to  simply as . Observation

of this correlation motivates the use of  as a surrogate

for Dx in DPA, and, because  only involves eigenval-

ues, creates an avenue for accelerating DPA. The accelera-
tion arises because the eigenvalues of the normal models
of the protein in the presence of test points are well-
approximated using first order perturbation theory. In this

approximation, the pseudo-Hessian  of the protein
in the presence of point m is written as the Hessian H of
the protein in the absence of the ligand plus a perturba-

tion term δ :

where the expression for  is as in previous studies

[37,38]. To estimate the eigenvalues of , we use the
canonical first-order perturbation theory expression,

where λi is the ith eigenvalue of H.

The Fast DPA algorithm is the same as the original DPA
algorithm, except instead of using values of Dx, the analy-

sis is based on values of  estimated using perturbation

theory. (It is possible to evaluate all terms in Eq. (5) using
first-order perturbation theory, but doing so would not
accelerate the method because the computational cost is
comparable to that of solving the full eigenvalue problem
in original DPA.)

Implementation of Fast DPA
Our implementation of DPA and Fast DPA here follows
our previous implementation of DPA for functional site
prediction [38]. Given an input PDB structure, MSMS [62]
was run with a 1.5 Å probe radius and a triangulation den-
sity of 1 vertex per Å2 to generate test points on the surface
of the protein. As when using original DPA to predict
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Distribution of  values for 4859 points on the surface of lysozyme 1JEF (the number of points was increased in this case to eval-uate the fit)Figure 2

Distribution of  values for 4859 points on the surface of lysozyme 1JEF (the number of points was increased in this case 

to evaluate the fit). The distribution is well-fit by an extreme value distribution (Eq. (6)) with parameters μ = 23.07 and β = 
8.45 (solid line). By examining the cumulative distribution (dashed line), the fit is used to find surface points that lie within the 
upper 96% of the distribution; these points are used to predict functional sites.
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functional sites, perturbations were calculated using every
other point in the MSMS output (we also tried using every
point, but this led to decreased performance in the preci-
sion measures). The cutoff rc for interactions between pro-
tein Cα atoms was 8.5 Å. For some proteins, this cutoff
yielded more than six zero-frequency modes, indicating
that the network of springs was too sparse (for example, if
only one spring connects two domains, then free rotations
about the spring yield two additional zero-frequency
modes). In these cases, the connectivity of the elastic net-
work model was increased by incrementing rc in 1 Å steps
until the additional zero-frequency modes were elimi-
nated. The cutoff rs for interactions between a test point
and the protein was 14 Å, and the interaction strength
between a test point and protein atoms was γs = 12γ, or 12
times the strength of the interaction between two protein
atoms. Results are independent of the value of γ.

Implementation of functional site prediction using DPA

To predict functional sites, the distribution of y = 

values was fit using Eq. (6). Points with  values in

the upper 96% of the distribution were selected and spa-
tially clustered using the OPTICS algorithm [63] with a
distance threshold of 6 Å and a minimum of 3 points per
cluster. Cα atoms within 6 Å of any point in a cluster were

selected and were used to define predicted functional
sites. The sites were ranked according to the mean value of

 within the corresponding cluster of points. Only

the top-ranked predicted site was used for the evaluation
of performance described below.

Results and Discussion
Results that motivate Fast DPA

To motivate the use of  instead of Dx for DPA, we ana-

lyzed proteins from the GOLD test set. We found that Dx
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Values of Dx (y-axis) and  (x-axis) calculated using original DPA are plotted for four PDB entries (values of the Pearson correla-tion, C, between the two, are listed here parenthetically)Figure 3

Values of Dx (y-axis) and  (x-axis) calculated using original DPA are plotted for four PDB entries (values of the Pearson cor-

relation, C, between the two, are listed here parenthetically): a) 1AEC [65], from an actinidin-E-64 complex (C = 0.988); b) 
1FKI [66], from a FKBP complex (0.989); c) 1JEF [50], from a lysozyme complex (0.992); and d) 1STP [67], from a biotin com-
plex (0.989).

a) b)

c) d)

Dx
λ
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is highly correlated with  for these cases; Fig. 3 illus-

trates the agreement for four proteins. This is not a trivial
result mathematically (see Eqs. (5) and (7))–it means that

 is highly correlated with

.

To motivate the use of perturbation theory to estimate

, we compared the true eigenvalues to those estimated

using perturbation theory for proteins in the GOLD test
set. Because in our model the strength of the spring that
connects the test points to the protein is 12 times the
strength of the spring that connects protein atoms to each
other (Methods), it was not obvious that first-order per-
turbation theory would yield reasonable estimates of
eigenvalues. However, we had hoped for success based on
the fact that we were only adding a single test point to the
model, compared to, typically, O(100) protein Cα atoms.

As illustrated for lysozyme in Fig. 4, we did find that Eq.
(9) approximates well the true eigenvalues obtained by
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Eigenvalues (used for calculation of ) that are estimated using perturbation theory (filled triangles) are a good approxima-tion to the true eigenvalues of a lysozyme elastic network model (open circles)Figure 4

Eigenvalues (used for calculation of ) that are estimated using pertur-

bation theory (filled triangles) are a good approximation to the true eigen-
values of a lysozyme elastic network model (open circles).

Dx
λ

Values of Dx calculated using original DPA (y-axis) and  calculated using Fast DPA (x-axis) are plotted for four PDB entries (val-ues of the Pearson correlation between the two are listed here parenthetically)Figure 5

Values of Dx calculated using original DPA (y-axis) and  calculated using Fast DPA (x-axis) are plotted for four PDB entries (values of the Pearson cor-

relation between the two are listed here parenthetically): a) 1AEC (0.981); b) 1FKI (0.982); c) 1JEF (0.981); d) 1STP (0.980).

a) b)

c) d)

Dx
λ
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diagonalization of H(m). Finally, we found that Dx calcu-

lated using original DPA was highly correlated with 

calculated using Fast DPA, as illustrated for four proteins
in Fig. 5.

Evaluation of Fast DPA for prediction of functional sites
The above results motivated us to develop the Fast DPA
algorithm for prediction of protein functional sites (Meth-
ods). Through use of first-order perturbation theory, Fast
DPA replaces matrix diagonalization by matrix-vector
multiplication for each test point (Eq. (9)). Because
matrix diagonalization requires O(N3) operations, and
matrix-vector multiplication requires O(N2) operations,
we expected Fast DPA to run N-fold faster than the origi-
nal DPA. We found this to be the case (Fig. 6): the original
DPA scales roughly as N3.45, while fast DPA scales roughly
as N2.29, yielding a factor of N1.16 decrease in the time
required to perform Fast DPA vs. DPA (here, N is the
number of residues in the protein).

Because Dx calculated using original DPA and  calcu-

lated using Fast DPA are highly correlated (Fig. 5), we
expected the performance of Fast DPA in predicting func-
tional site residues to be comparable to that of the original
DPA. We analyzed the performance of the algorithm on
the 305-protein GOLD [49] test set, which was used to
evaluate the original DPA algorithm [38]. Each prediction
has an associated recall (fraction of residues in the bind-

ing site that are among those in the rank-1 prediction) and
precision (fraction of rank-1 predicted residues that are
among those in the binding site). To evaluate perform-
ance statistically, we use (1) the fraction of binding sites
for which the recall is greater than or equal to a minimum
value, and (2) the fraction of fraction of rank-1 predic-
tions for which the precision is greater than or equal to a
minimum value.

Figure 7 compares the performance of Fast DPA using dif-
ferent thresholds of the extreme value distribution, and is
equivalent to Fig. 8 in [38]. The nominal threshold of 0.96
indicated in this figure is equivalent to that chosen for
original DPA. Fig. 8 compares the performance of Fast
DPA with original DPA for different thresholds. When the
threshold is 0.96 or smaller, the recall statistics of Fast
DPA tend to be better, and the precision statistics of orig-
inal DPA tend to be better. When the threshold is 0.97 or
higher, original DPA outperforms Fast DPA in both preci-
sion and recall statistics.

At the nominal threshold value of 0.96, the performance
of Fast DPA is comparable to that of original DPA. At this
threshold, original DPA yielded 287 rank-1 predictions
for the test set (rate of 94%), whereas Fast DPA yielded
267 rank-1 predictions (rate of 86%) (Table 1). However,
Fast DPA makes 251 predictions that have at least one res-
idue that overlaps the binding site, while original DPA
makes 250 such predictions, yielding a higher rate of

Dx
λ

Dx
λ

Comparison of run times for DPA (upwards-pointing trian-gles) vs. Fast DPA (downwards-pointing triangles) for various protein sizesFigure 6
Comparison of run times for DPA (upwards-pointing trian-
gles) vs. Fast DPA (downwards-pointing triangles) for various 
protein sizes. The inset shows the ratio of run times for vari-
ous protein sizes.

Comparison of Fast DPA performance using different thresh-olds of the extreme value distribution (Eq. (6))Figure 7
Comparison of Fast DPA performance using different thresh-
olds of the extreme value distribution (Eq. (6)). The y-axis is 
either the fraction of proteins for which a prediction is made 
(squares), the fraction of binding sites with a recall of at least 
0.5 (circles), or the fraction of predictions with a precision of 
at least 0.5 (triangles). The threshold is indicated on the x-
axis; the 0.96 threshold used for Figs. 9 and 10 is indicated 
using a vertical dashed line.
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locating binding sites for rank-1 Fast DPA predictions
(94%) than for original DPA (87%) (Table 1). The recall
statistics tend to be a bit better for Fast DPA (Table 1, Fig.
9), and the precision statistics tend to be better for original
DPA (Table 1, Fig. 10).

Conclusion
Use of Fast DPA enables functional site predictions to be
performed N-fold faster than original DPA, with compara-
ble performance in predicting residues in functional sites.
The acceleration will facilitate optimization of Fast DPA
for functional site predictions. Calculations that once
took hours using DPA now may be performed in a matter
of minutes, making practical the use of DPA via a web
server. Indeed, high-throughput analysis using Fast DPA
has already produced over 60,000 predicted functional
sites for about 50,000 protein domains in the SCOP [64]
database (J.D. Cohn, D. Ming, and M.E. Wall, in prepara-

tion). These predictions will provide a rich source of infor-
mation for developing hypotheses concerning
mechanisms of protein function.
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Table 1: Performance statistics for Fast DPA and original DPA using a threshold of 0.96

Rank-1 Predictionsa Any matchb Recall ≥ 0.3c Precision ≥ 0.3d Recall ≥ 0.5c Precision ≥ 0.5d

Original 287 0.87 0.80 0.68 0.76 0.44
Fast 267 0.94 0.86 0.65 0.75 0.38

a Number of proteins for which at least one DPA cluster was produced, out of 305 total.
b Fraction of rank-1 predictions that have at least one overlapping residue with the binding site.
c Fraction of binding sites for which the recall was at least 0.3 or 0.5.
d Fraction of predictions for which the precision was at least 0.3 or 0.5.

Comparison of Fast DPA vs. original DPA precision and recall statistics at different thresholds of the extreme value distribution (Eq. (6))Figure 8
Comparison of Fast DPA vs. original DPA precision and 
recall statistics at different thresholds of the extreme value 
distribution (Eq. (6)). The curves are similar to precision-
recall curves: the y-axis is the fraction of binding sites with a 
recall of at least 0.5, and the x-axis is the fraction of binding 
sites with a precision of at least 0.5. Fast DPA values are indi-
cated using open squares, and original DPA is indicated using 
filled squares. Points corresponding to a threshold of 0.96 
are indicated using arrows.

0.96 threshold

Comparison of recall of binding-site residues using DPA vs. Fast DPA for 287 (number of predictions using DPA) or 267 (number of predictions using Fast DPA) proteins in the 305-protein GOLD test setFigure 9
Comparison of recall of binding-site residues using DPA vs. 
Fast DPA for 287 (number of predictions using DPA) or 267 
(number of predictions using Fast DPA) proteins in the 305-
protein GOLD test set. The y-axis indicates the fraction of 
proteins with a recall at least as high as the value on the x-
axis (y-values should be read from the top of each step).
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