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Abstract
Background: The correlated mutations concept is based on the assumption that interacting
protein residues coevolve, so that a mutation in one of the interacting counterparts is compensated
by a mutation in the other. Approaches based on this concept have been widely used for protein
contacts prediction since the 90s. Previously, we have shown that water-mediated interactions play
an important role in protein interfaces. We have observed that current "dry" correlated mutations
approaches might not properly predict certain interactions in protein interfaces due to the fact that
they are water-mediated.

Results: The goal of this study has been to analyze the impact of including solvent into the concept
of correlated mutations. For this purpose we use linear combinations of the predictions obtained
by the application of two different similarity matrices: a standard "dry" similarity matrix (DRY) and
a "wet" similarity matrix (WET) derived from all water-mediated protein interfacial interactions in
the PDB. We analyze two datasets containing 50 domains and 10 domain pairs from PFAM and
compare the results obtained by using a combination of both matrices. We find that for both intra-
and interdomain contacts predictions the introduction of a combination of a "wet" and a "dry"
similarity matrix improves the predictions in comparison to the "dry" one alone.

Conclusion: Our analysis, despite the complexity of its possible general applicability, opens up that
the consideration of water may have an impact on the improvement of the contact predictions
obtained by correlated mutations approaches.

Background
The correlated mutations concept was introduced in the
90s [1-4] and has been widely used for protein contacts
prediction [5]. The method is based on the assumption
that interacting protein residues co-evolve, so that a muta-
tion in one of the interacting counterparts is compensated
by a mutation in the other. Therefore, it is possible to
introduce an exchange matrix or other measures of simi-
larity for each sequence position in a multiple sequence
alignment and to use covariance (correlation coefficient)
between two positions to predict if the residues at these

positions may establish physical contact in 3D space, and
develop contact maps. Several different similarity meas-
ures and algorithms have been implemented in the con-
cept of correlated mutations [5-7]. Most exchange
matrices are based either on physico-chemical properties
of amino acids or on statistical data on the substitutions
obtained from multiple sequence alignments [8]. Statisti-
cally it is clear that the distribution of distances between
the residues at highly correlated positions is shifted
towards lower values compared to the distance distribu-
tion of all residues. This has been demonstrated in the
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study of correlated mutations for residues within one pro-
tein domain (intradomain), for residues from different
domains in multidomain proteins (interdomain intrapro-
tein) [9,10] and in transmembrane proteins [11]. At the
same time, attempts to use the concept of correlated muta-
tions to predict thermodynamically coupled residues have
suggested that the method is successful only for residues
in evolutionary constrained positions [12].

The concept of correlated mutations has been intensively
developed recently. The implementation of neural nets
into algorithms of contact predictions has allowed to sub-
stantially improve the accuracy of the methods in a
number of studies [13-16]. Also the application of filter-
ing procedures such as the similarity of sequences in a
dataset and the number of sequences in multiple
sequence alignments, introduction of weights for physico-
chemical properties of the residue pairs and creation of
sub-multiple sequence alignments were successfully used
to increase a true positive ratio of contact predictions [17].
Nowadays, different correlated mutations based
approaches yield predictions accuracies in the range of
0.1–0.4 [17] but they are still of little use in the ab initio
prediction of protein structure [7].

Previously, we have shown that water-mediated interac-
tions play an important role in protein interfaces [18,19].
In particular, we observed that the interfacial residues
interacting only through one water molecule (wet spots)
are more similar in terms of dynamic and energetic prop-
erties to residues in the core of proteins than to residues
on the protein surface. Moreover, in our studies interfacial
water molecules show significantly longer residence times
than water molecules on the protein surface or in bulk sol-
vent, and have been shown to give an indispensable ener-
getic impact on complex formation [19]. In other studies
it has been demonstrated that inclusion of solvent term
into the Hamiltonian of protein systems has improved
folding predictions compared to in vacuo folding models
[20]. Also consideration of solvent explicitly in protein
docking approaches has recently shown promising results
[21]. In addition, we have observed that water molecules
in protein interfaces may contribute to the conservation of
interactions by allowing more sequence variability in the
interacting partners. In particular, we have observed
water-mediated interactions in protein complex interfaces
that are not predicted by "dry" correlated mutations
approaches [19]. Interestingly, in one of the recent studies
on correlated mutations, protein contacts prediction has
been shown to be more accurate for protein cores than for
the whole protein [22]. This could be partly explained by
a higher conservation of residue contacts in protein cores,
especially the hydrophobic ones [23] and probably also
by the fact that the participation of solvent in protein con-
tacts is being ignored.

The goal of this study has been to analyze the impact of
including solvent into the concept of correlated muta-
tions. For this purpose, we use a linear combination of
predictions obtained by the use of two similarity matrices:
a standard and widely used "dry" similarity matrix (DRY)
[24] and a "wet" similarity matrix (WET) derived from
data on all water-mediated protein-protein interfacial
interactions in the PDB [25]. We compare the predictive
results obtained with different combinations of these two
similarity matrices in terms of number of correctly pre-
dicted contacts, accuracy, improvement ratio over random
prediction for intradomain contacts and distributions of
distances between residues in interdomain pairs.

Our results show that, despite a partial interdependence
of both WET and DRY matrices, there is a clear trend
pointing that a combination of these two matrices yields
improved predictions over the single use of the DRY
matrix for both intra- and interdomain contacts. The
results obtained in this work underline the importance of
water-mediated interactions in the description of protein-
protein interactions, and that implementing combina-
tions of "dry" and "wet" matrices could possibly improve
the results obtained by correlated mutations-based
approaches.

Results and discussion
Residue-solvent relations in proteins
Independently of residue types, we calculated the average
ratios between the number of residues found to be in con-
tact with water and all residues in X-ray PDB structures. A
negligible difference was found between these ratios for
interfaces and the whole protein (0.33 and 0.35, respec-
tively). The ratios by residue type (Figure 1 and see addi-
tional file 1) correlate with an adjusted squared
correlation coefficient R2 = 0.90 (p-value~10-10) and there
is also a clear trend of residue ratios distribution in inter-
faces, which relates to their hydrophilic properties. This
agrees with observations obtained from other datasets not
including the whole PDB [26]. The better correlation
between the ratios and the hydrophilicity index for inter-
faces compared to the whole protein (R2 = 0.62 p-
value~10-5 and R2 = 0.44 p-value~10-3, respectively) could
be explained by the fact that the whole protein includes
many residues in the core that are not accessible to water.
This further supports the evidence that residue-solvent
relations in protein interfaces are different from the ones
in the proteins as a whole [18,19].

Relations between the DRY and WET similarity matrices
Both DRY and WET similarity matrices are created in a
way that each column or row is a vector, which coordi-
nates correspond to the similarity between certain amino
acid residue type and other residue types. It is possible to
define whether these vectors are interdependent for both
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matrices by application of linear regression analysis. The
data obtained and averaged for all types of residues are
presented in Table 1. High degree of correlation is
observed for some vectors, which correspond to
hydrophilic residues (excluding Thr and Tyr) and for Ile,
Leu, Met, Val, suggesting that these vectors in the matrices
are close to be collinear in 20-dimensional space. This can
be explained by the properties of these residues. In partic-
ular, hydrophilic residues interact by electrostatic forces
through their polar atoms, and water mediation in this
case can only change the electrostatic forces by introduc-
ing water dipoles oriented in a way to weaken the initial
electric field. For hydrophilic residues there is a correla-
tion between hydrophilicity indexes and co-linearity of
the corresponding vectors in the DRY and WET matrices,
which explains also relatively low co-linearity for Tyr and
Thr residues in comparison to other hydrophilic residues
(additional file 2). Direct and water-mediated interactions
formed by main chains of Ile, Leu, Met and Val in inter-
faces have been previously shown to be especially impor-
tant, whereas other residues that present no correlation
have been shown to predominantly participate in side-
chain interactions in interfaces [18]. We conclude that the
DRY and WET similarity matrices contain partially inter-
dependent information for some of amino acid residues,
and the found similarities can be explained by the phys-
ico-chemical properties of these residues.

Intradomain contacts prediction
Our dataset for intradomain contacts prediction consisted
of domains of 50 PFAM protein families (Table 2). The
lengths of the reference sequences varied from 30 to 195
residues. Initially we analyzed L, L/2, L/3, L/5 and L/10
best correlated contacts for each family (L is the length of
the reference sequence). The number of sequences consid-
ered for the multiple sequence alignments was in the

range of 20 to 295 sequences. Previous studies have
shown that accuracy (ratio between the number of cor-
rectly predicted contacts and the number of total pre-
dicted contacts) and improvement ratio over random
prediction (ratio between accuracy and the probability of
predicting a contact by chance) decrease with the increase
of the number of analyzed contacts [4-6]. Table 3 shows
accuracy and improvement ratio over random prediction
for  = 0.5 (weight for WET matrix prediction when for
DRY is 1), which corresponds to the average best accuracy
obtained for different numbers of analyzed predicted con-
tacts. The results obtained for other  values followed the
same trend (data not shown). Independent of the number

Water contacts of residues in PDBFigure 1
Water contacts of residues in PDB. Fractions of resi-
dues found to be in contact with water in protein interfaces 
(white) and in whole proteins (grey) in the PDB.

Table 1: Correlation between vectors per residue type in the 
DRY and WET matrices.

Residue p-value Adjusted R2

Ala 0.90 -0.05

Arg 4·10-3 0.35

Asn 4·10-5 0.65

Asp 6·10-4 0.46

Cys 0.14 0.07

Gln 5·10-4 0.47

Glu 4·10-4 0.49

Gly 0.53 -0.03

His 0.02 0.22

Ile 8·10-4 0.44

Leu 6·10-3 0.31

Lys 8·10-3 0.29

Met 6·10-3 0.31

Phe 0.02 0.24

Pro 0.62 -0.04

Ser 2·10-3 0.39

Thr 0.07 0.12

Trp 0.18 0.05

Tyr 0.71 -0.05

Val 4·10-3 0.33
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Table 2: Dataset used for intradomain contact predictions.

PFAM ID PDB IDa R (Å) Nb % idc Ld Ran acce Accf Rg Opt h Xd dry
i OptXd j Xd wet|opt 

k

PF00014 6PTI 1.70 151 33 52 0.096 0.346 3.61 1 9.37 1 11.16

PF03705 1AF7 2.00 85 20 57 0.081 0.241 2.65 0.5, 4, 10 6.14 2 7.63

PF00062 5LYZ 2.00 22 46 127 0.043 0.078 1.91 0, 0.5 2.68 0 2.68

PF00018 1BU1 2.60 61 28 56 0.088 0.357 4.06 0.5 12.99 0 12.99

PF03900 1PDA 1.76 21 25 74 0.062 0.237 3.82 2 9.18 0.2 9.99

PF00034 1CTJ 1.10 35 17 89 0.061 0.250 4.10 1 9.13 0.1 10.34

PF01568 1DMR 1.82 88 18 113 0.044 0.050 1.14 0.2, 0.5 10.62 2 12.53

PF00127 8PAZ 1.60 31 29 89 0.055 0.102 1.85 2 0.50 1 4.82

PF01814 2MHR 1.30 295 12 49 0.098 0.400 4.08 0.5, 2 8.39 2 13.14

PF00017 1BMB 1.80 59 28 93 0.058 0.212 3.66 0 – 0.5 5.98 1 8.37

PF01320 1AYI 2.00 45 47 86 0.056 0.233 4.15 0.2 16.04 0 16.04

PF08666 1AME 1.65 171 14 66 0.074 0.273 3.69 0 10.25 0 10.25

PF01337 1A19 2.76 30 25 89 0.065 0.178 2.87 0, 0.1 4.55 0.1 4.72

PF00595 2HB2 2.30 56 19 85 0.062 0.233 3.75 0.5 – 2 10.16 1 11.67

PF00531 1WMG 2.10 92 14 82 0.066 0.250 3.79 0 – 0.5 7.67 0.2 7.95

PF00397 1EG3 2.00 73 32 30 0.143 0.467 3.26 2 – 20 6.59 2 8.81

PF01335 2F1S 1.40 40 21 76 0.072 0.237 3.88 0.1, 0.2 5.66 0.2 5.96

PF00619 1CY5 1.30 61 16 85 0.066 0.209 3.43 0.2 – 2 5.09 2 9.42

PF02213 1SYX 2.35 112 28 58 0.083 0.241 2.91 0.5 – 2 7.37 0.5 7.77

PF05743 1UZX 1.85 28 27 118 0.035 0.068 1.98 0.1 7.22 0 7.22

PF00536 1B4F 1.95 69 28 74 0.076 0.395 5.19 0.2 – 2 15.53 2 16.36

PF03114 1ZWW 2.30 29 19 195 0.021 0.074 3.53 0.2 2.41 20 3.99

PF00169 1NTY 1.70 139 10 112 0.050 0.071 1.43 0, 0.2, 0.5 5.46 2 7.53

PF08416 1WVH 1.50 49 28 132 0.040 0.106 2.65 2, 4 0.53 0.1 1.24

PF01981 1WN2 1.20 69 43 116 0.049 0.172 3.52 0.1 – 0.5 7.63 20 12.38

PF03992 1XBW 1.90 116 15 65 0.068 0.125 1.84 0.5 3.34 0 3.34

PF00907 1H6F 1.70 23 49 183 0.032 0.033 1.03 0 – 20 3.30 2 6.03

PF02237 1WPY 1.60 47 21 48 0.094 0.167 1.77 0.5 – 2 -2.83 0.5 0.22
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of analyzed contacts the best predictions in average did
not correspond to  = 0. The obtained values for accuracy
and improvement ratio over random prediction are
within the ranges obtained by other correlated mutations
approaches [17,22]. However, direct quantitative compar-
ison of these methods is not appropriate because of their
substantial differences in their residue contacts defini-
tions. In particular, some of these approaches utilize for
contact definition (see contact definition in Methods sec-
tion) a chosen distance cut-off of 6–8 Å between atoms

[4,16,17], whereas we use physico-chemical properties of
protein residues, which results in a  4 Å cut-off [27].

We compared the dependences on  of: i) accuracy, ii)
improvement ratio over random prediction, iii) number
of correctly predicted contacts (Ccorr); and, since our data-
set is heterogeneous (see high standard deviations in
Table 3), we normalized these parameters by the corre-
sponding values at  = 0 (wet prediction ratio). For the
purpose of wet prediction ratio comparison at different

PF08031 2AXR 1.98 64 34 34 0.135 0.235 1.74 0.1, 0.2 -0.05 2 3.37

PF02861 1K6K 1.80 165 21 51 0.098 0.440 4.49 1, 4, 10, 20 9.55 20 13.21

PF02834 1VGJ 1.94 106 14 85 0.048 0.119 2.48 4 – 20 -0.51 4, 10 3.21

PF01423 1KQ1 1.55 128 23 60 0.079 0.167 2.11 0.2, 0.5 5.78 0.1, 0.2 7.14

PF01472 1AS0 1.80 106 24 78 0.058 0.128 2.21 1 – 20 3.57 2, 4 11.45

PF01909 1NO5 1.80 119 14 91 0.059 0.133 2.26 0.1 – 1 4.97 0.2 6.01

PF09261 1R34 1.95 79 31 78 0.069 0.205 2.97 0.1, 0.2 4.87 0.1 6.64

PF01315 1VLB 1.28 28 19 117 0.041 0.207 5.05 1, 2 7.70 2 10.28

PF04545 1KU3 1.80 128 31 54 0.096 0.370 3.86 0, 0.1, 1, 10, 20 12.37 10, 20 12.76

PF00984 1MV8 1.55 24 17 98 0.048 0.184 3.83 0.5 – 20 8.27 0.2 9.78

PF01658 1U1I 1.90 20 31 105 0.049 0.096 1.96 0.1 – 20 1.93 0.5 6.28

PF00745 1GPJ 1.95 34 23 99 0.048 0.100 2.08 0.1 – 0.5 3.17 0.1 4.17

PF03099 1WNL 1.60 65 14 117 0.043 0.121 2.81 0 13.7 0.2 14.20

PF01985 1JO0 1.37 50 23 84 0.064 0.167 2.60 0 – 0.2 6.96 0 6.96

PF08436 1Q0Q 1.90 77 57 94 0.049 0.213 4.34 0 – 0.1 6.91 10 10.15

PF02881 1JPN 1.90 52 19 85 0.063 0.119 1.89 0 – 20 3.94 2 5.78

PF01966 1YNB 1.76 158 12 91 0.057 0.333 5.85 0 – 0.2 -0.79 2 2.20

PF00191 1YII 1.42 178 28 66 0.076 0.273 3.59 0 – 0.2 -0.35 10 1.05

PF00317 1XJE 1.90 79 23 90 0.056 0.178 3.17 0.5 – 2 10.01 0.5 13.16

PF00046 1PUF 1.90 184 37 60 0.082 0.333 4.07 1, 2 6.07 2 8.60

PF00077 5FIV 1.90 48 27 108 0.049 0.093 1.89 2 -1.37 1 3.63

PF00042 1ECN 1.40 73 18 101 0.046 0.163 3.56 1, 2 6.89 2 7.19

aPDB ID; bNumber of sequences; cAverage sequences pairwise similarity (%); dReference sequence length; eRandom accuracy; fAccuracy for optimal 
; gImprovement ratio over random prediction for optimal ; hValues for  = 0; i corresponding to the highest accuracy; j corresponding to the 
highest Xd; kXd highest value.

Table 2: Dataset used for intradomain contact predictions. (Continued)
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values of  we found L/2 to be the most appropriate
number of contacts. This choice is explained by the fact
that the changes in prediction results influenced by  var-
iation become hardly detectable if a smaller number of
contacts (Ctotal) is considered for analysis since these
changes are limited by low values of Ctotal and, conse-
quently, of correctly predicted contacts (Ccorr). On the
other hand, the increase of Ctotal generally leads to
decrease of prediction accuracy and to negligible differ-
ences in prediction results corresponding to different 
values. Only in 2 out of the 50 families of our dataset best
predictions correspond to  = 0 values (Table 2). Maxi-
mum values for wet prediction ratio and relative Xd (har-
monic weighted difference statistic) averaged for the
whole dataset are obtained when  = 0.5 and  = 1 (1.19
and 1.29, respectively; Figure 2A, B). This means that, for
these values of , introduction of the WET similarity
matrix improves prediction by 20–30% on average.
Noticeably, the high values of   {10, 20} still make the
predictions on average better than by the single use of the

DRY matrix. For optimal value  = 0.5, absolute values of
accuracy and improvement ratio over random prediction
averaged for all 50 families increase by 1.4% and 0.19,
respectively, in comparison to the single use of the DRY
similarity matrix. For each family in the dataset there is an
essentially higher increase of accuracy and improvement
ratio over random prediction than on average. In some
families, wet prediction ratio is improved more than twice
(reference structures 1AF7, 1PDA, 8PAZ, 1DMR, 1AS0)
and even 4.5 times (reference structure 1WVH) when  >
0. Our results show a significant improvement (20–30%
of increase in wet prediction ratio) in predictions by the
introduction of the WET similarity matrix in comparison
to the single use of the DRY matrix within a correlated
mutations approach. We observe that for sequence sepa-
rations |i-j| > 6, 12, 24 our results follow the same trend.
The obtained results for  = 0.5 for different number of
contacts (L, L/2, L/3, L/5, L/10) are shown in Table 4. We
observe that the best predictions correspond to  = 0.2
and 0.5 for most of sequence separation values and

Table 3: Prediction parameters dependence on the number of analyzed contacts.

Predicted contacts analyzed Accuracy Improvement ratio over random prediction

L 0.15 ± 0.09 2.24 ± 0.95

L/2 0.18 ± 0.10 2.67 ± 1.08

L/3 0.19 ± 0.12 2.81 ± 1.52

L/5 0.21 ± 0.16 3.16 ± 1.79

L/10 0.23 ± 0.20 3.55 ± 2.81

L is the length of the reference sequence. The value  = 0.5 has been used.

Dependence on  of relative prediction characteristics for the intradomain datasetFigure 2
Dependence on  of relative prediction characteristics for the intradomain dataset. A) Wet prediction ratio. B) 
Relative harmonic weighted difference statistic (Xd).
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number of contacts. Wet prediction ratios for the whole
range of analyzed  are presented in a figure in supple-
mentary material (additional file 3). In all cases, inde-
pendently of sequence separation and number of
contacts, the best predictions correspond to  > 0.

Interdomain contacts prediction
The interdomain dataset used for our studies consisted of
10 different pairs of interacting domains (Table 5). From
the analysis of the (L1+L2)/2 predicted interdomain resi-
due contacts (L1 and L2 are the lengths of the sequences in
each of the two domains) we observed that in 9 out of 10
cases best predictions in terms of Xd were obtained when
both the WET and DRY matrices were used. Relative Xd
averaged for the whole dataset reaches a maximum value
of 1.32 at  = 0.2 and then decreases with the further
increase of  (Figure 3). In one of the examples (SH2-SH3
domains interaction) the differences of distance distribu-
tions for different  values are dramatic (Figure 4). In this
case the Xd value for predicted contacts at  = 0 and  = 0.2
changes almost twice (Table 5). These results point out

that the use of the WET similarity matrix might improve
the statistic Xd in comparison to the single use of the DRY
similarity matrix.

Dependence of relative average Xd on  for interdomain
contacts prediction (Figure 3) resembles the one obtained
for intradomain prediction (Figure 2B) but they differ in
the optimal  and in the Xd corresponding to the higher
 values. While in predictions of intradomain contacts all
values of  > 0 lead to the improvement of contact predic-
tions, in the case of interdomain contacts prediction the
use of the WET similarity matrix yields higher Xd than the
DRY alone when   {0.1,0.2}. This might be due to the
differences in distance distributions between the analyzed
pairs of residues, which are closer to each other in the case
of intradomain contacts. Nevertheless, introduction of the
WET similarity matrix improves contact prediction com-
pared to the single use of the DRY similarity matrix for

Proportion of residue pairs at distance bins for the interac-tion SH2-SH3Figure 4
Proportion of residue pairs at distance bins for the 
interaction SH2-SH3. All residue pairs are shown in black, 
correlated pairs with  = 0 in white, and correlated pairs 
with  = 0.2 in grey. Reference structure used is PDB ID 
2SRC.

Table 4: Accuracy, improvement ratio over random prediction and wet prediction ratio for different sequence separations.

Sequence separation 6 Sequence separation 12 Sequence separation 24

Accuracy R Wet ratio Accuracy R Wet ratio Accuracy R Wet ratio

L 0.061 3.07 1.01 0.051 3.02 1.02 0.042 2.97 1.06

L/2 0.079 4.18 1.11 0.070 4.34 1.14 0.050 3.76 1.10

L/3 0.087 4.56 1.14 0.071 4.49 1.01 0.060 4.61 1.14

L/5 0.099 5.49 1.05 0.085 5.71 1.08 0.068 5.18 1.04

L/10 0.122 6.68 1.14 0.103 6.89 1.13 0.078 6.31 1.00

L is the length of the reference sequence. R is improvement over random prediction. The value  = 0.5 has been used.

Predictions for interdomain datasetFigure 3
Predictions for interdomain dataset. Relative harmonic 
weighted difference statistic (Xd) dependence on .
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both intra- and interdomain contacts. Although there are
still significant limitations for practical use of the corre-
lated mutations approach for interdomain contacts pre-
diction, also mentioned by other authors [5,9], we believe
that consideration of water by the use of "wet" similarity
matrices could improve the results obtained by correlated
mutations approaches.

Conclusion
This study is the first investigating the impact of inclusion
of solvent into the concept of correlated mutations. With
this work we further demonstrate our previous observa-
tions that relations between solvent and protein residues
in protein interfaces differ from those in the whole pro-
tein. Recent work on bond preferences in inter- versus
intraprotein interactions highlights the different architec-
ture of protein interfaces and their unique bond prefer-
ences [28].

Two similarity matrices have been used in this work: the
McLachlan matrix as the DRY similarity matrix and a WET
similarity matrix derived by statistical analysis of the fre-
quency of water contacts by residue type in protein inter-
faces in the whole PDB. Analysis of the DRY and WET
similarity matrices shows that they are interdependent for
some residue types, which could be explained by physico-
chemical properties of individual amino acid residues. We
analyze two datasets containing 50 domains and 10
domain pairs belonging to PFAM families. We sum the

predictions obtained by the use of both matrices with dif-
ferent weight coefficients and find optimal combinations
for best predictions. Our datasets are heterogeneous to
propose one best weight value to be able to apply the opti-
mized method to all domain families; however, the pre-
diction of contacts obtained by the introduction of the
WET similarity matrix is improved for most of the families
in the datasets (for both intra- and interdomain) as well
as on average (by 20–30%). Our analysis of solvent
impact on contact prediction in proteins suggests that fur-
ther development of the correlated mutations concept
would benefit from taking into account solvent as an
active participant in protein-protein interactions, which is
usually overlooked in these studies.

Methods
Dataset and multiple sequence alignments
We based the generation of our dataset on previous simi-
lar studies [4,9,22]. Our dataset includes 50 domains and
10 domain pairs extracted from the PFAM database [29].
Consecutive increase of the size of our dataset for intrad-
omain contacts did not significantly change our results.

For most of the families, only seed sequences were used,
except for the cases when the number of seed sequences
was less than 20. Datasets with a smaller number of
sequences are not supposed to be useful in correlated
mutations analysis [22]. The reference sequence (corre-
sponding to the structure used for predictions evaluation)

Table 5: Dataset used for interdomain contact predictions.

Interacting partners PFAM
ID1/ID2

PDB IDa Nb % idenc L1
d L2

e Xd dry
f OptXd g Xd wet|opt 

h

Tyrosine kinase SH3/SH2 domains PF00018/PF00017 2SRC 19 35 57 83 1.86 0.2 3.25

Alcohol dehydrogenase N-/C-domains PF08240/PF00107 1ADG 89 23 128 143 3.52 0.2 3.64

Mg superoxide dismutase
N-/C-domains

PF00081/PF02777 1AP5 23 44 82 107 4.76 0.2 5.04

Immunoglobulin heavy/light chains PF00047/PF00047 12E8 116 36 107 114 13.56 0 13.56

Ortnithine transferase N-/C-domains PF02729/PF00185 1DUV 20 30 142 178 4.47 0.1 4.94

NFKB factor RHD/TIG domains PF00554/PF01833 1SVC 21 40 199 100 4.56 0.5 4.62

STAT alpha/binding domains PF01017/PF02864 1BF5 32 38 180 251 4.30 0.2 4.42

Mur-ligase catalytic/C-terminal domains PF01225/PF08245 1E8C 26 25 82 208 1.84 0.1 2.12

Dynamin central/N-domains PF00350/PF01031 2AKA 32 40 174 89 0.04 0.2 0.14

Trk C-/N-domains PF02254/PF02080 1LNQ 42 20 114 72 0.53 1 0.78

aPDB ID of the reference structure; bNumber of sequences in the multiple sequence alignment; cAverage percentage of sequences pairwise 
similarity; d, eLengths of the reference sequences; fValues for  = 0; g value corresponding to the highest Xd; hXd highest value.
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was added to the set of sequences, if this did not already
contain it, following the same procedure that Eyal and co-
workers used for obtaining a substitution matrix for pro-
tein structure prediction purposes [22]. Multiple sequence
alignments were obtained with CLUSTALW [30].
Sequences with more than 95% of identity were not taken
into account.

For the interdomain dataset the sequences from the two
domain families were aligned independently. Except for
the case of immunoglobulins, where light and heavy
chains were used as two interacting domains, all interdo-
main entries in the dataset contained pairs of two differ-
ent PFAM domains. Reference structures had resolution 
2.0 Å except for five of them (1BU1 and 1A19 taken from
the Eyal et al dataset and 2HB2, 1WMG, 1ZWW taken into
account to enrich the dataset with bigger domains and
highly represented families).

Source and analysis of atomic data on protein structures
An in-house relational database of protein structures
(XMLRPDB) and the SCOWLP database [25,27] were
used to obtain interaction information including solvent
from X-ray structures in the PDB.

Contact definition
Residue contacts in a reference structure were defined by
following the physico-chemical criteria from SCOWLP
[27]. We considered a 3.2 Å donor-acceptor distance for
hydrogen bonds, 4 Å for salt bridges, and van der Waals
radii for van der Waals interactions.

Similarity matrices
We used the McLachlan similarity matrix (based on struc-
tural and genetic similarities of amino acids) as a "dry"
matrix (DRY) [24]. To build a "wet" matrix (WET) we
extracted information on protein interfacial residues and
solvent from all available X-ray PDB structures using the
SCOWLP database [25,27]. In this database, three classes of
interacting residues are defined based on their interactions:
dry (direct interaction), dual (direct and water-mediated
interactions), and wet spots (residues interacting only
through one water molecule). For each type of amino acid
residue the probability of participation in water-mediated
interactions (by establishing hydrogen bond by main chain
or side chain) in protein interfaces was calculated as:

pi = Ni, w/Ni, total (Figure 1), where i corresponds to any of
the 20 amino acids; Ni, w is the number of the residues of
this type forming wet spots or dual interactions; and Ni,

totalis the total number of residues of this type participating
in interfaces in all PDB structures. Each element of the
WET similarity matrix was then defined as:

WETij = 1-|pi-pj|, where i and j correspond to any of the 20
amino acids.

The fact that for the creation of the wet matrix we take low
resolution structures containing either none or few water
molecules into account when considering the whole PDB
does not bias the WET matrix because it affects each prob-
ability proportionally.

Correlation coefficient calculations
For both DRY and WET similarity matrices the corre-
sponding covariance matrices were calculated as previ-
ously described (Göbel et al 1994) using the formula:

, where N is the

number of sequences; i and j are sequence position num-
bers; Sikl is a value from the similarity matrix (DRY or

WET); Si is the mean of Sikl; i is the standard deviation of

Sikl; and Wkl is a weight matrix defined as:

, where L is the sequence length;

Rik and Ril are the residue types at position i in the

sequences k and l, respectively; and  is Kronecker delta
[31].

For the interdomain dataset the weight matrix Wkl was cal-
culated as an average for the domains and weighted by
sequence length. The positions with more than 10% of
gaps as well as completely conserved positions were not
included in the calculations (zero was assigned to the cor-
responding correlation coefficient). After calculating cov-
ariance matrices based on the DRY and WET similarity
matrices, we built their linear combinations:

rij = rij DRY + ·rij WET, where  takes values from {0, 0.1,
0.2, 0.5, 1, 2, 4, 10, 20}, so that the weight ratio between
the impact of DRY and WET represents the range from
completely dry ( = 0) to extremely WET-biased covari-
ance ( = 20).

Evaluation of intradomain predictions
For evaluation of intradomain contacts predictions we
used previously described methodology [4]. Sequence
separation of 0, 6, 12 and 24 was used. Prediction accuracy
was defined as the ratio between the number of correctly
predicted contacts (Ccorr) and total number of predicted
contacts (Ctot). Random accuracy corresponds to the prob-
ability of correct prediction of the contact by chance and
is equal to the ratio between experimentally observed con-
tacts (Cobs) and maximum number of possible contacts.
The ratio between accuracy and random accuracy was
introduced as improvement ratio over random prediction. Wet
prediction ratio is equal to accuracy normalized by the
accuracy obtained by using only the DRY matrix ( = 0).

rij
k l

N

N

Wkl Sikl S i S jkl S j

i j
=

−< > −< >∑1
2

( )( )

,
 

W R Rkl ik il
i

L

L= −
=
∑1 1

1
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For the reference structures Ccorr was taken as the number
of contacts defined by SCOWLP criteria (see the Contact
definition section in Methods).

Distance calculation and harmonic average (Xd)
In the analysis of interdomain contacts the accuracy calcu-
lated in the same way as for intradomain contacts (typical
value Cobs~102) is expected to be at least one order of
magnitude lower (typical value Cobs~101). That is why
comparison of accuracy, improvement ratio over random
prediction and Ccorr as functions of  is not appropriate in
this case. It has been shown that the distribution of dis-
tances between the correlated pairs is shifted to lower val-
ues compared to the distribution of distances for all
residue pairs in two domains [9]. In our study we use a
harmonic weighted difference statistic Xd described before
[9]:

, where n is the number of distance bins;

di is the upper limit for each bin normalized to the maxi-

mum value of the distributed distances; Pic is the percent-

age of the analyzed correlated pairs at the distances
between di and di-1; and Pia is the same percentage for all

pairs of residues. The width of bin was 4 Å. The higher the
Xd value, the more successful a prediction is.

Different definitions for the distance between residues
resulted in all cases in the same trends and quantitatively
only slightly affected Xd values. For interdomain pairs we
used distances between the centers of mass of residues in
order not to be biased to either main-chain or side-chain
contacts.

For Xd calculations we took the best L/2 contacts for intra-
domain and (L1+L2)/2 contacts for interdomain contact
predictions, where L1 and L2 are the reference sequences of
the two interacting domains.

Although both the wet prediction ratio and Xd characterize
the predictive power of the method, it is irrelevant to com-
pare the results obtained for these parameters with each
other. The same applies to  values corresponding to best
predictions.

Statistical analysis
Statistical analysis of data was carried out with the R-pack-
age [32].
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